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Abstract 

 

Following in the spirit of data structure 

and algorithm correctness checking, 

authenticated data structures provide 

cryptographic proofs that their answers 

are as accurate as the author intended, 

even if the data structure is being 

maintained by a remote host. We present 

techniques for authenticating data 

structures that represent graphs and 

collection of geometric objects. We use a 

model where a data structure 

maintained by a trusted source is 

mirrored at distributed directories, with 

the directories answering queries made 

by users. When a user queries a 

directory, it receives a cryptographic 

proof in addition to the answer, where 

the proof contains statements signed by 

the source. The user veries the proof 

trusting only the statements signed by 

the source. We show how to eficiently 

authenticate data structures for 

fundamental problems on networks, such 

as path and connectivity queries, and on 

geometric objects, such as intersection 

and containment queries. Our work has 

applications to the authentication of 

network management systems and 

geographic information systems. 

 

 Introduction 

In this paper we are verifying 

information that at first appears 

authentic is an often neglected task in 

data structure and algorithm usage.  

 

Fortunately, there is a growing literature 

on correctness checking that aims to  

rectify this omission. Following early 

work on program checking and 

certifcation several researcher shave 

developed efficient schemes for 

checking the results of various data 

structures graph algorithms and 

geometric algorithms These schemes are  

directed mainly at defending the user 

against an inadvertent error made during 

implementation. In addition, these 

previous approaches have primarily 

assumed that usage is limited to a single 

user on an individual machine. In 

particular, we are interested in efficiently 

verifying paths and connectivity 

information in transportation and 

computer networks (that is, 

combinatorial graph structures), even 

when the network is changing. In 

addition, we are interested in verifying 

complex geometric queries in spatial 

data bases, such as ray shooting queries, 

point location queries, and range 

searching queries, which are used 

extensively in geographic. information 

systems.  

 

The main challenge in providing an 

integrity service in such contexts is that 

the space of possible answers is much 

larger than the data size itself. For 

example, there are O(n2) diferent paths 

in a tree of n nodes, and each of these 

paths can have O(n) edges. Requiring an 

 

 

 

 

 

 



     

 

 

International Journal of Research (IJR)   Vol-1, Issue-10 November 2014   ISSN 2348-6848 

            

 
P a g e  | 1644 

authenticator to digitally sign every 

possible response is therefore 

prohibative, especially when the data is 

changing due to the insertion or deletion 

of elements in the set. Ideally, we would 

like our authenticator to sign just a 

single digest of our data structure, with 

that digest being built from the careful 

combination of cryptographic hashes of 

subsets of our data. If we can achieve 

such a scheme, then verifying the answer 

to a query in our data base can be 

reduced to the problem of collecting the 

appropriate partial hashes for a user to 

recompute the digest of the entire 

structure and compare that to the digest 

signed by the authenticator. Even when 

we follow this approach, however, we 

are faced with the challenge of how to 

subdivide the data in a way that allows 

for efficient assembly for any possible 

query. For simple data structures, such 

as dictionaries, this subdivision is fairly 

straightforward (say using a linear 

ordering and a Merkle hash tree  but the 

subdivision method for complex 

structures, such as graphs, geometric 

structures, and structures built using the 

fractional cascading paradigm is far 

from obvious. 

 

 A Model for Authenticated Data 

Structures 

Our data structure authentication model 

involves three parties: a trusted source, 

an untrusted directory, and a user. The 

source holds a structured collection S of 

objects, where we assume that a set of 

query operations are defined over S. If S 

is _xed over time, we say that it is static. 

Otherwise, we say that S is dynamic and 

assume that a set of update operations 

are defined that modify S. For example, 

S could be a network whose vertices and 

edges store data items and on which the 

following two query operations are 

defined: a connectivity query on S asks 

whether two given vertices of S are in 

the same connected component and a 

path query returns a path, if it exists, 

between two given vertices. We could 

also define update operations of S that 

add and/or remove vertices and edges. 

As a second example, S could be a 

collection of line segments in the plane 

forming a polygonal chain, where an 

intersection query returns all the 

segments intersected by a given query 

line. In this case we could de_ne update 

operations that insert and/or remove 

segments. The directory maintains a 

copy of the collection S together with 

structure authentication information, 

which consists of statements about S 

signed by the source. The user performs 

queries on S but instead of contacting the 

source directly, it queries a directory. 

The directory provides the user with an 

answer to the query together with 

answer authentication information, 

which yields a cryptographic proof of 

the answer. The answer authentication 

information should include a time stamp 

and information derived from signed 

statements in the structure authentication 

information. The user then veries the 

proof relying solely on the time stamp 

and the information derived from 

statements signed by the source (subject 

to standard cryptographic assumptions). 

If S is dynamic, the directory receives 

together with each update update 

authentication information, which 

consists of signed time-stamped 

statements about the update and the 

current state of S. The data structures 

used by the source and the directory to 

store collection S, together with the 

protocols and algorithms for queries, 

updates, and verifications executed by 

the various parties, form what we call an 

authenticated data structure .In a 

practical deployment of an authenticated 

data structure, there would be various 
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instances of geographically distributed 

directories. Such a distribution scheme 

reduces latency, allows for load 

balancing, and reduces the risk from 

denial-of-service attacks. 

 

 Security Model 

We provide a security model that aims to 

provide eficient, secure, dynamic, and 

trusted solutions to the problems we 

consider. Our work is motivated by our 

desire to improve over limitations of two 

naïve approaches: 

_ Central Server: Queries to collection S 

are handled by a single trusted server ST 

that gives a digitally signed response to 

every query. 

_ Signed Collection: Collection S is 

signed in its entirity by a trusted party 

and distributed to every client. Central 

server solutions are prone to network 

delays and provide a single point of 

failure. Signed directories are expensive 

to make dynamic since upon update, the 

entire collection S needs to be signed 

and distributed to every client. Our 

approach results in solutions with the 

following properties: 

_ Queries are handled by a collection of 

potentially geographically distributed 

directories. 

_ Responses include authentication 

information that allows clients to verify 

responses with the same trust as if the 

response was digitally signed by a 

trusted third-party. 

_ The size of update information sent to 

the directories is proportional to the 

number of updates, so update time is 

small. 

_ Directory computers can be in 

untrusted locations and provide trusted 

responses. In this paper we show how to 

provide solutions that meet these criteria 

for important graph and geometric. 

 

 

 

 Hashing over the data structure 

Let h is a commutative cryptographic 

collision-resistant hash function. We 

assume that a set of rules have been 

defined, so that h can operate on 

elements of catalogs, nodes of graph G 

and previously computed hash values. 

The hashing scheme can be viewed as a 

two level hashing structure, built using 

the path hash accumulator scheme: 

intra-block hashing is performed within 

each block defined in the data structure 

and inter-block hashing of performed 

through all blocks of the data structure. 

In the sequel, we describe each hashing 

structure.      

 Intra-block hashing: Consider any 

edge (u; v) of G, i.e., u is one of the 

parents of v. Also, consider any two 

neighboring bridges (y0; z0) and (y; z) 

that define block B. Assume that z; z0 2 

Av. We define P to be the sequence of 

elements of B that exist in Av plus the 

non-proper elements of the 

corresponding bridges that lie in Av. 

That is, P = fp1; p2; :::; ptg, a sequence 

in increasing order, where, if z0 _ z, p1 = 

z0 and pt = z. We refer to P as the hash 

side of B. Using the path hash 

accumulator scheme, we compute the 

digest D(P) of sequence P. For each 

element pi, we set N(pi) = fproper(pi); 

vg and in that way the path hash 

accumulator can support authenticated 

membership queries and authenticated 

path property queries. Here one such 

property of P is the corresponding node 

v. We iterate the process for all blocks 

defined in the data structure: for each 

block B in the data structure having a 

hash side P in Av, HB is the hash of v 

and the digest of the D(P). We also 

define Bs to be a fictitious block, the 

augmented catalog As. The hash side of 

Bs is all the block itself and in such a 

way the hash value HBs is well defined 
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and can be computed. All the path hash 

accumulator schemes used define the 

first level hashing structure. 

Inter-block hashing: The second level 

hashing structure is defined through a 

directed acyclic graph H defined over 

blocks. That is, nodes of H are blocks of 

the data structure. Suppose that w is a 

parent of u and u is a parent of v in G. If 

B is a block of an edge (u; v), then we 

add to the set of edges of H all the 

directed edges (B;B0), where B0 is a 

block of edge (w; u) that shares elements 

from Au with B. Additionally, if v is a 

child of the root s in G, then for all 

blocks B in edge (s; v) we add to the set 

of edges of H all the directed edges 

(B;Bs). The construction of H is now 

complete. Bs is the unique root of H  

shows the graph H that corresponds to a 

path. Each block (node) B of H is 

associated with a label L(B). If B is a leaf 

(sink) in H then L(B) = HB. If B is the 

parent of blocks B1;B2; : : :;Bt in H, 

listed in arbitrary order, then L(B) equals 

the path hash accumulation over B1;B2; 

: : :;Bt using N(Bi) = fBi;HBi g. This 

hashing over H corresponds to the 

second level hashing structure. Finally, 

we set D(D)= L(Bs) to be the digest of 

the whole data structure D, that is signed 

by a course. 

 
 

                       Fig(a) 

 
                           Fig(b) 

 

 Authentication information 

 the hash scheme that we have developed 

over the catalog graph G, a query graph 

Q and a query element x, we describe 

now what is the authentication 

information given to the user. Let x be 

the query element and let v be any node 

of the query graph Q. Let sv be the 

successor of x in Cv. In the location 

process, while locating x in the augented 

catalog Av, we _nd two consecutive 

elements z and y of Av, such that z _ x _ 

y. Elements y and z may be either proper 

or non-proper. They are both elements of 

a block B, such that the entrance bridge 

of Av is the higher bridge of B. We have 

that y is the successor of x in Av and that 

sv = y, if y is proper, or sv = proper(y), if 

y is non-proper. We call y and B, 

respectively, the target element and the 

target block of Av. Two useful 

observations are that: (1) in the location 

process, the traversal of the query graph 

Q is chosen so that each node of Q is 

visited once and (2) any two blocks 

visited by the location process (target 

blocks) that correspond to incident edges 

in Q share elements of the common 

augmented catalog, and, thus, are 

adjacent in graph H. It follows that all 

the target blocks define a subgraph T of 

H. T consists of the all target blocks and 

the edges of H that connect neighboring 

target blocks. 

Lemma 1 For any query graph Q, graph 

T is a tree. 

For any node v, let yv be the target 

element of Av and Bv the target block of 

Av. The answer authentication 

information will consist of: 

1. Intra-block: for each node v of Q, the 

target element yv of Av and a verification 

sequence pv from yv up to the path hash 

accumulation of the hash side of Bv, and 

2. Inter-block: for every node (or target 

block) Bv of T that is not a leaf, the 
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veri_cation sequences from every child 

of Bv in T up to the pash hash 

accumulation L(Bv). 

Lemma 2 If n is the total number of 

proper elements in the catalogs of G and 

d is the bounded degree of G, then for 

any query graph Q of k nodes, the size of 

the answer authentication information is 

O(log n+k log d) = O(log n + k). 

 

 

 

 Verification of an answer 

We assume that the answer given to the 

user is a set A = f(av; v) : v is node of 

Gg, where av is supposed to be the 

successor of x in Cv. The answer 

authentication information consists of 

two verification sequences for each node 

(target block) of T : one intra-block and 

one inter-block. These sequences form a 

hash tree in our two level hashing 

scheme. The verification process is 

basically defined by this hash tree. 

Intuitively, an intra-block verification 

sequence of a target block Bv provides a 

local proof that av is the successor of x 

in Cv, and then, all these local proofs are 

accumulated through inter-block 

verification sequences into the signed 

digest.In particular, given the elements x, 

y, z, and a node v, if the predicates: 1) z _ 

x _ y, 2) y and z are consecutive elements 

in Av, and 3) if x 6= y and y is non-

proper then proper(y) is the next proper 

element of y in Av, hold simultaneously, 

then they constitute a proof that the 

successor of x in Cv is element 

proper(y). Such a proof must be given 

for every v of Q.Given A, x and the 

answer authentication information, the 

user _rst checks to see if there is any 

inconsistence between values av and yv 

for every v of G, i.e. if av 6= yv, if yv is 

proper, or if av 6= proper(yv) otherwise. 

If there is at least one inconsistence, the 

user rejects the answer. Otherwise, all 

that is needed is to verify the signed 

digest D(D) of the data structure. 

Observe, that the user possesses all the 

data needed for the computation of the 

signed digest. 

Lemma 3 If n is the total number of 

proper elements in the catalogs of G, 

then for any query graph Q of k nodes, 

the answer veri_cation time is O(log n + 

k log d) = O(log n + k), where d is the 

bounded degree of G. If the digest is 

veri_ed, then based on the collision-

resistance property of the hash function 

h, the user has a proof that the answer is 

correct: for each v of G, the user can 

verify all the three conditions previously 

discussed. A faulty answer can lead to a 

forged proof only if some collisions of h 

have been found. Thus, the security of 

our scheme is reduced to the collision-

resistance property of h. 

Lemma 4 For any catalog graph G of k 

nodes and of total size n, both intra-

block and inter-block hashing schemes 

can be computed in O(n) time using O(n) 

storage. 

Theorem 1 Given a catalog graph G of 

bounded degree d and of total size n, the 

authenticated fractional cascading data 

structure D for G solves the 

authenticated iterative search problem 

for G with the following performance : 

D can be constructed in O(n) time and 

uses O(n) storage; given an element x 

and a graph 

query Q with k vertices, x can be located 

in every catalog of Q in O(log n + k) 

time; and the answer authentication 

information has size O(log n + k); the 

answer veri_cation time is O(log n + k). 

 

Applications 

Our authenticated fractional cascading 

scheme can be used to design 

authenticated data structures for various 

fundamental two-dimensional geometric 

search problems, where iterative search 
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is implicitly performed In all of these 

problems, the underlying catalog graph 

has degree bounded by a small constant. 

In the following, n denotes the problem 

size. 

Theorem 2 There is an authenticated 

data structure for answering line 

intersection queries on a polygon that 

can be constructed in O(n log n) time 

and uses O(n log n) storage. Denoting 

with k the output size, queries are 

answered in O(log n+k) time; the answer 

authentication information has size 

O((k+1) log n k+1); and the answer 

verification time is O((k + 1) log n k+1 ). 

Theorem 3 There are authenticated 

data structures for answering ray 

shooting and point location queries that 

can be constructed in O(log n) time and 

use O(n log n) storage. Queries are 

answered in O(log n) time; the answer 

authentication information has size 

O(log n); and the answer verification 

time is O(log n). 

Theorem 4 There are authenticated 

data structures for answering 

orthogonal range search, orthogonal 

point enclosure and orthogonal 

intersection queries that can be 

constructed in O(n log n) time and use 

O(n log n) storage. Denoting with k the 

output size, queries are answered in 

O(log n + k) time; the answer 

authentication information has size 

O(log n + k); and the answer verification 

time is O(log n + k). All these results 

have applications to the authentication of 

geographic information systems. 
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