

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 1713

Microprocessor Based Controller Programming

Manshi Bisht ; Lakshmi rajput & Nikhil kumar

Dept. of Electronics & Communication Engineering Dronacharya College of Engg.

Farruhknagar , Gurgaon, India

ABSTRACT

Designing of microprocessor based controllers

requires specific hardware as well as software

programming. Programming depends upon type

of the software whether operating software or

application software. Programming requires

knowledge of system configuration and

controller specific programming. Programs are

always in digital form so microprocessor can

control directly at digital level called Direct

Digital Control (DDC).

Keywords:

Controller Software; DDC; Controller

Configuration; Controller Programming;

Custom Level Programming; Digital Form

1. INTRODUCTION

In the early 1960 computer based controllers

were used. They were having one main frame

computer and all control action was dependent

on it, moreover they were costly. But with the

advent of microprocessor cost of controlling the

plant decreased very less. In actual a

microprocessor is a computer on a chip, and

high-density memories reduced costs and

package size dramatically and increased

application flexibility. These controllers’

measure signals from sensors, perform control

routines in software programs, and take

corrective action in the form of output signals to

actuators. Since the programs are in digital

form, the controllers perform what is known as

direct digital control (DDC). Microprocessor

can directly control the plant digitally. A direct

digital control can be defined as the controller

which updates the process as function of

measured output variable and input provided.

As the output world talks in analog form so for

control digitally it has to be converted into

digital form. For this A/D and D/A converters

are used as shown in fig. 1

Figure1: A microprocessor based control system

use A/D -D/A converter

A block diagram of microprocessor based

digital control system along is shown in figure2.

Figure2: Microprocessor based digital control

system

Figure 2 shows the analog input and output

through A/D and D/A converter.

 2. CONTROLLER CONFIGURATION

The basic elements of a microprocessor-based

(or micro-processor) controller (Fig.3) include:

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 1714

—The microprocessor

 A program memory

 A working memory

—A clock or timing devices

A means of getting data in and out of the system

In addition, a communications port is not only a

desirable feature but a requirement for program

tuning or interfacing with a central computer or

building management system. Timing for

microprocessor operation is provided by a

battery-backed clock. The clock operates in the

microsecond range controlling execution of

program instructions. Program memory holds

the basic instruction set for controller operation

as well as for the application programs.

Memory size and type vary depending on the

application and whether the controller is

considered a dedicated purpose or general

purpose device. The BIOS directly controlled

hardware components other than the CPU and

main memory. It contained functions such as

character input and output and the reading and

writing of disk sectors. The BDOS implemented

the CP/M file system and some input/output

abstractions (such as redirection) on top of the

BIOS. The CCP took user commands and either

executed them directly (internal commands such

as DIR to show a directory or ERA to delete a

file) or loaded and started an executable file of

the given name (transient commands such as

PIP.COM to copy files or STAT.COM to show

various file and system information).

Third-party applications for CP/M were also

transient commands. The BDOS, CCP and

standard transient commands were (ideally) the

same in all installations of a particular revision

of CP/M, but the BIOS portion was always

adapted to the particular hardware. Adding

memory to a computer, for example, meant that

the CP/M system had to be reinstalled. A utililty

was provided to patch the supplied BIOS,

BDOS and CCP to allow them to be run from

higher memory. Once installed, the operating

system (BIOS, BDOS and CCP) was stored in

reserved areas at the beginning of any disk

which would be used to boot the system. On

start-up, the bootloader (usually contained in a

ROM firmware chip) would load the operating

system from the disk in drive A:. By modern

standards CP/M was primitive, owing to the

extreme constraints on program size. With

version 1.0 there was no provision for detecting

a changed disk. If a user changed disks without

manually rereading the disk directory the

system would write on the new disk using the

old disk's directory information, ruining the data

stored on the disk. Starting with 1.1 or 1.2 this

danger was reduced: if one changed disks

without reading the new disk's directory, and

tried to write to it, the operating system would

signal a fatal error, avoiding overwriting but

requiring a reboot (which took no more than a

few seconds, but implied losing whatever data

you were trying to save).

The majority of the complexity in CP/M was

isolated in the BDOS, and to a lesser extent, the

CCP and transient commands. This meant that

by porting the limited number of simple

routines in the BIOS to a particular hardware

platform, the entire OS would work. This

significantly reduced the development time

needed to support new machines, and was one

of the main reasons for CP/M's widespread use.

Today this sort of abstraction is common to

most OSs (a hardware abstraction layer), but at

the time of CP/M's birth, OSs were typically

intended to run on only one machine platform,

and multilayer designs were considered

unnecessary.

 Dedicated purpose configurable controllers

normally have standard programs and are

furnished with read only memory (ROM) or

programmable read only memory (PROM.).

General purpose controllers often accommodate

a variety of individual custom programs and are

supplied with field-alterable memories such as

electrically erasable, programmable, read only

memory (EEPROM) or flash memory.

Memories used to hold the program for a

controller must be nonvolatile, that is, they

retain the program data during power outages.

A/D converters for DDC applications normally

range from8 to 12 bits depending on the

application. An 8-bit A/D converter provides a

resolution of one count in 256. A

12-bitA/Dconverterprovidesaresolutionofoneco

untin4096.IftheA/Dconverter is set up to

provide a binary coded decimal (BCD)output, a

http://en.wikipedia.org/wiki/File_system
http://en.wikipedia.org/wiki/Hardware_abstraction_layer

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 1715

12-bit converter can provide values from 0 to

999, 0to 99.9, or 0 to 9.99 depending on the

decimal placement.

Figure3: Microprocessor Controller

Configuration for automatic Control

Applications

3. CONTROLLER SOFTWARE

Although use of microprocessor controller for

any application depends upon the hardware but

software determines the functionality.
Commands took the form of a keyword

followed by a list of parameters separated by

spaces or special characters. Similar to a Unix ,

if an internal command was recognized, it was

carried out by the CCP itself. Otherwise it

would attempt to find an executable file on the

currently logged disk drive and (in later

versions) user area, load it, and pass it any

additional parameters from the command line.

These were referred to as "transient" programs.

On completion, CP/M would reload the part of

the CCP that had been overwritten by

application programs — this allowed transient

programs a larger memory space. Controller

software falls basically into two categories:

1. Operating software which controls the basic

operation of the controller

2. Application software which addresses the

unique control requirements of specific

applications

3.1 Operating software

It is generally stored in volatile memory such as

ROM, PROM. Operating software includes the

operating system (OS) and routines for task

scheduling, I/O scanning; priority interrupt

processing, A/D and D/A conversion, and

access and display of control program variables

such as set points, temperature v a l u e s , p a r

a m e t e r s , a n d data file information. Tasks

are scheduled sequentially and interlaced with

I/O scanning and other routine tasks in such a

way as to make operation appear almost

simultaneous. If any higher priority task appears

to operating software then current going task is

ceased and data held in registers and

accumulators are temporarily transferred to

temporary registers. These interrupt requests are

processed by priority interrupt register. When

interrupt task is over then normal routine is

resumed and data is transferred back from

temporary registers to mainstream. The effect of

these interrupts is transparent to the application

that the controller is controlling.

3.2 Application Software

Application software includes direct digital

control, energy management, lighting control,

and event initiated programs plus other alarm

and monitoring software typically classified as

building management functions. The system

allows application programs to be used

individually or in combination. File size was

specified as the number of

128-byte records (directly corresponding to disk

sectors on 8-inch drives) occupied by a file on

the disk. There was no generally supported way

of specifying byte-exact file sizes. The current

size of a file was maintained in the file's by

the operating system. Since many application

programs (such as) prefer to deal with files as

sequences of characters rather than as sequences

of records, by convention text files were

terminated with a character (, hexadecimal

1A). Determining the of a therefore involved

examining the last record of the file to locate the

terminating control-Z. This also meant that

inserting a control-Z character into the middle

of a file usually had the effect of truncating the

text contents of the file. For example ,the same

hardware and operating software can be used

for a new or existing building control by using

different programs to match the application. An

existing building, for example, might require

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 1716

energy management software to be added to the

existing control system. A new building,

however,

mightrequireacombinationofdirectdigitalcontrol

andenergymanagement software.

3.2.1 DIRECT DIGITAL CONTROL

SOFTWARE

DDC software is used for specific control

actions. These are set of standard DDC

operators. Key elements in most direct digital

control programs are the PID and the enhanced

EPID and ANPID algorithms. Customization

was required because hardware choices were

not constrained by compatibility with any one

popular standard. For example, some

manufacturers used separate computer terminal,

while others designed a built-in integrated video

display system. Serial ports for printers and

modems could use different types of chips, and

port addresses were not fixed. Some machines

used memory-mapped I/O instead of the 8080

I/O address space. All of these variations in the

hardware were concealed from other modules of

the system by use of the BIOS, which used

standard entry points for the services required to

run CP/M such as character I/O or accessing a

disk block. Since support for serial

communication to a modem was very

rudimentary in the BIOS or may have been

absent altogether, it was common practice for

CP/M programs that used modems to have a

user-installed overlay containing all the code

required to access a particular machine's serial

port. While the P, PI, PID, EPID, and ANPID

operators provide the basic control action, there

are many other operators that enhance and

extend the control program. Some other typical

operators are shown in Table 1. These operators

are computer statements that denote specific

DDC operations to be performed in the

controller. Math, time/calendar, and other

calculation routines (such as calculating an

enthalpy value from inputs of temperature and

humidity) are also required

 4.TRANSIENT PROGRAMMING AREA

The read/write memory between address 0100

hexadecimal and the lowest address of the

BDOS was the Transient Program Area (TPA)

available for CP/M application programs.

Although all Z80 and 8080 processors could

address 64 kilobytes of memory, the amount

available for application programs could vary,

depending on the design of the particular

computer. Some computers used large parts of

the address space for such things as BIOS

ROMs, or video display memory. As a result

some systems had more TPA memory available

than others was a common technique that

allowed systems to have a large TPA while

switching out ROM or video memory space as

needed. CP/M 3.0 allowed parts of the BDOS to

be in bank-switched memory as well.

5. CONTROLLER PROGRAMMING

Controller programming makes the controller

usable for a specific control action.

Programming of microcomputer-based

controllers can be subdivided into four discrete

categories:

1. Configuration programming

2. System initialization programming

3. Data file programming

4. Custom control programming

Some controllers require all four levels of

program entry while other controllers, used for

standardized applications, require fewer levels.

Configuration programming matches the which

hardware and software matches the control

action required. It requires the selection of both

hardware and software package to match the

application requirement.

System initialization programming consists of

entering appropriate startup values using a

keypad or a keyboard. Start up data parameters

include set point, throttling range, gain, reset

time, time of day, occupancy time, and night

setback temperature. These data are equivalent

to the settings on a mechanical control system,

but there are usually more items because of the

added functionality of the digital control system

supported options to control the size of reserved

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 1717

and directory areas on the disk, and the mapping

between logical disk sectors (as seen by CP/M

programs) and physical sectors as allocated on

the disk. There were very many ways to

customize these parameters for every

system but once they had been set, no

standardized way existed for a system to load

parameters from a disk formatted on another

system. No single manufacturer prevailed in the

5¼ inch era of CP/M use, and disk formats were

not portable between hardware manufacturers.

A software manufacturer had to prepare a

separate version of the program for each brand

of hardware on which it was to run. With some

manufacturers (Kaypro is an example), there

was not even standardization across the

company's different models. Because of this

situation, disk format translation programs,

which allowed a machine to read many different

formats, became popular and reduced the

confusion, as did programs like which allowed

transfer of data and programs from one machine

to another using the ports that most machines

had. The fragmented CP/M market, requiring

distributors either to stock multiple formats of

disks or to invest in multiformat duplication

equipment, compared with the more

standardized disk formats, was a contributing

factor to the rapid obsolescence of CP/M after

1981.

Requirement of data file programming depends

upon whether the system variables are fixed or

variable. For example at zonal level

programming where input sensors are fixed and

programmer knows which relay will get output

then the use of data file programming is

irrelevant. But at the system level programming

where controller controls wide variety of

sensors and gives output to various relays, use

of data file programming is must. For the

controller to properly process input data, for

example, it must know if the point type is

analog or digital. If the point is analog, the

controller must know the sensor type, the range,

whether or not the input value is linear, whether

or not alarm limits are assigned, what the high

and low alarm limit values are if limits are

assigned, and if there is a lockout point. See

Table 2.If the point is digital, the controller

must know its normal state (open or closed)[8],

whether the given state is an alarm state or

merely a status condition, and whether or not

the condition triggers an event-initiated

program.

Custom control programming is the most

involved programming category. Custom

control programming requires a step-by-step

procedure that closely resembles standard

computer programming. A macro view of the

basic tasks is shown in Figure 4.

 6. CONCLUSION
Microprocessor based controllers although

depends upon the hardware of controller but the

main behavior is defined in software

programming. Application software is used if a

specific controlling action is needed. Before

programming the controller values initial

parameters is considered. Complexity of

programming also depends upon the number of

controllers to be controlled, input is analog or

digital. If many inputs are coming to controller

then a data file has to be maintained so that just

by looking into that file constraints of

programming can be identified.

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

P a g e | 1718

 7 .REFERENCES

[1] S. D. Kraft and Edward T. Wall,”

Experimental Microprocessor-Based

Adaptive Control System” IEEE Control

Systems Magazine

[2] Robert Yung, Stefan Rusu,

KenShoemaker,” Future Trend of

Microprocessor Design” ESSCIRC 2002

[3] Katz, P.: 1981, “Digital Control

System”, Springer-Verlag, Berlin

[4] Alfred C. Weaver, “Areal-time,

multi-task programming language for

microprocessor-based industrial process

control”, ACM '78 Proceedings of the

1978 annual conference -Volume 2

Pages 522 -525

[5] Chang-Jiu Chen, Wei-Min Cheng,

Hung-Yue Tsai and Jen-Cheieh Wu,” A

Quasi-Delay-Insensitive Microprocessor

Core Implementation for

Microcontrollers”, Journal Of

Information Science And Engineering

25, 543-557 (2009)

[6] J. H. Lee, W. C. Lee, and K. R. Cho,

“Anovel asynchronous pipeline

architecture for CISC type embedded

controller − A8051,” inProceedings of

the 45thMidwest Symposium on

Circuits and Systems, Vol. 2, 2002, pp.

 675-678.

http://dl.acm.org/author_page.cfm?id=81100090931&coll=DL&dl=ACM&trk=0&cfid=147519097&cftoken=44331801

