

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

Multithreading In Java Kuldeep Panwar & Devanshu Sharma

P a g e | 1595

Multithreading In Java

Kuldeep Panwar & Devanshu Sharma
Electonics and Computer Science

Kuldeep.15715@Ggnindia.Dronacharya.Info, Devanshu.15715@Ggnindia.Dronacharya.Info

ABSTRACT

In this paper we discuss the use of

multithreading, its types and difference from

other multitasking processes. This is just a basic

research on multithreading. This doesn’t

conclude the new research paradigm. The basic

details of multithreading used in java is defined

here.

We have discussed our basic approach that is

needed for the betterment of multithreading in

our context.

There is a little concusion that came out of this

research.

Keywords—

About four key words ;phrases in alphabetical

order; separated by commas.

I. INTRODUCTION

Java is amultithreaded programming

language which means we can develop

multithreaded program using Java. A

multithreaded program contains two or more

parts that can run concurrently and each part can

handle different task at the same time making

optimal use of the available resources specially

when your computer has multiple CPUs.

By definition multitasking is when multiple

processes share common processing resources

such as a CPU.[20] Multithreading extends the

idea of multitasking into applications where you

can subdivide specific operations within a single

application into individual threads. Each of the

threads can run in parallel. The OS divides

processing time not only among different

applications, but also among each thread within

an application.[2]

Multithreading enables you to write in a way

where multiple activities can proceed

concurrently in the same program.

formatted further at IJEMR. Define all

symbols used in the abstract.

II. LIFE CYCLE OF A THREAD

Life Cycle of a Thread:

A thread goes through various stages in its
life cycle. For example, a thread is born,
started, runs, and then dies. Following
diagram shows complete life cycle of a
thread.[4]

III. LIFE CYCLE EXPLAINED

Above-mentioned stages are explained here:

 New: A new thread begins its life cycle in the

new state. It remains in this state until the

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

Multithreading In Java Kuldeep Panwar & Devanshu Sharma

P a g e | 1596

program starts the thread. It is also referred to as

a born thread.

 Runnable: After a newly born thread is started,

the thread becomes runnable. A thread in this

state is considered to be executing its task.[3]

 Waiting: Sometimes, a thread transitions to the

waiting state while the thread waits for another

thread to perform a task.A thread transitions

back to the runnable state only when another

thread signals the waiting thread to continue

executing.

 Timed waiting: A runnable thread can enter the

timed waiting state for a specified interval of

time. A thread in this state transitions back to the

runnable state when that time interval expires or

when the event it is waiting for occurs.

 Terminated: A runnable thread enters the

terminated state when it completes its task or

otherwise terminates.[6]

Thread Priorities:[8]

Every Java thread has a priority that helps the

operating system determine the order in which

threads are scheduled.

Java thread priorities are in the range between

MIN_PRIORITY (a constant of 1) and

MAX_PRIORITY (a constant of 10). By default,

every thread is given priority

NORM_PRIORITY (a constant of 5).[5]

Threads with higher priority are more important

to a program and should be allocated processor

time before lower-priority threads. However,
thread priorities cannot guarantee the order
in which threads execute and very much
platform dependentant.[5]

IV. USE OF MULTITHREADING

 The use of multi-threading programming

is the key to take advantage of the increasing

number of processing cores in central processing

units in each new generation of processors; it

will [18]

be necessary if we want simulators to continue

developing in features and performance, while

supporting larger number of simultaneously

simulated robots. Multithreaded software

applications –

programs that run multiple tasks (threads) at the

same time to increase performance for heavy

workload scenarios, are already positioned to

take advantage of multi-core processors [10].

Our goal is to try to program the simulator in a

way that takes benefit of current processors,[19]

while at the same time avoid implementing them

in the same way as discussed in past paragraph

in

order to avoid their drawbacks.[17] So the main

idea of our approach is to use multi-threading

programming as a component of the simulator

architecture design, and not just in control

method

implementations where it is left to the

programmer to decide whether to implement

multithreading

or not. [20]

A thread of execution by definition is a "fork" of

a computer program into two or more

concurrently running tasks [16]. The

implementation of threads and processes differs

from one

operating system to another, but in most cases, a

thread is contained inside a process.[18] Multiple

threads can exist within the same process and

share resources such as memory, while different

[12] In the non threaded approach when dealing

with simulating multi robot systems, the robots

are

put in an array, and then sequentially the CPU

resources are passed to each of them, in their

turn, to

calculate their actions, and when each of them

finishes, then the available resources are passed

to

the next robot, and so on, until all robots in the

array do their jobs.[16] Then this cycle starts

again, from

the first robot to decide its next step, and so

on.[14] The performance of this approach is

acceptable

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

Multithreading In Java Kuldeep Panwar & Devanshu Sharma

P a g e | 1597

when all robots are of the same type, or if they

need similar time to complete their decision

making

process. in which we are simulating four [14]

robots at the same time (each of them needing a

different time to accomplish its control strategy

calculations), we encounter the following

situation: the Robot3 will need 50 milliseconds

to finish

the calculations in order to take a decision, and

this will affect the simulated Robot4, since it

cannot

start its own calculations until Robot3 finishes.

This situation causes a lag that the Robot4 is not

responsible of.[9] This is one shortcoming of not

using threads in the programming. Threading

will

eliminate this problem even when we only have

single core processor, because if we use

multithreading and assign a separate thread to

each simulated robot, then the slow robot

(Robot3)

will not slow down all the simulation and other

robots till it finishes its calculations. Instead,

each [3]

robot will only affect itself, and the robot with

easy calculations will be simulated normally as it

should be, while the complex robot will stay in

its place until finishing its calculations with[12]

 V. CONCLUSION

 Implementing multithreaded Java code is

reasonably straightforward. Even converting

existing single-threaded Java GUI code to a

multithreaded format is not difficult. The results

are actually quite impressive: Your GUI is freed

up from long waits and ready to process other

user actions. However, your application might or

might not permit the interleaving of operations;

imagine an application that fetches customer

names from a database before printing out

invoices. It wouldn't make much sense to put the

printing code in a separate thread and then try to

print invoices before customer names had been

read from the database!

For application operations where it's okay to

interleave user actions, making a GUI

multithreaded can be very useful. It can even

help to improve end user productivity by

allowing a number of application operations to

proceed in parallel.

However, the power that multithreaded

programming provides should be used with care.

If you use shared data across threads, then it's

quite easy to get into some very difficult

debugging scenarios.The same is true of locking

shared resources between threads. The rule of

thumb is to follow the guidelines and start out

being conservative in your multithreaded

designs. As you get more experienced with the

use of multithreaded programming, you can then

start to use the more powerful features.

REFERENCES

1. Nilsson, Theodor, "KiKS is a Khepera

Simulator", (2001-03-14), Umea University.

2. Mondada, Francesco, Franzi, Edoardo and

Ienne, Paolo, (1993), "Mobile robot

miniaturisation:

A tool for investigation in control algorithms."

Proceedings of the 3rd International Symposium

on Experimental Robotics, Kyoto, Japan.

3. Michel, Olivier, (2004), "WebotsTM:

Professional Mobile Robot Simulation",

International

Journal of Advanced Robotic Systems, Volume

1, Number 1, pp. 39-42.

4. Liu, Jiming, Wu, Jianbing, (2001), "Multi-

Agent Robotic Systems", CRC Press

International

Series on Computational Intelligence.

5. Katsumi Kimoto, Shinichi Yuta, "Autonomous

mobile robot simulator - a programming tool for

sensor-based behavior Autonomous Robots",

Autonomous Robots, Springer Netherlands,

Volume 1, Number 2 / June, 1995, pages 131-

148.

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

Multithreading In Java Kuldeep Panwar & Devanshu Sharma

P a g e | 1598

6. Fishwick, Paul, (1995), “Simulation Model

Design & Execution: Building Digital Worlds”,

Prentice Hall.

7. Intel®, (January 2003), "Hyper-Threading

Technology Technical User’s Guide".

8. The Rossum Project, Open-Source Robotics

Software, Retrieved July 20th 2009 from

http://rossum.sourceforge.net/

9. "Microprocessor": Retrieved July 20th, 2009,

from:

http://en.wikipedia.org/wiki/Microprocessor.

10. Advanced Micro Devices, Inc. "Multi-core

White Paper": Retrieved July 20th, 2009, from:

http://www.sun.com/emrkt/innercircle/newsletter

/0505multicore_wp.pdf.

11. Microsoft MSDN http://msdn.microsoft.com

12. Halfhill, Tom R., (12/31/07), "The Insider’s

Guide to Microprocessor Hardware, The Future

of

Multicore Processors". Reed Electronics

Group.www.MPRonline.com

13. Akhter, Shameem, Roberts, Jason, (2006),

"Multi-Core Programming Increasing

Performance

through Software Multi-threading", Intel Press;

1ST edition.

14. Gerkey, Brian P., Vaughan, Richard T.,

Howard, Andrew, (2003), "The Player/Stage

Project:

Tools for Multi-Robot and Distributed Sensor

Systems". Proceedings of the International

Conference on Advanced Robotics (ICAR) pages

317-323, Coimbra, Portugal.

15. Distributed computing: Retrieved July 20th,

2009, from:

http://en.wikipedia.org/wiki/Distributed_computi

ng

16. Lewis, Bill: (1995), "Threads Primer: A

Guide to Multithreaded Programming", Prentice

Hall.

17. Thread. sleep: Retrieved July 20th, 2009,

from:

http://www.javamex.com/tutorials/threads/sleep.

shtml

18. Guz, Zvika, Bolotin, Evgeny, Keidar, Idit,

(2009), "Many Core vs. Many-Thread Machines:

Stay Away From the Valley". IEEE Computer

Architecture Letters, vol. 8, no. 1, pp. 25-28.

19. Gravinghoff, Andreas, Keller, Jorg, "How to

Emulate Fine-Grained Multithreading", Fern

University Hagen, Germany, retrieved on 20th

July 2009 from:

http://www.fernunihagen.de/imperia/md/content/

fakultaetfuermathematikundinformatik/forschu

ng/berichte/bericht_227.pdf

20. Fedy Abi-Chahla (09/16/2008), "Multi-

Threaded Rendering" Retrieved on 20th July

2009 from:

http://www.tomshardware.com/reviews/opengl-

directx,2019-6.html
