

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 1643

Authenticated Data Structures for Graph and
Geometric Searching

Ms.MEENU GUPTA, YOGESH CHAUHAN, SALMA KHAN, SANDEEP

CHAUHAN

 Electronicss And Communication

 Dronacharya College Of Engineering

Abstract

Following in the spirit of data structure

and algorithm correctness checking,

authenticated data structures provide

cryptographic proofs that their answers

are as accurate as the author intended,

even if the data structure is being

maintained by a remote host. We present

techniques for authenticating data

structures that represent graphs and

collection of geometric objects. We use a

model where a data structure

maintained by a trusted source is

mirrored at distributed directories, with

the directories answering queries made

by users. When a user queries a

directory, it receives a cryptographic

proof in addition to the answer, where

the proof contains statements signed by

the source. The user veries the proof

trusting only the statements signed by

the source. We show how to eficiently

authenticate data structures for

fundamental problems on networks, such

as path and connectivity queries, and on

geometric objects, such as intersection

and containment queries. Our work has

applications to the authentication of

network management systems and

geographic information systems.

 Introduction

In this paper we are verifying

information that at first appears

authentic is an often neglected task in

data structure and algorithm usage.

Fortunately, there is a growing literature

on correctness checking that aims to

rectify this omission. Following early

work on program checking and

certifcation several researcher shave

developed efficient schemes for

checking the results of various data

structures graph algorithms and

geometric algorithms These schemes are

directed mainly at defending the user

against an inadvertent error made during

implementation. In addition, these

previous approaches have primarily

assumed that usage is limited to a single

user on an individual machine. In

particular, we are interested in efficiently

verifying paths and connectivity

information in transportation and

computer networks (that is,

combinatorial graph structures), even

when the network is changing. In

addition, we are interested in verifying

complex geometric queries in spatial

data bases, such as ray shooting queries,

point location queries, and range

searching queries, which are used

extensively in geographic. information

systems.

The main challenge in providing an

integrity service in such contexts is that

the space of possible answers is much

larger than the data size itself. For

example, there are O(n2) diferent paths

in a tree of n nodes, and each of these

paths can have O(n) edges. Requiring an

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 1644

authenticator to digitally sign every

possible response is therefore

prohibative, especially when the data is

changing due to the insertion or deletion

of elements in the set. Ideally, we would

like our authenticator to sign just a

single digest of our data structure, with

that digest being built from the careful

combination of cryptographic hashes of

subsets of our data. If we can achieve

such a scheme, then verifying the answer

to a query in our data base can be

reduced to the problem of collecting the

appropriate partial hashes for a user to

recompute the digest of the entire

structure and compare that to the digest

signed by the authenticator. Even when

we follow this approach, however, we

are faced with the challenge of how to

subdivide the data in a way that allows

for efficient assembly for any possible

query. For simple data structures, such

as dictionaries, this subdivision is fairly

straightforward (say using a linear

ordering and a Merkle hash tree but the

subdivision method for complex

structures, such as graphs, geometric

structures, and structures built using the

fractional cascading paradigm is far

from obvious.

 A Model for Authenticated Data

Structures

Our data structure authentication model

involves three parties: a trusted source,

an untrusted directory, and a user. The

source holds a structured collection S of

objects, where we assume that a set of

query operations are defined over S. If S

is _xed over time, we say that it is static.

Otherwise, we say that S is dynamic and

assume that a set of update operations

are defined that modify S. For example,

S could be a network whose vertices and

edges store data items and on which the

following two query operations are

defined: a connectivity query on S asks

whether two given vertices of S are in

the same connected component and a

path query returns a path, if it exists,

between two given vertices. We could

also define update operations of S that

add and/or remove vertices and edges.

As a second example, S could be a

collection of line segments in the plane

forming a polygonal chain, where an

intersection query returns all the

segments intersected by a given query

line. In this case we could de_ne update

operations that insert and/or remove

segments. The directory maintains a

copy of the collection S together with

structure authentication information,

which consists of statements about S

signed by the source. The user performs

queries on S but instead of contacting the

source directly, it queries a directory.

The directory provides the user with an

answer to the query together with

answer authentication information,

which yields a cryptographic proof of

the answer. The answer authentication

information should include a time stamp

and information derived from signed

statements in the structure authentication

information. The user then veries the

proof relying solely on the time stamp

and the information derived from

statements signed by the source (subject

to standard cryptographic assumptions).

If S is dynamic, the directory receives

together with each update update

authentication information, which

consists of signed time-stamped

statements about the update and the

current state of S. The data structures

used by the source and the directory to

store collection S, together with the

protocols and algorithms for queries,

updates, and verifications executed by

the various parties, form what we call an

authenticated data structure .In a

practical deployment of an authenticated

data structure, there would be various

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 1645

instances of geographically distributed

directories. Such a distribution scheme

reduces latency, allows for load

balancing, and reduces the risk from

denial-of-service attacks.

 Security Model

We provide a security model that aims to

provide eficient, secure, dynamic, and

trusted solutions to the problems we

consider. Our work is motivated by our

desire to improve over limitations of two

naïve approaches:

_ Central Server: Queries to collection S

are handled by a single trusted server ST

that gives a digitally signed response to

every query.

_ Signed Collection: Collection S is

signed in its entirity by a trusted party

and distributed to every client. Central

server solutions are prone to network

delays and provide a single point of

failure. Signed directories are expensive

to make dynamic since upon update, the

entire collection S needs to be signed

and distributed to every client. Our

approach results in solutions with the

following properties:

_ Queries are handled by a collection of

potentially geographically distributed

directories.

_ Responses include authentication

information that allows clients to verify

responses with the same trust as if the

response was digitally signed by a

trusted third-party.

_ The size of update information sent to

the directories is proportional to the

number of updates, so update time is

small.

_ Directory computers can be in

untrusted locations and provide trusted

responses. In this paper we show how to

provide solutions that meet these criteria

for important graph and geometric.

 Hashing over the data structure

Let h is a commutative cryptographic

collision-resistant hash function. We

assume that a set of rules have been

defined, so that h can operate on

elements of catalogs, nodes of graph G

and previously computed hash values.

The hashing scheme can be viewed as a

two level hashing structure, built using

the path hash accumulator scheme:

intra-block hashing is performed within

each block defined in the data structure

and inter-block hashing of performed

through all blocks of the data structure.

In the sequel, we describe each hashing

structure.

 Intra-block hashing: Consider any

edge (u; v) of G, i.e., u is one of the

parents of v. Also, consider any two

neighboring bridges (y0; z0) and (y; z)

that define block B. Assume that z; z0 2

Av. We define P to be the sequence of

elements of B that exist in Av plus the

non-proper elements of the

corresponding bridges that lie in Av.

That is, P = fp1; p2; :::; ptg, a sequence

in increasing order, where, if z0 _ z, p1 =

z0 and pt = z. We refer to P as the hash

side of B. Using the path hash

accumulator scheme, we compute the

digest D(P) of sequence P. For each

element pi, we set N(pi) = fproper(pi);

vg and in that way the path hash

accumulator can support authenticated

membership queries and authenticated

path property queries. Here one such

property of P is the corresponding node

v. We iterate the process for all blocks

defined in the data structure: for each

block B in the data structure having a

hash side P in Av, HB is the hash of v

and the digest of the D(P). We also

define Bs to be a fictitious block, the

augmented catalog As. The hash side of

Bs is all the block itself and in such a

way the hash value HBs is well defined

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 1646

and can be computed. All the path hash

accumulator schemes used define the

first level hashing structure.

Inter-block hashing: The second level

hashing structure is defined through a

directed acyclic graph H defined over

blocks. That is, nodes of H are blocks of

the data structure. Suppose that w is a

parent of u and u is a parent of v in G. If

B is a block of an edge (u; v), then we

add to the set of edges of H all the

directed edges (B;B0), where B0 is a

block of edge (w; u) that shares elements

from Au with B. Additionally, if v is a

child of the root s in G, then for all

blocks B in edge (s; v) we add to the set

of edges of H all the directed edges

(B;Bs). The construction of H is now

complete. Bs is the unique root of H

shows the graph H that corresponds to a

path. Each block (node) B of H is

associated with a label L(B). If B is a leaf

(sink) in H then L(B) = HB. If B is the

parent of blocks B1;B2; : : :;Bt in H,

listed in arbitrary order, then L(B) equals

the path hash accumulation over B1;B2;

: : :;Bt using N(Bi) = fBi;HBi g. This

hashing over H corresponds to the

second level hashing structure. Finally,

we set D(D)= L(Bs) to be the digest of

the whole data structure D, that is signed

by a course.

 Fig(a)

 Fig(b)

 Authentication information

 the hash scheme that we have developed

over the catalog graph G, a query graph

Q and a query element x, we describe

now what is the authentication

information given to the user. Let x be

the query element and let v be any node

of the query graph Q. Let sv be the

successor of x in Cv. In the location

process, while locating x in the augented

catalog Av, we _nd two consecutive

elements z and y of Av, such that z _ x _

y. Elements y and z may be either proper

or non-proper. They are both elements of

a block B, such that the entrance bridge

of Av is the higher bridge of B. We have

that y is the successor of x in Av and that

sv = y, if y is proper, or sv = proper(y), if

y is non-proper. We call y and B,

respectively, the target element and the

target block of Av. Two useful

observations are that: (1) in the location

process, the traversal of the query graph

Q is chosen so that each node of Q is

visited once and (2) any two blocks

visited by the location process (target

blocks) that correspond to incident edges

in Q share elements of the common

augmented catalog, and, thus, are

adjacent in graph H. It follows that all

the target blocks define a subgraph T of

H. T consists of the all target blocks and

the edges of H that connect neighboring

target blocks.

Lemma 1 For any query graph Q, graph

T is a tree.

For any node v, let yv be the target

element of Av and Bv the target block of

Av. The answer authentication

information will consist of:

1. Intra-block: for each node v of Q, the

target element yv of Av and a verification

sequence pv from yv up to the path hash

accumulation of the hash side of Bv, and

2. Inter-block: for every node (or target

block) Bv of T that is not a leaf, the

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 1647

veri_cation sequences from every child

of Bv in T up to the pash hash

accumulation L(Bv).

Lemma 2 If n is the total number of

proper elements in the catalogs of G and

d is the bounded degree of G, then for

any query graph Q of k nodes, the size of

the answer authentication information is

O(log n+k log d) = O(log n + k).

 Verification of an answer

We assume that the answer given to the

user is a set A = f(av; v) : v is node of

Gg, where av is supposed to be the

successor of x in Cv. The answer

authentication information consists of

two verification sequences for each node

(target block) of T : one intra-block and

one inter-block. These sequences form a

hash tree in our two level hashing

scheme. The verification process is

basically defined by this hash tree.

Intuitively, an intra-block verification

sequence of a target block Bv provides a

local proof that av is the successor of x

in Cv, and then, all these local proofs are

accumulated through inter-block

verification sequences into the signed

digest.In particular, given the elements x,

y, z, and a node v, if the predicates: 1) z _

x _ y, 2) y and z are consecutive elements

in Av, and 3) if x 6= y and y is non-

proper then proper(y) is the next proper

element of y in Av, hold simultaneously,

then they constitute a proof that the

successor of x in Cv is element

proper(y). Such a proof must be given

for every v of Q.Given A, x and the

answer authentication information, the

user _rst checks to see if there is any

inconsistence between values av and yv

for every v of G, i.e. if av 6= yv, if yv is

proper, or if av 6= proper(yv) otherwise.

If there is at least one inconsistence, the

user rejects the answer. Otherwise, all

that is needed is to verify the signed

digest D(D) of the data structure.

Observe, that the user possesses all the

data needed for the computation of the

signed digest.

Lemma 3 If n is the total number of

proper elements in the catalogs of G,

then for any query graph Q of k nodes,

the answer veri_cation time is O(log n +

k log d) = O(log n + k), where d is the

bounded degree of G. If the digest is

veri_ed, then based on the collision-

resistance property of the hash function

h, the user has a proof that the answer is

correct: for each v of G, the user can

verify all the three conditions previously

discussed. A faulty answer can lead to a

forged proof only if some collisions of h

have been found. Thus, the security of

our scheme is reduced to the collision-

resistance property of h.

Lemma 4 For any catalog graph G of k

nodes and of total size n, both intra-

block and inter-block hashing schemes

can be computed in O(n) time using O(n)

storage.

Theorem 1 Given a catalog graph G of

bounded degree d and of total size n, the

authenticated fractional cascading data

structure D for G solves the

authenticated iterative search problem

for G with the following performance :

D can be constructed in O(n) time and

uses O(n) storage; given an element x

and a graph

query Q with k vertices, x can be located

in every catalog of Q in O(log n + k)

time; and the answer authentication

information has size O(log n + k); the

answer veri_cation time is O(log n + k).

Applications

Our authenticated fractional cascading

scheme can be used to design

authenticated data structures for various

fundamental two-dimensional geometric

search problems, where iterative search

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 1648

is implicitly performed In all of these

problems, the underlying catalog graph

has degree bounded by a small constant.

In the following, n denotes the problem

size.

Theorem 2 There is an authenticated

data structure for answering line

intersection queries on a polygon that

can be constructed in O(n log n) time

and uses O(n log n) storage. Denoting

with k the output size, queries are

answered in O(log n+k) time; the answer

authentication information has size

O((k+1) log n k+1); and the answer

verification time is O((k + 1) log n k+1).

Theorem 3 There are authenticated

data structures for answering ray

shooting and point location queries that

can be constructed in O(log n) time and

use O(n log n) storage. Queries are

answered in O(log n) time; the answer

authentication information has size

O(log n); and the answer verification

time is O(log n).

Theorem 4 There are authenticated

data structures for answering

orthogonal range search, orthogonal

point enclosure and orthogonal

intersection queries that can be

constructed in O(n log n) time and use

O(n log n) storage. Denoting with k the

output size, queries are answered in

O(log n + k) time; the answer

authentication information has size

O(log n + k); and the answer verification

time is O(log n + k). All these results

have applications to the authentication of

geographic information systems.

References

[1] M. T. Goodrich, R. Tamassia, and A.

Schwerin. Implementation of an

authenticated dictionary with skip lists

and commutative hashing. In Proc. 2001

DARPA Information Survivability

Conference and

Exposition, volume 2, pages 68{82,

2001.

[2] V. King. A simpler minimum

spanning tree veri_cation algorithm. In

Workshop on Algorithms and Data

Structures, pages 440{448, 1995.

[3] P. C. Kocher. On certi_cate

revocation and validation. In Proc. Int.

Conf. on Financial Cryptography,

volume 1465 of LNCS. Springer-Verlag,

1998.

[4] G. Liotta. Low degree algorithms for

computing and checking Gabriel graphs.

Technical Report CS-96-

28, Center for Geometric Computing,

Dept. Computer Science, Brown Univ.,

1996.

[5] C. Martel, G. Nuckolls, P. Devanbu,

M. Gertz, A. Kwong, and S.

Stubblebine. A general model for

authentic data publication,

2001.http://www.cs.ucdavis.edu/~devan

bu/_les/model-paper.pdf.

[6] K.Mehlhorn and S. N¨aher. LEDA: A

Platform for Combinatorial and

Geometric Computing. Cambridge

University Press, Cambridge, UK, 2000.

[7] K. Mehlhorn, S. N¨aher, M. Seel, R.

Seidel, T. Schilz, S. Schirra, and C.

Uhrig. Checking geometric programs or

veri_cation of geometric structures.

Comput. Geom. Theory Appl.,

12(1{2):85{103, 1999.

[8] R. C. Merkle. Protocols for public

key cryptosystems. In Proc. Symp. on

Security and Privacy, pages 122{134.

IEEE Computer Society Press, 1980.

[9] R. C. Merkle. A certi_ed digital

signature. In G. Brassard, editor, Proc.

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 1649

CRYPTO '89, volume 435 of LNCS,

pages 218{238. Springer-Verlag, 1990.

[10] M. Naor and K. Nissim. Certi_cate

revocation and certi_cate update. In

Proc. 7th USENIX Security Symposium,

pages 217{228, Berkeley, 1998.

[11] W. Pugh. Skip lists: a probabilistic

alternative to balanced trees. Commun.

ACM, 33(6):668{676, 1990.

[12] J. D. Bright and G. Sullivan.

Checking mergeable priority queues. In

Digest of the 24th Symposium on Fault-

Tolerant Computing, pages 144{153.

IEEE Computer Society Press, 1994.

[13] J. D. Bright and G. Sullivan. On-

line error monitoring for several data

structures. In Digest of the 25
th

Symposium on Fault-Tolerant

Computing, pages 392{401. IEEE

Computer Society Press, 1995.

[14] J. D. Bright, G. Sullivan, and G. M.

Masson. Checking the integrity of trees.

In Digest of the 25
th

 Symposium on

Fault-Tolerant Computing, pages

402{411. IEEE Computer Society Press,

1995.

[15] B. Chazelle and L. J. Guibas.

Fractional cascading: I. A data

structuring technique. Algorithmica,

1(3):133{162, 1986.

[16] B. Chazelle and L. J. Guibas.

Fractional cascading: II. Applications.

Algorithmica, 1:163{191, 1986.

[17] R. F. Cohen and R. Tamassia.

Combine and conquer. Algorithmica,

18:342{362, 1997.

[18] P. Devanbu, M. Gertz, A. Kwong,

C. Martel, G. Nuckolls, and S.

Stubblebine. Flexible authentication of

XML documents. In Proc. ACM

Conference on Computer and

Communications Security, 2001.

[19] P. Devanbu, M. Gertz, C. Martel,

and S. Stubblebine. Authentic third-party

data publication. In

Fourteenth IFIP 11.3 Conference on

Database Security, 2000.

[20] O. Devillers, G. Liotta, F. P.

Preparata, and R. Tamassia. Checking

the convexity of polytopes and the

planarity of subdivisions. Comput.

Geom. Theory Appl., 11:187{208, 1998.

[21] G. Di Battista and R. Tamassia. On-

line maintenance of triconnected

components with SPQR-trees.

Algorithmica, 15:302{318, 1996.

[22] D. Eppstein, G. F. Italiano, R.

Tamassia, R. E. Tarjan, J. Westbrook,

and M. Yung. Maintenance of a

minimum spanning forest in a dynamic

plane graph. J. Algorithms, 13(1):33{54,

1992.

[23] U. Finkler and K. Mehlhorn.

Checking priority queues. In Proc. 10th

ACM-SIAM Symp. on Discrete

Algorithms, pages S901{S902, 1999.

