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ABSTRACT: The MapReduce is an open source Hadoop 

framework implemented for processing and producing 

distributed large Terabyte data on large clusters. Its 

primary duty is to minimize the completion time of large sets 

of MapReduce jobs. Hadoop Cluster only has predefined 

fixed slot configuration for cluster lifetime. This fixed slot 

configuration may produce long completion time 

(Makespan) and low system resource utilization. The 

current open source Hadoop allows only static slot 

configuration, like fixed numbers of map slots and reduce 

slots throughout the cluster lifetime. Such static 

configuration may lead to long completion length as well as 

low system resource utilizations. Propose new schemes 

which use slot ratio between map and reduce tasks as a 

tunable knob for minimizing the completion length (i.e., 

makespan) of a given set. By leveraging the workload 

information of recently completed jobs, schemes 

dynamically allocates resources (or slots) to map and 

reduce tasks. Our survey paper emphasizes the state of the 

art in improving the performance of various applications 

using recent MapReduce models and how it is useful to 

process large scale dataset. A comparative study of given 

models corresponds to Apache Hadoop and Phoenix will be 

discussed primarily based on execution time and fault 

tolerance. At the end, a high-level discussion will be done 

about the enhancement of the MapReduce computation in 

specific problem area such as Iterative computation, 

continuous query processing, hybrid database etc. 

 

Index Terms—Big Data, - Hadoop, MapReduce, 

Scheduling, Distributed data processing. 

 

I. INTRODUCTION 

 In the present day circumstance, cloud has 

transformed into an unavoidable need for prevailing piece of 

IT operational affiliations. Applications, for instance, data 

accumulating, data recuperation and data conveyability have 

ended up being basic essentials for dispersed processing. 

Conveyed registering application handles BigData to beat 

these preventions. A BigData is enormously far reaching 

educational accumulations that has unstructured, semi-

sorted out and composed data where the data can be 

burrowed for information. Different applications are being 

delivered to achieve higher execution. Capable load 

changing, stack dissemination, perfect resource use, 

minimum overheads and scarcest possible deferral have 

been the essential issues for cloud establishment. Hadoop is 

an open source structure for spread data accumulating and 

getting ready tremendous data on group of item gear. 

Customers submit occupations to a line, the gathering 

system them in the demand of jobs submitted. As the data 

augments hugely, count to those occupations will similarly 

increase. The extension in figuring will give us the 

component like sharing Hadoop aggregate among various 

customers. Favorable circumstances of sharing Hadoop 

amass manufactures the data region and besides cost 

profitable. Hadoop at first made by Google and later made 

an open source execution by Apache. The Hadoop structure 

empowers planners to focus on count with parallel dealing 

with programs for immense data. Hadoop fuses two levels 

of setting i up) Hadoop Distributed File System (HDFS), 

which stores enormous measure of data with reduced 

makespan ii) Hadoop MapReduce: a structure which shapes 

appropriated data on gatherings. Hadoop is a trustworthy, 

versatile, passed on figuring stage made by Apache. It offers 

adjacent figuring and limit which is planned to level up from 

single datacenter to countless. Hadoop has a scattered 

amassing structure called Hadoop Distributed File System 

(HDFS). Hadoop gives a MapReduce engine that continues 

running over HDFS to process the data. HDFS framework 

allotments tremendous instructive accumulations into data 

knots. This structure depends on pro slave outline. The 

expert center points are known as the NameNode and 

JobTracker. The slave center points are called DataNode and 

TaskTrackers. NameNode, HDFS has an expert center point 

called NameNode which controls slave center points called 

DataNode. NameNode has every one of the information of 

where the data is secured, how data is separated into 

impedes, on which center point the data is put and the 

prosperity of the scattered record structure. The NameNode 

is a lone motivation behind dissatisfaction, where each 

gathering has NameNode. DataNode is a slave center in the 

Hadoop cluster. It is accountable for data organization and 

scrutinizes its data from HDFS. DataNode reports back to 

the NameNode with data organization status and directs data 

on each physical center point. The client application submits 

vocations to the JobTracker which in this manner banters 

with the NameNode to choose the territory of the data. The 

JobTracker finds available openings in the TaskTracker at or 

near the data. The movement is submitted to the JobTracker 
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to the picked TaskTracker and watched. The JobTracker and 

TaskTrackers passes on using beat signal. In case the beat 

signal isn't gotten in a period break, they are relied upon to 

have failed and the work is set up for a substitute 

TaskTracker. The JobTracker revives its status once the 

work is done and is submitted to the client application. In 

this investigation paper, we focus on different sorts of latest 

arranging frameworks to give us a gainful result with less 

makespan. Scheduler in Hadoop displayed two schedulers 

for multi customer condition. Sensible scheduler made at 

Facebook and Capacity scheduler made at Yahoo. 

 

II. MOTIVATION 

In this part examine the vital attributes of my proposed 

calculation, in view of the difficulties of the Hadoop 

framework.  

 

1. SCHEDULING BASED ON FAIRNESS, MINIMUM 

SHARE REQUIREMENTS, AND THE 

HETEROGENEITY OF JOBS AND RESOURCES.  

 In a Hadoop framework fulfilling the base offers of 

the clients is the main basic issue. The following vital issue 

is reasonableness. I outline a planning calculation which has 

two phases. In the principal arrange, the calculation 

considers the fulfillment of the base offer prerequisites of 

the considerable number of clients. At that point, in the 

second stage, the calculation considers reasonableness 

among every one of the clients in the framework. Most 

present Hadoop planning calculations consider 

reasonableness and least offer destinations without 

considering the heterogeneity of the employments and the 

assets. One of the benefits of my proposed calculation is that 

while our proposed calculation fulfills the decency and the 

base offer necessities, it additionally coordinates 

occupations with assets in view of employment highlights 

(e.g. evaluated execution time) and asset highlights (e.g. 

execution rate). Subsequently, the calculation decreases the 

fulfillment time of employments in the framework.  

 

2. DIMINISHING COMMUNICATION COSTS.  

 In a Hadoop bunch, the system joins among the 

assets have differing data transmission capacities. In 

addition, in a substantial bunch, the assets are regularly 

situated a long way from each other. The Hadoop 

framework disperses assignments among the assets to 

decrease an occupation's fulfillment time. In any case, 

Hadoop does not consider the correspondence costs among 

the assets. In a huge group with heterogenous assets, 

amplifying an errand's dispersion may bring about 

noteworthy correspondence costs. In this way, the 

comparing employment's finish time will be expanded. In 

our proposed calculation, we consider the heterogeneity and 

dissemination of assets in the undertaking task. 

 

III. MAP REDUCE CLASSIFICATION 

  

 Map Reduce data interpretive applications are 

requested on the start of their abilities [8]:  

A. Clustering Based Algorithm: 

 These computations are memory unstable as pack based 

figuring required a considerable measure of limit. To gage 

the parameter estimations of different packs, a tremendous 

count impacts it to enlist raised strategy. for eg. K-suggests, 

Fuzzy K-infers, shade batching et cetera.  

B. Classification Algorithm: 

  This figuring tackles a planning set and question 

set to process k nearest regards which required a satisfactory 

memory space to store the data.  It is also enlist genuine 

methodology in light of the way that a vector thing is done 

to figure the closeness between two vectors. For eg. K-

nearest neighbor et cetera Author [9] separated the different 

instrument to improve the memory use on the multi-focus 

machine for MapReduce. Maker had in like manner 

researched three given applications with respect to profitable 

memory utilize. 1) Hash Join-It is a variety of impart join by 

Blanas et al [10]. In the join operation, simply Map work is 

used to join two tables i.e. data table (S) and reference table 

(R). A hash join isn't enroll concentrated application and its 

shot multifaceted nature is O(|S|). 2) KMeans-K-suggests 

application is used to divide game plan of n test objects into 

K bunches for input parameter K. This figuring is memory 

genuine and process heightened which in this way obliging 

the amount of gatherings K-means can create. The time 

diserse quality is O(|n|*|k|). 3) K-nearest neighbors-K-

nearest neighbors is a request estimation that uses a 

tremendous in-memory instructive list. KNN strategy uses 

two educational lists, a request set Q and a planning set T. It 

picks K storage space segments in T in light of a prepared 

division between data centers in the two sets. The time 

unusualness of the procedure is O(|Q|*|T|) in light of the fact 

that it figures the detachment between each point in Q and in 

T. So the KNN is figure concentrated and also memory 

heightened application. 

 

 

Fig. 1. Map Reduce framework 
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Initially the paper describes the MapReduce classification as 

well as an introductory explanation of its applications such 

as distributed pattern based searching, geospatial query 

processing, web link graph traversal, distributed sort, 

machine learning applications etc. The primary focus of this 

survey paper is to highlight some MapReduce 

implementation worked well to accomplish a specific 

purpose and compared with previously available 

frameworks. A remarkable performance improvement over 

the existing system seems after comparison. Later we 

discussed the recent enhancements which help to solve the 

issues related to iterative computation, efficient continuous 

queries execution and hybrid database. 

 

IV. MAP REDUCE APPLICATIONS 

  

 Map Reduce implementation is used in various data 

intensive computation because of the functionality of 

parallel processing of massive data. A short introduction of 

related applications is given below:  

 

A. Distributed Pattern Based Searching  

 Distributed grep command is used to search a 

pattern in the given text distributed over a network. Here 

map function searches for the pattern and produces the 

output so no intermediate result writes. Hence reduce 

function is just copied the intermediate result to output in 

distributed pattern searching [1].  

Example: A big data of medical health record is analyzed 

using parallelization and pattern searching property of 

MapReduce taking into consideration [11]:  

1) Public dataset- It consists of various reports of patients 

from US Food and Drug administration.  

2) Biometric Datasets- It is having human characteristics 

like images [12].  

3) Bioinformatics Signal Datasets- This dataset represents 

the recording of vital signs of a patient. e.g. 

Electrocardiography ECG  

4) Biomedical Image Datasets- A dataset having a 

collection of scanning of medical images such as ultrasound 

images. 

 

B. Geospatial Query Processing  
 

 With the technological advancement in location 

based service, MapReduce helps to find out the shortest path 

in Google map for a given location. Here Map function 

searches all connecting paths from source to destination 

with distance value. After sorting the keys, the Reduce 

function emits the path which is of shortest distance. An 

algorithm LoNARS [13] has implemented to improve 

Reduce task scheduling by considering data locality and 

network traffic. Even author achieved 15% gain in data 

shuffling time and up to 3-4% improvement in job 

completion time.  

C. Distributed Sort 

  Distributed sort is used to arrange the data in 

sorted manner split across multiple sites. In Map Reduce 

implementation, initially input data is given to map function 

to convert it into intermediate data which is stored in a local 

disk buffer. In next step, data is transmitted to the 

appropriate reducer function over the network. A number of 

reduce functions sort the data according to given key value 

and writes the output [14].  

 Author represents massive data sorting using 

Apache Hadoop open source software framework with the 

help of three map reduce functions [15]:   

 Teragen: used to generate input data to be sort. 

 Terasort: Sample the input data and used them with 

Map Reduce to sort the data.   

Teravalidate: At last sorted output data is validated. 

  This method is I/O intensive as it works on data 

input/output. 

 

V. SCHEDULER IMPROVEMENTS 

 Many researchers are working on opportunities for 

improving the scheduling policies in Hadoop. Recent efforts 

such as Delay Scheduler [9], Dynamic Proportional 

Scheduler [10] offer differentiated service for Hadoop jobs 

allowing users to adjust the priority levels assigned to their 

jobs. However, this does not guarantee that the job will be 

completed by a specific deadline. Deadline Constraint 

Scheduler [11] addresses the issue of deadlines but focuses 

more on increasing system utilization. The Schedulers 

described above attempt to allocate capacity fairly among 

users and jobs, they make no attempt to consider resource 

availability on a more fine-grained basis. Resource Aware 

Scheduler [12] considers the resource availability to 

schedule jobs. In the following sections we compare and 

contrast the work done by the researchers on various 

Schedulers.  

5.1 Longest Approximate Time to End (LATE) - 

Speculative Execution  

 It is not uncommon for a particular task to continue 

to progress slowly. This may be due to several reasons like–

high CPU load on the node, slow background processes etc. 

All tasks should be finished for completion of the entire job. 

The scheduler tries to detect a slow running task to launch 

another equivalent task as a backup which is termed as 

speculative execution of tasks. If the backup copy completes 

faster, the overall job performance is improved. Speculative 

execution is an optimization but not a feature to ensure 

reliability of jobs. If bugs cause a task to hang or slow down 

then speculative execution is not a solution, since the same 

bugs are likely to affect the speculative task also. Bugs 
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should be fixed so that the task doesn’t hang or slow down. 

The default implementation of speculative execution relies 

implicitly on certain assumptions: a) Uniform Task progress 

on nodes b) Uniform computation at all nodes. That is, 

default implementation of speculative execution works well 

on homogeneous clusters. These assumptions break down 

very easily in the heterogeneous clusters that are found in 

real-world production scenarios. Zaharia et al [13] proposed 

a modified version of speculative execution called Longest 

Approximate Time to End (LATE) algorithm that uses a 

different metric to schedule tasks for speculative execution. 

Instead of considering the progress made by a task so far, 

they compute the estimated time remaining, which gives a 

more clear assessment of a straggling tasks’ impact on the 

overall job response time. They demonstrated significant 

improvements by Longest Approximate Time to End 

(LATE) algorithm over the default speculative execution. 

5.2 Delay Scheduling  

 Fair scheduler is developed to allocate fair share of 

capacity to all the users. Two locality problems identified 

when fair sharing is followed are – head-of-line scheduling 

and sticky slots. The first locality problem occurs in small 

jobs (jobs that have small input files and hence have a small 

number of data blocks to read). The problem is that 

whenever a job reaches the head of the sorted list for 

scheduling, one of its tasks is launched on the next slot that 

becomes free irrespective of which node this slot is on. If 

the head-of-line job is small, it is unlikely to have data 

locally on the node that is given to it. Head-of-line 

scheduling problem was observed at Facebook in a version 

of HFS without delay scheduling. The other locality 

problem, sticky slots, is that there is a tendency for a job to 

be assigned the same slot repeatedly. The problems aroused 

because following a strict queuing order forces a job with no 

local data to be scheduled. To overcome the Head of line 

problem, scheduler launches a task from a job on a node 

without local data to maintain fairness, but violates the main 

objective of MapReduce that schedule tasks near their input 

data. Running on a node that contains the data (node 

locality) is most efficient, but when this is not possible, 

running on a node on the same rack (rack locality) is faster 

than running off-rack. Delay scheduling is a solution that 

temporarily relaxes fairness to improve locality by asking 

jobs to wait for a scheduling opportunity on a node with 

local data. When a node requests a task, if the head-of-line 

job cannot launch a local task, it is skipped and looked at 

subsequent jobs. However, if a job has been skipped long 

enough, non-local tasks are allowed to launch to avoid 

starvation. The key insight behind delay scheduling is that 

although the first slot we consider giving to a job is unlikely 

to have data for it, tasks finish so quickly that some slot with 

data for it will free up in the next few seconds. 

 

5.3 Dynamic Priority Scheduling 

  Thomas Sandholm et al [10] proposed Dynamic 

Priority Scheduler that supports capacity distribution 

dynamically among concurrent users based on priorities of 

the users. Automated capacity allocation and redistribution 

is supported in a regulated task slot resource market. This 

approach allows users to get Map or Reduce slot on a 

proportional share basis per time unit. These time slots can 

be configured and called as allocation interval. It is typically 

set to somewhere between 10 seconds and 1 minute. For 

example a max capacity of 15 Map slots gets allocated 

proportionally to three users. The central scheduler contains 

a Dynamic Priority Allocator and a Priority Enforcer 

component responsible for accounting and schedule 

enforcement respectively. This model appears to favor users 

with small jobs than users with bigger jobs. However 

Hadoop MapReduce supports scaling down of big jobs to 

small jobs to make sure that fewer concurrent tasks runs by 

consuming the same amount of resources. 

5.4 Deadline Constraint Scheduler  

 Deadline Constraint Scheduler [11] addresses the 

issue of deadlines but focuses more on increasing system 

utilization. Dealing with deadline requirements in Hadoop-

based data processing is done by (1) a job execution cost 

model that considers various parameters like map and 

reduce runtimes, input data sizes, data distribution, etc., (2) 

a Constraint-Based Hadoop Scheduler that takes user 

deadlines as part of its input. Estimation model determines 

the available slot based a set of assumptions:  All nodes are 

homogeneous nodes and unit cost of  processing for each 

map or reduce node is equal  Input data is distributed 

uniform manner such that  each reduce node gets equal 

amount of reduce data to process  Reduce tasks starts after 

all map tasks have completed; The input data is already 

available in HDFS. 

 

5.5 Resource Aware Scheduling 

  The Fair Scheduler [7] and Capacity Scheduler 

described above attempt to allocate capacity fairly among 

users and jobs without considering resource availability on a 

more fine-grained basis. As CPU and disk channel capacity 

has been increasing in recent years, a Hadoop cluster with 

heterogeneous nodes could exhibit significant diversity in 

processing power and disk access speed among nodes. 

Performance could be affected if multiple processor-

intensive or data-intensive tasks are allocated onto nodes 

with slow processors or disk channels respectively. This 

possibility arises as the Job Tracker simply treats each Task 

Tracker node as having a number of available task “slots”. 

Even the improved LATE speculative execution could end 

up increasing the degree of congestion within a busy cluster, 

if speculative copies are simply assigned to machines that 

are already close to maximum resource utilization. 
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VI. CONCLUSIONS AND FUTURE WORK 

 Ability to make Hadoop scheduler resource aware 

is one the emerging research problem that grabs the 

attention of most of the researchers as the current 

implementation is based on statically configured slots. This 

paper summarizes pros and cons of Scheduling policies of 

various Hadoop Schedulers developed by different 

communities. Each of the Scheduler considers the resources 

like CPU, Memory, Job deadlines and IO etc. All the 

schedulers discussed in this paper addresses one or more 

problem(s) in scheduling in Hadoop. Nevertheless all the 

schedulers discussed above assumes homogeneous Hadoop 

clusters. Future work will consider scheduling in Hadoop in 

Heterogeneous Clusters. 

 Map Reduce was initiated by Google to handle big 

data analysis which is unstructured data such as web 

document. We have discussed a number of Map Reduce 

models still researchers can develop a more efficient Map 

Reduce with improved functionalities. Similarly a new user 

friendly data processing language can be introduced to make 

data handling easier 
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