

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

Embedded Syestem: Microcontroller Kuldeep Panwar & Devanshu Sharma

P a g e | 1591

Embedded Syestem: Microcontroller

Kuldeep Panwar1 & Devanshu Sharma2
electronics and Computer Engineering.

1
kuldeep.15715@Ggnindia.Dronacharya.Info ;

2
 Devanshu.15706@Ggnindia.Dronacharya.Info

ABSTRACT

This research paper is dealing with the

microcontroller of an embedded system.

Introduction to microcontroller is represented

here. Embedded and external microcontroller

are elaborated here. This is just a basic

approach towards embedded system. The basic

details of embedded system is defined here.

I. INTRODUCTION

A microcontroller (sometimes

abbreviated µC, uC or MCU) is a small

computer on a single integrated

circuit containing a processor core, memory, and

programmable input/output peripherals. Program

memory in the form of NOR flash or OTP

ROM is also often included on chip, as well as a

typically small amount of RAM.

Microcontrollers are designed for embedded

applications, in contrast to the

microprocessors used in personal computers or

other general purpose applications.[1]

Microcontrollers are used in automatically

controlled products and devices, such as

automobile engine control systems, implantable

medical devices, remote controls, office

machines, appliances, power tools, toys and

other embedded systems.[2] By reducing the size

and cost compared to a design that uses a

separate microprocessor, memory, and

input/output devices, microcontrollers make it

economical to digitally control even more

devices and processes.[3] Mixed

signal microcontrollers are common, integrating

analog components needed to control non-digital

electronic systems.[4]

Some microcontrollers may use four-

bit words and operate at clock rate frequencies as

low as 4 kHz, for low power consumption

(single-digit milliwatts or microwatts).[5] They

will generally have the ability to retain

functionality while waiting for an event such as a

button press or other interrupt; power

consumption while sleeping (CPU clock and

most peripherals off) may be just nanowatts,

making many of them well suited for long lasting

battery applications.[5] Other microcontrollers

may serve performance-critical roles, where they

may need to act more like a digital signal

processor (DSP), with higher clock speeds and

power consumption.[2]

II. TYPES OF MICROCONTROLLER
General Purpose

 Microcontroller manufacturers, such as Atmel

and Microchip, offer general purpose

microcontroller families.[4] Within the general

purpose device types, there are often various

configurations available such as 8-bit, 16-bit and

32-bit word sizes.[5] Word size refers to the size

of binary numbers that can be handled by the

microcontroller. Also, the general purpose

devices come in different memory and peripheral

configurations. General purpose microcontrollers

normally have a set of features that would be

useful in a variety of applications and can be

designed into products such as home appliances

and consumer products.

Signal Processing

 As the speed and processing power of

microcontrollers has increased, manufacturers

have combined features of a microcontroller with

features of a digital signal processor (or DSP).[6]

For example, Microchip offers the dsPIC line of

mailto:1kuldeep.15715@Ggnindia.Dronacharya.Info

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

Embedded Syestem: Microcontroller Kuldeep Panwar & Devanshu Sharma

P a g e | 1592

products that they refer to as digital signal

controllers (or DSCs), which have

microcontroller features and DSP features in a

single core.[12] Signal processing

microcontrollers typically combine the built-in

memory and simple instruction sets of

microcontrollers with the efficient signal

processing arithmetic circuits found in DSPs.[11]

Signal processing microcontrollers are used in

applications such as intelligent power supplies

that convert electrical power from one form to

another.[10]

III. INTERRUPT LATENCY

In contrast to general-purpose computers,

microcontrollers used in embedded systems

often seek to optimize interrupt latency over

instruction throughput. Issues include both

reducing the latency, and making it be more

predictable (to support real-time control).[8]

When an electronic device causes an interrupt,

the intermediate results (registers) have to be

saved before the software responsible for

handling the interrupt can run.[8] They must also

be restored after that software is finished. If there

are more registers, this saving and restoring

process takes more time, increasing the

latency.[7] Ways to reduce such context/restore

latency include having relatively few registers in

their central processing units (undesirable

because it slows down most non-interrupt

processing substantially), or at least having the

hardware not save them all (this fails if the

software then needs to compensate by saving the

rest "manually"). Another technique involves

spending silicon gates on "shadow registers":

One or more duplicate registers used only by the

interrupt software, perhaps supporting a

dedicated stack.[12]

Other factors affecting interrupt latency include:

 Cycles needed to complete current CPU

activities. To minimize those costs,

microcontrollers tend to have short pipelines

(often three instructions or less), small write

buffers, and ensure that longer instructions

are continuable or restartable. Reduced

instruction set computing/RISC design

principles ensure that most instructions take

the same number of cycles, helping avoid the

need for most such continuation/restart

logic.[8]

 The length of any critical section that needs

to be interrupted. Entry to a critical section

restricts concurrent data structure access.

When a data structure must be accessed by

an interrupt handler, the critical section must

block that interrupt. Accordingly, interrupt

latency is increased by however long that

interrupt is blocked.[4] When there are hard

external constraints on system l0atency,

developers often need tools to measure

interrupt latencies and track down which

critical sections cause slowdowns[3].

 One common technique just blocks all

interrupts for the duration of the critical

section. This is easy to implement, but

sometimes critical sections get

uncomfortably long.[3]

 A more complex technique just blocks

the interrupts that may trigger access to

that data structure. This is often based on

interrupt priorities, which tend to not

correspond well to the relevant system

data structures. Accordingly, this

technique is used mostly in very

constrained environments.[1]

 Processors may have hardware support

for some critical sections. Examples

include supporting atomic access to bits

or bytes within a word, or other atomic

access primitives like the Load-

link/store-

conditional/LDREX/STREX exclusive

access primitives introduced in

the ARMv6 architecture.[2]

 Interrupt nesting. Some microcontrollers

allow higher priority interrupts to interrupt

lower priority ones. This allows software to

manage latency by giving time-critical

interrupts higher priority (and thus lower and

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

Embedded Syestem: Microcontroller Kuldeep Panwar & Devanshu Sharma

P a g e | 1593

more predictable latency) than less-critical

ones.

 Trigger rate. When interrupts occur back-to-

back, microcontrollers may avoid an extra

context save/restore cycle by a form of tail

call optimization.

Lower end microcontrollers tend to support

fewer interrupt latency controls than higher end

ones.

IV. MICROCONTROLLER EMBEDDED

MEMORY TECHNOLOGY

 Since the emergence of microcontrollers,

many different memory technologies have been

used. Almost all microcontrollers have at least

two different kinds of memory, a non-volatile

memory for storing firmware and a read-write

memory for temporary data.

Data

From the earliest microcontrollers to today, six-

transistor SRAM is almost always used as the

read/write working memory, with a few more

transistors per bit used in the register

file. FRAM or MRAM could potentially replace

it as it is 4 to 10 times denser which would make

it more cost effective.[10]

In addition to the SRAM, some microcontrollers

also have internal EEPROM for data storage; and

even ones that do not have any (or not enough)

are often connected to external serial EEPROM

chip (such as the BASIC Stamp) or external

serial flash memory chip.[11]

A few recent microcontrollers beginning in 2003

have "self-programmable" flash memory.
[

Firmware

The earliest microcontrollers used mask ROM to

store firmware. Later microcontrollers (such as

the early versions of the Freescale 68HC11 and

early PIC microcontrollers) had quartz windows

that allowed ultraviolet light in to erase

the EPROM.

The Microchip PIC16C84, introduced in

1993, was the first microcontroller to

use EEPROM to store firmware. In the same

year, Atmel introduced the first microcontroller

using NOR Flash memory to store firmware.

V. CONCLUSION

Placing an embedded microprocessor system

into a product makes the product smart. It can

then be programmed to do things that are too

difficult or expensive using conventional

technologies such as logic, or time switches, and

so on. Link such a smart product to the Internet

and it can do even more. For example, products

can be programmed to do self-diagnostic checks

and to report back to the manufacturer. Not only

does this provide the potential to collect data that

can be used to improve products, it can also

allow for the manufacturer to inform the user of

potential problems, so that action can be taken.

This opens up possibilities for improved

customer service as well as new services.

Basically, embedded microprocessors enable

firms to compete on product and service

innovation, by adding product and service

features that customers value, but which would

be largely impossible without this technology.

REFERENCES

1. Augarten, Stan (1983). "The Most

Widely Used Computer on a Chip: The

TMS 1000". State of the Art: A

Photographic History of the Integrated

Circuit (New Haven and New York:

Ticknor & Fields). ISBN 0-89919-195-9.

Retrieved 2009-12-23.

2.
b
 "Oral History Panel on the

Development and Promotion of the Intel

8048 Microcontroller". Computer

History Museum Oral History, 2008.

p. 4. Retrieved 2011-06-28.

3. ""Atmel’s Self-Programming Flash

Microcontrollers"". 2012-01-24.

http://en.wikipedia.org/wiki/Microcontroller#cite_ref-CMoral2008_2-1
http://www.atmel.com/dyn/resources/prod_documents/doc2464.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc2464.pdf

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

Embedded Syestem: Microcontroller Kuldeep Panwar & Devanshu Sharma

P a g e | 1594

Retrieved 2008-10-25. by Odd Jostein

Svendsli 2003

4. Jim Turley. "The Two Percent

Solution" 2002.

5. Tom Cantrell "Microchip on the

March". Circuit Cellar. 1998.

6. Momentum Carries MCUs Into

2011 http://semico.com/content/moment

um-carries-mcus-2011

7. Heath, Steve (2003). Embedded systems

design. EDN series for design engineers

(2 ed.). Newnes. pp. 11–

12. ISBN 9780750655460.

8. Easy Way to build a microcontroller

project

9. "8052-Basic Microcontrollers" by Jan

Axelson 1994

10. Edwards, Robert (1987). Optimizing the

Zilog Z8 Forth Microcontroller for

Rapid Prototyping. Martin Marietta. p. 3.

Retrieved 9 December 2012.

11. Microchip unveils PIC16C84, a

reprogrammable EEPROM-based 8-bit

microcontroller 1993

http://www.embedded.com/electronics-blogs/significant-bits/4024488/The-Two-Percent-Solution
http://www.embedded.com/electronics-blogs/significant-bits/4024488/The-Two-Percent-Solution
http://www.embedded.com/electronics-blogs/significant-bits/4024488/The-Two-Percent-Solution
http://www.circuitcellar.com/library/designforum/silicon_update/3/index.asp
http://www.circuitcellar.com/library/designforum/silicon_update/3/index.asp
http://www.circuitcellar.com/library/designforum/silicon_update/3/index.asp
http://semico.com/content/momentum-carries-mcus-2011
http://semico.com/content/momentum-carries-mcus-2011
http://semico.com/content/momentum-carries-mcus-2011
http://books.google.com/books?id=BjNZXwH7HlkC&pg=PA11
http://books.google.com/books?id=BjNZXwH7HlkC&pg=PA11
http://books.google.com/books?id=BjNZXwH7HlkC&pg=PA11
http://www.popsci.com/diy/article/2009-01/dot-dot-programming
http://www.popsci.com/diy/article/2009-01/dot-dot-programming
http://www.popsci.com/diy/article/2009-01/dot-dot-programming
http://www.lvr.com/microc.htm
http://www.ornl.gov/info/reports/1987/3445602791343.pdf
http://www.ornl.gov/info/reports/1987/3445602791343.pdf
http://www.ornl.gov/info/reports/1987/3445602791343.pdf
http://www.ornl.gov/info/reports/1987/3445602791343.pdf
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2018&mcparam=en013082
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2018&mcparam=en013082
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2018&mcparam=en013082
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2018&mcparam=en013082

