

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

A Brief Study on Inheritance Sujeet Kumar & Ashish Kumar Gupta

 P a g e | 1653

A Brief Study on Inheritance

Sujeet Kumar & Ashish Kumar Gupta

Department of Information and technology Dronacharya College of Engineering,Gurgaon-122001, India

Email:sujeet.16939@ggnindia.dronacharya.info ; Email:ashish.16907@ggnindia.dronacharya.info

Abstract-

 In object-oriented programming (OOP),

C++ strongly support the concept of

Reusablity. In this paper we have studied

the inheritance and its types of

inheritance. We have studied different

applications, some of them are Overriding

and Code Reuse. We have also studied

issue related to Complex inheritance. In

this paper we have also studied various

alternatives. In this paper we have sudied

the inheritace concept, types, alternatives

and applications. We have also studied

briefly about subclasses and superclasses

of inheritance .

 Keywords:

Overriding; Code Reuse; Subclasses; Super

classes

 1. INTRODUCTION

Inheritance is when an object or class is

based on another object or class, using the

same implementation or specifying

implementation to maintain the same

behavior (realizing an interface; inheriting

behavior). It is a mechanism for code

reuse and to allow independent extensions

of the original software via public classes

and interfaces. The relationships of objects

or classes through inheritance give rise to

a hierarchy. Inheritance was invented in

1967 for Simula.

1.1 Types of inheritance

There are various types of inheritance,

depending on paradigm and specific

language. A fundamental difference is

whether one can inherit from only a single

other object or class, which is known

as single inheritance, or whether one can

inherit from multiple other objects or

classes, which is known as multiple

inheritance.

 Classical inheritance is used

in class-based programming, where

objects are defined by classes, and

classes can inherit attributes and

implementation (i.e., previously

coded algorithms associated with a

class) from pre-existing classes

called base classes, superclasses,

or parent classes.

 Differential inheritance is used

in prototype-based programming,

where objects inherit directly from

other objects.

1.1.1 Subclasses and superclasses

A Subclass, "derived class", heir class,

or child class is a modular, derivative class

that inherits one or more language entities

from one or more other classes

(called superclasses, base classes,

or parent classes). The semantics of class

inheritance vary from language to

mailto:azxxzc?subject=scs
ashish.16907@ggnindia.dronacharya.info
http://en.wikipedia.org/wiki/Code_reuse
http://en.wikipedia.org/wiki/Code_reuse
http://en.wikipedia.org/wiki/Code_reuse
http://en.wikipedia.org/wiki/Simula
http://en.wikipedia.org/wiki/Multiple_inheritance
http://en.wikipedia.org/wiki/Multiple_inheritance
http://en.wikipedia.org/wiki/Multiple_inheritance
http://en.wikipedia.org/wiki/Class_(computer_programming)
http://en.wikipedia.org/wiki/Differential_inheritance
http://en.wikipedia.org/wiki/Prototype-based_programming
http://en.wikipedia.org/wiki/Modular_programming
http://en.wikipedia.org/wiki/Programming_language

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

A Brief Study on Inheritance Sujeet Kumar & Ashish Kumar Gupta

 P a g e | 1654

language, but commonly the subclass

automatically inherits the instance

variables and member functions of its

superclasses.

1.2 Applications

Inheritance is used to co-relate two or

more classes to each other.

1.2.1 Overriding

Many OOP languags permit a class or

object to replace the implementation of an

aspect—typically a behavior—that it has

inherited. This process is usually

called overriding. Overriding introduces a

complication: which version of the

behavior does an instance of the inherited

class use—the one that is part of its own

class, or the one from the parent (base)

class? The answer varies between

programming languages, and some

languages provide the ability to indicate

that a particular behavior is not to be

overridden and should behave as defined

by the base class. For instance, in C#, the

base method or property can only be

overridden in a subclass if it is marked

with the virtual, abstract, or override

modifier. An alternative to overriding

is hiding the inherited code.

1.2.2 Code reuse

Implementation inheritance is the

mechanism whereby a subclass re-

uses code in a base class. By default the

subclass retains all of the operations of the

base class, but the subclass

may override some or all operations,

replacing the base-class implementation

with its own.

In the following Python example, the sub

class CubeSumComputer overridesthe tran

sform() method of the base

class SquareSumComputer. The base class

comprises operations to compute the sum

of the squaresbetween two integers. The

subclass re-uses all of the functionality of

the base class with the exception of the

operation that transforms a number into its

square, replacing it with an operation that

transforms a number into its cube. The

subclass therefore computes the sum of the

cubes between two integers.

class SquareSumComputer:

 def __init__(self, a,

b):

 self.a = a

 self.b = b

 def transform(self, x):

 return x * x

 def inputs(self):

 return range(self.a,

self.b)

 def compute(self):

 return

sum(self.transform(value)

for value in self.inputs())

class

CubeSumComputer(SquareSumCom

puter):

 def transform(self, x):

 return x * x * x

In most quarters, class inheritance for the

sole purpose of code reuse has fallen out

of favor. The primary concern is that

implementation inheritance does not

provide any assurance

of polymorphicsubstitutability—an

instance of the reusing class cannot

necessarily be substituted for an instance

of the inherited class. An alternative

technique, delegation, requires more

programming effort, but avoids the

substitutability issue. In C++ private

http://en.wikipedia.org/wiki/Override_(object-oriented_programming)
http://en.wikipedia.org/wiki/C_Sharp_(programming_language)
http://en.wikipedia.org/wiki/Hiding_(programming)
http://en.wikipedia.org/wiki/Code_reuse
http://en.wikipedia.org/wiki/Code_reuse
http://en.wikipedia.org/wiki/Method_overriding
http://en.wikipedia.org/wiki/Square_number
http://en.wikipedia.org/wiki/Cubic_number
http://en.wikipedia.org/wiki/Polymorphism_in_object-oriented_programming
http://en.wikipedia.org/wiki/Delegation_pattern
http://en.wikipedia.org/wiki/C%2B%2B

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

A Brief Study on Inheritance Sujeet Kumar & Ashish Kumar Gupta

 P a g e | 1655

inheritance can be used as form

of implementation inheritance without

substitutability. Whereas public

inheritance represents an "is-a"

relationship and delegation represents a

"has-a" relationship, private (and

protected) inheritance can be thought of as

an "is implemented in terms of"

relationship.

1.3 Inheritance vs subtyping

Inheritance is similar to but distinct

from subtyping.
[1]

 Subtyping enables a

given type to be substituted for another

type or abstraction, and is said to establish

an is-a relationship between the subtype

and some existing abstraction, either

implicitly or explicitly, depending on

language support. The relationship can be

expressed explicitly via inheritance in

languages that support inheritance as a

subtyping mechanism. For example, the

following C++ code establishes an explicit

inheritance relationship between

classes B and A, where B is both a

subclass and a subtype of A, and can be

used as an A wherever a B is specified (via

a reference, a pointer or the object itself).

class A

{ public:

 void DoSomethingALike()

const {}

};

class B : public A

{ public:

 void DoSomethingBLike()

const {}

};

void UseAnA(A const& some_A)

{

some_A.DoSomethingALike();

}

void SomeFunc()

{

 B b;

 UseAnA(b); // b can be

substituted for an A.

}

In programming languages that do not

support inheritance as a subtyping

mechanism, the relationship between a

base class and a derived class is only a

relationship between implementations (a

mechanism for code reuse), as compared

to a relationship between types.

Inheritance, even in programming

languages that support inheritance as a

subtyping mechanism, does not

necessarily entail behavioral subtyping. It

is entirely possible to derive a class whose

object will behave incorrectly

1.4 Issues

Complex inheritance, or inheritance used

within an insufficiently mature design,

may lead to the yo-yo problem

1.5 Alternatives

While inheritance is widely used, there are

various alternatives. Some people

advocate object composition instead of

inheritance; see composition over

inheritance. Similar mechanisms to

inheritance (reusing implementation) can

be achieved by mixins and traits.

1.6 Conclusion

The research paper concludes on studing

on inheritance, its types. In object-oriented

programming (OOP), C++ strongly

support the concept of Reusablity. In this

paper we have studied the inheritance and

its types of inheritance. We have studied

different applications, some of them are

http://en.wikipedia.org/wiki/Is-a
http://en.wikipedia.org/wiki/Has-a
http://en.wikipedia.org/wiki/Subtyping
http://en.wikipedia.org/w/index.php?title=Inheritance_(object-oriented_programming)&printable=yes#cite_note-FOOTNOTECookHillCanning1990-1
http://en.wikipedia.org/wiki/Is-a
http://en.wikipedia.org/wiki/Subtype_polymorphism
http://en.wikipedia.org/wiki/Subtype_polymorphism
http://en.wikipedia.org/wiki/Subtype_polymorphism
http://en.wikipedia.org/wiki/Data_type
http://en.wikipedia.org/wiki/Behavioral_subtyping
http://en.wikipedia.org/wiki/Yo-yo_problem
http://en.wikipedia.org/wiki/Object_composition
http://en.wikipedia.org/wiki/Composition_over_inheritance
http://en.wikipedia.org/wiki/Composition_over_inheritance
http://en.wikipedia.org/wiki/Composition_over_inheritance
http://en.wikipedia.org/wiki/Mixin
http://en.wikipedia.org/wiki/Trait_(computer_programming)

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

A Brief Study on Inheritance Sujeet Kumar & Ashish Kumar Gupta

 P a g e | 1656

Overriding and Code Reuse. We have also

studied issue related to Complex

inheritance. In this paper we have also

studied various alternatives. In this paper

we have sudied the inheritace concept,

types, alternatives and applications. We

have also studied briefly about subclasses

and superclasses of inheritance .

1.7 References

 Cook, William R.; Hill, Walter;

Canning, Peter S. (1990).

"Inheritance is not

subtyping". POPL '90:

Proceedings of the 17th ACM

SIGPLAN-SIGACT symposium on

Principles of programming

languages. pp. 125–

135.doi:10.1145/96709.96721. ISB

N 0-89791-343-4.

 Jump up^ Mitchell, John (2002).

"10 "Concepts in object-oriented

languages"". Concepts in

programming language.

Cambridge, UK: Cambridge

University Press. p. 287. ISBN 0-

521-78098-5.

 Hughes, J. R. (1986). Genetics of

smoking: a brief review. Behavior

Therapy, 17(4), 335-345.

 Orr, H. A. (2005). The genetic

theory of adaptation: a brief

history. Nature Reviews Genetics,

6(2), 119-127.

 True, W. R., Rice, J., Eisen, S. A.,

Heath, A. C., Goldberg, J., Lyons,

M. J., & Nowak, J. (1993). A twin

study of genetic and environmental

contributions to liability for

posttraumatic stress symptoms.

Archives of general psychiatry,

50(4), 257-264.

 Heath, A. C., & Martin, N. G.

(1993). Genetic models for the

natural history of smoking:

evidence for a genetic influence on

smoking persistence. Addictive

behaviors, 18(1), 19-34.

 Heath, A. C., & Martin, N. G.

(1993). Genetic models for the

natural history of smoking:

evidence for a genetic influence on

smoking persistence. Addictive

behaviors, 18(1), 19-34.

 Barnes, D. J., Kölling, M., &

Gosling, J. (2006). Objects first

with Java: A practical introduction

using Bluej. London: Pearson

Prentice Hall.

http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1145%2F96709.96721
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-89791-343-4
http://en.wikipedia.org/w/index.php?title=Inheritance_(object-oriented_programming)&printable=yes#cite_ref-Mitchell2002_5-0
http://en.wikipedia.org/wiki/John_C._Mitchell
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-521-78098-5
http://en.wikipedia.org/wiki/Special:BookSources/0-521-78098-5

