

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3764

Design of FPGA Logic Architectures using Hybrid/LUT

Multiplexer

Mohd Abdul Sumer

Assistant Professor, Department of ECE, Sana Engineering College, Kodad

(MN), Suryapet (Dist), Telangana, India.

Abstract: Hybrid configurable logic block architectures for

field-programmable gate arrays that contain a mixture of

lookup tables and hardened multiplexers are evaluated

toward the goal of higher logic density and area

reduction. Multiple hybrid configurable logic block

architectures, both nonfracturable and fracturable with

varying MUX:LUT logic element ratios are evaluated

across two benchmark suites (VTR and CHStone) using a

custom tool flow consisting of LegUp-HLS, Odin-II front-

end synthesis, ABC logic synthesis and technology

mapping, and VPR for packing, placement, routing, and

architecture exploration. VPR is used to model the new

hybrid configurable logic block and verify post place and

route implementation. In this paper experimentally, we

show that for nonfracturable architectures, without any

mapped optimizations, we naturally save up to∼8% area

post place and route. For fracturable architectures,

experiments show that only marginal gains are seen after

place-and-route up to∼2%. For both nonfracturable and

fracturable architectures, we see minimal impact on

timing performance for the architectures with best area-

efficiency.

Keywords— FPGA, Multiplexer logic element, Complex

logic block, mapping technologies

I. INTRODUCTION

A field-programmable gate array (FPGA) is a

block of programmable logic that can implement multi-

level logic functions. FPGAs are most commonly used as

separate commodity chips that can be programmed to

implement large functions. However, small blocks of

FPGA logic can be useful components on-chip to allow

the user of the chip to customize part of the chip’s logical

function. An FPGA block must implement both

combinational logic functions and interconnect to be able

to construct multi-level logic functions. There are several

different technologies for programming FPGAs, but most

logic processes are unlikely to implement anti-fuses or

similar hard programming technologies.

Throughout the history of field-programmable

gate arrays (FPGAs), lookup tables (LUTs) have been the

primary logic element (LE) used to realize combinational

logic. A K-input LUT is generic and very flexible able to

implement any K-input Boolean function. The use of

LUTs simplifies technology mapping as the problem is

reduced to a graph covering problem. However, an

exponential area price is paid as larger LUTs are

considered. The value of K between 4 and 6 is typically

seen in industry and academia, and this range has been

demonstrated to offer a good area/performance

compromise. Recently, a number of other works have

explored alternative FPGA LE architectures for
performance improvement to close the large gap between

FPGAs and application-specific integrated circuits

(ASICs)

A. LOOKUP TABLES

The basic method used to build a combinational

logic block (CLB) also called a logic element in an

SRAM-based FPGA is the lookup table (LUT). As shown

in Figure, the lookup table is an SRAM that is used to

implement a truth table. Each address in the SRAM

represents a combination of inputs to the logic element.

The value stored at that address represents the value of the

function for that input combination. An n-input function

requires an SRAM with locations.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3765

Fig -1 Lookup Tables

Because a basic SRAM is not clocked, the lookup table

logic element operates much as any other logic gate as its

inputs changes, its output changes after some delay.

B. PROGRAMMING A LOOKUP TABLE

Unlike a typical logic gate, the function represented by the

logic element can be changed by changing the values of

the bits stored in the SRAM. As a result, the n-input logic

element can represent functions (though some of these

functions are permutations of each other).

Fig-2

Programming A Lookup Table

 A typical logic element has four inputs. The delay

through the lookup table is independent of the bits stored

in the SRAM, so the delay through the logic element is the

same for all functions. This means that, for example, a

lookup table-based logic element will exhibit the same

delay for a 4-input XOR and a 4-input NAND. In contrast,

a 4-input XOR built with static CMOS logic is

considerably slower than a 4-input NAND. Of course, the

static logic gate is generally faster than the logic element.

Logic elements generally contain registers flip-flops and

latches as well as combinational logic. A flip-flop or latch

is small compared to the combinational logic element (in

sharp contrast to the situation in custom VLSI), so it

makes sense to add it to the combinational logic element.

Using a separate cell for the memory element would

simply take up routing resources. The memory element is

connected to the output; whether it stores a given value is

controlled by its clock and enable inputs.

In this paper, we propose incorporating (some)

hardened multiplexers (MUXs) in the FPGA logic blocks

as a means of increasing silicon area efficiency and logic

density. The MUX-based logic blocks for the FPGAs have

seen success in early commercial architectures, such as the

Actel ACT-1/2/3 architectures, and efficient mapping to

these structures has been studied in the early 1990s.

However, their use in commercial chips has waned,

perhaps partly due to the ease with which logic functions

can be mapped into LUTs, simplifying the entire computer

aided design (CAD) flow. Nevertheless, it is widely

understood that the LUTs are inefficient at implementing

MUXs, and that MUXs are frequently used in logic

circuits. To underscore the inefficiency of LUTs

implementing MUXs, consider that a six input LUT (6-

LUT) is essentially a 64-to-1 MUX (to select 1 of 64 truth-

table rows) and 64-SRAM configuration cells, yet it can

only realize a 4-to-1 MUX (4 data+2 select=6 inputs). In

this paper, we present a six-input LE based on a 4-to-1

MUX, MUX4, that can realize a subset of six-input

Boolean logic functions, and a new hybrid complex logic

block (CLB) that contains a mixture of MUX4s and 6-

LUTs. The proposed MUX4s are small compared with a

6-LUT (15% of 6-LUT area), and can efficiently map all

{2,3}-input functions and some {4,5,6}-input functions.

In addition, we explore factorability of Les the ability to

split the LEs into multiple smaller elements in both LUTs

and MUX4s to increase logic density. The ratio of LEs

that should be LUTs versus MUX4s is also explored

toward optimizing logic density for both nonfracturable

and fracturable FPGA architectures. To facilitate the

architecture exploration, we developed a CAD flow for

mapping into the proposed hybrid CLBs, created using

ABC and VPR, and describe technology mapping

techniques that encourage the selection of logic functions

that can be embedded into the MUX4 elements. The main

contributions in this paper are as follows.

1)Two hybrid CLB architectures (nonfracturable and

fracturable) that contain a mixture of MUX4 LEs and the

traditional LUTs yielding up to 8% area savings.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3766

2) Mapping techniques called Natural Mux and Mux Map

targeted toward the hybrid CLB architecture that optimize

for area, while preserving the original mapping depth.

3) A full post-place-and-route architecture evaluation with

VTR7, and CHStone benchmarks facilitated by LegUp-

HLS, the Verilog-to-Routing project showing impact on

both area and delay.

Compared with the preliminary publication, we have

performed transistor level modeling of the MUX4 LE,

further studied the fracturable architectures, and unified

the open source tool-flow from C through LegUp-HLS to

the VTR flow. Sparse crossbars (versus full crossbars in

the previous work) have also been included in our CLBs,

increasing modeling accuracy. The new transistor-level

modeling of the MUX4 also provides more accurate

results as compared with the previous work. Results have

also been expanded with the inclusion of timing results as

well as larger architectural ratio sweeps.

II. LITERATURE REVIEW

Recent works have shown that the heterogeneous

architectures and synthesis methods can have a significant

impact on improving logic density and delay, narrowing

the ASIC–FPGA gap. Works by Anderson and Wang with

―gated‖ LUTs, then with asymmetric LUT LEs, show that

the LUT elements present in commercial FPGAs provide

unnecessary flexibility. Toward improved delay and area,

the macrocell-based FPGA architectures have been

proposed. These studies describe significant changes to the

traditional FPGA architectures, whereas the changes

proposed here build on architectures used in industry and

academia. Similarly, and-inverter cones have been

proposed as replacements for the LUTs, inspired by and-

inverter graphs (AIGs).

 Purnaprajna and Ienne explored the possibility of

repurposing the existing MUXs contained within the

Xilinx Logic Slices. Similar to this work, they use the

ABC priority cut mapped as well as VPR for packing,

place, and route. However, their work is primarily delay-

based showing an average speed up of 16% using only ten

of 19 VTR7 benchmarks.

In this article, we study the technology mapping

problem for a novel field-programmable gate array

(FPGA) architecture that is based on k-input single-output

programmable logic array- (PLA) like cells, or, k/m-macro

cells. Each cell in this architecture can implement a single

output function of up to k inputs and up to m product

terms. We develop a very efficient technology mapping

algorithm, km flow, for this new type of architecture. The

experimental results show that our algorithm can achieve

depth-optimality on almost all the test cases in a set of 16

Microelectronics Center of North Carolina (MCNC)

benchmarks. Furthermore it is shown that on this set of

benchmarks, with only a relatively small number of

product terms (m≤k+3), the k/m-macro cell-based FPGAs

can achieve the same or similar mapping depth compared

with the traditional k-input single-output lookup table- (k-

LUT-) based FPGAs. We also investigate the total area

and delay of k/m-macro cell-based FPGAs and compare

them with those of the commonly used 4-LUT-based

FPGAs. The experimental results show that k/m-macro

cell-based FPGAs can outperform 4-LUT-based FPGAs in

terms of both delay and area after placement and routing

by VPR on this set of benchmarks. This paper presents

experimental measurements of the differences between a

90-nm CMOS field programmable gate array (FPGA) and

90-nm CMOS standard-cell application specific integrated

circuits (ASICs) in terms of logic density, circuit speed,

and power consumption for core logic. We are motivated

to make these measurements to enable system designers to

make better informed choices between these two media

and to give insight to FPGA makers on the deficiencies to

attack and, thereby, improve FPGAs. We describe the

methodology by which the measurements were obtained

and show that, for circuits containing only look-up table-

based logic and flip-flops, the ratio of silicon area required

to implement them in FPGAs and ASICs is on average 35.

Modern FPGAs also contain ―hard‖ blocks such as

multiplier/ accumulators and block memories. We find

that these blocks reduce this average area gap significantly

to as little as 18 for our benchmarks, and we estimate that

extensive use of these hard blocks could potentially lower

the gap to below five. The ratio of critical-path delay, from

FPGA to ASIC, is roughly three to four with less influence

from block memory and hard multipliers. The dynamic

power consumption ratio is approximately 14 times and,

with hard blocks, this gap generally becomes smaller.

In this paper the new architectural proposals are

routinely generated in both academia and industry. For

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3767

FPGA’s to continue to grow, it is important that these new

architectural ideas are fairly and accurately evaluated, so

that those worthy ideas can be included in future chips.

Typically, this evaluation is done using experimentation.

However, the use of experimentation is dangerous, since it

requires making assumptions regarding the tools and

architecture of the device in question. If these assumptions

are not accurate, the conclusions from the experiments

may not be meaningful. In this paper, we investigate the

sensitivity of FPGA architectural conclusions to

experimental variations. To make our study concrete, we

evaluate the sensitivity of four previously published and

well-known FPGA architectural results: lookup-table size,

switch block topology, cluster size, and memory size. It is

shown that these experiments are significantly affected by

the assumptions, tools, and techniques used in the

experiments.

III. PROPOSED ARCHITECTURES

A. MUX4: 4-TO-1 MULTIPLEXER LOGIC ELEMENT

The MUX4 LE shown in Fig. 3 consists of a 4-to-

1 MUX with optional inversion on its inputs that allow the

realization of any {2,3}-input function, some {4,5}-input

functions, and one 6-input function a 4-to-1 MUX itself

with optional inversion on the data inputs. A 4-to-1 MUX

matches the input pin count of a 6-LUT, allowing for fair

comparisons with respect to the connectivity and intra

cluster routing. Any two-input Boolean function can be

easily implemented in the MUX4: the two function inputs

can be tied to the select lines and the truth table values

(logic-0or logic-1) can be routed to the data inputs

accordingly. For three-input functions; consider that

Shannon decomposition about one variable produces

cofactors with at most two variables. A second

decomposition of the cofactors about one of their two

remaining variables produces cofactors with at most one

variable. Such single-variable cofactors can be fed to the

data inputs (the optional inversion may be needed), with

the decomposition variables feeding the select inputs.

Likewise, functions of more than four inputs can be

implemented in the MUX4 as long as Shannon

decomposition with respect to any two inputs produces

cofactors with at most one input.

Fig.3. MUX4 LE depicting optional data input inversions

B. Logic Elements, Fracturability, and MUX4-Based

Variants.

Two families of architectures were created:

1) Without fracturable LEs

2) With fracturable LEs.

In this paper, the fracturable LEs refer to an architectural

element on which one or more logic functions can be

optionally mapped. Nonfracturable LEs refer to an

architectural element on which only one logic function is

mapped. In the nonfracturable architectures, the MUX4

element shown in Fig. 3 is used together with

nonfracturable 6-LUTs. This element shares the same

number of inputs as a 6-LUT lending for fair comparison

with respect to the input connectivity. For the fracturable

architecture, we consider an eight-input LE, closely

matched with the adaptive logic module in recent Altera

Stratix FPGA families. For the MUX4 variant, Dual

MUX4, we use two MUX4s within a single eight-input

LE. In the configuration, shown in Fig. 4, the two MUX4s

are wired to have dedicated select inputs and shared data

inputs. This configuration allows this structure to map two

independent (no shared inputs) three-input functions,

while larger functions may be mapped dependent on the

shared inputs between both functions. An architecture in

which a 4-to-1 MUX (MUX4) is fractured into two

smaller 2-to-1 MUXs was considered.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3768

Fig.4. Dual MUX4 LE that utilizes dedicated select inputs and shared

data Inputs

C. HYBRID COMPLEX LOGIC BLOCK

A variety of different architectures were considered the

first being a nonfracturable architecture. In the

nonfracturable architecture, the CLB has 40 inputs and ten

basic LEs (BLEs), with each BLE having six inputs and

one output. Fig.5 shows this nonfracturable CLB

architecture with BLEs that contain an optional register.

We vary the ratio of MUX4s to LUTs within the ten

elements CLB from 1:9 to 5:5 MUX4s:6-LUTs. The

MUX4 element is proposed to work in conjunction with 6-

LUTs, creating a hybrid CLB with a mixture of 6-LUTs

and MUX4s (or MUX4 variants).

Fig. 5. Hybrid CLB with a 50% depopulated intra-CLB crossbar

depicting BLE internals for nonfracturable (one optional register and one

output) architecture.

Fig. 6 shows the organization of our CLB and

internal BLEs. For fracturable architectures, the CLB has

80 inputs and ten BLEs, with each BLE having eight

inputs and two outputs emulating an Altera Stratix

Adaptive-LUT. The same sweep of MUX4 to LUT ratios

was also performed. Fig. 4 shows the fracturable

architecture with eight inputs to each BLE that contains

two optional registers. We evaluate fracturability of LEs

versus nonfracturable LEs in the context of MUX4

elements since fracturable LUTs are common in

commercial architectures. For example, Altera Adaptive 6-

LUTs in Stratix IV and Xilinx Virtex 5 6-LUTs can be

fractured into two smaller LUTs with some limitations on

inputs.

Fig.6. Hybrid CLB with a 50% depopulated intra-CLB crossbar depicting

BLE internals for a fracturable (two optional registers and two outputs)

architecture.

D. AREA MODELING

1) MUX4 Logic Element: Initial estimates of the MUX4

element showed that the MUX4 is∼10% the area of a 6-

LUT overall. A 4-to-1 MUX can be realized with three 2-

to-1 MUXs. Hence, the MUX4 element contains seven 2-

to-1 MUXs, four SRAM cells, and four inverters in total

(see Fig. 1). The optional inversion uses the four SRAM

cells, whereas the rest of the LE configuration is

performed through routing. In addition, the depth of the

MUX tree is halved compared with the 6-LUT, which has

six 2-to-1 MUXs on its longest paths. Conservatively,

assuming constant pass transistor sizing and that the area

of a 2-to-1 MUX and six transistor SRAM cell are roughly

equivalent, the MUX4 element has (1/16)th the SRAM

area and(1/8)th the MUX area of a 6-LUT.

These estimates were revised using transistor level

modeling of the circuit blocks. Transistor-level

optimization of the constituent circuit blocks of an FPGA

requires an understanding of the optimal area-delay

tradeoffs for each individual circuit block. This requires

extracting a representative critical path, which is a path

whose composition of blocks and topology will be similar

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3769

to the critical path of a specific design. Extracting the

representative critical path allows us to judge to what

extent each individual block is timing critical, which thus

establishes an area-delay tradeoff goals for each block.

This is in line with the transistor-level optimization tool

developed previously. We use the results of prior work to

establish the optimal area-delay tradeoff for 6-LUTs in

conventional island-style FPGA architecture with typical

architectural parameters. The resulting 6-LUT delay

serves as a point of reference for optimization for the

circuits considered in this paper: in the interest of

maximizing area reduction while allowing performance to

be maintained (ignoring the differences in cell counts

between mapping to a conventional LUT and the LEs

proposed in this paper), we attempt to match the delay of a

6-LUT while minimizing the area of each of the variants

of the MUX4 circuits. Transistor level modeling and

optimizations were based on a9 predictive 22-nm high

performance process [21], while the area model presented

in prior work [20] was used to estimate the area of various

circuit structures. With this methodology, we determined

an area-delay optimal 6-LUT has an area of 930

minimum-width transistors, and a worst-case delay of 261

ps. For the MUX4 cell and Dual MUX4 cell, a minimum

area and minimum delay cell was created. The minimum

area MUX4 cell has an area of 95 minimum width

transistors and a delay of 204 ps; all transistors were

minimum-width in this case, and as the minimum area

solution for this circuit was able to meet (and improve

upon) the worst-case delay target of a 6-LUT. Similarly,

the Dual MUX4 cell has an area of 249 minimum-width

transistors while meeting the worst-case delay

requirement. However, we chose to use the minimum

delay design for both the MUX4 and Dual MUX4

elements for the rest of the study as there is not a

significant increase in area over the minimum area design.

2) FPGA Area Model:

Although determining the area of a MUX4 element

relative to a 6-LUT is important, we need to also examine

global FPGA area considering the number of CLB tiles,

area overheads within the CLB and routing area per CLB.

Throughout this paper, global FPGA area was estimated

assuming that, per tile, 50% of the area is inter cluster and

intra cluster routing, 30% of the area is used for LUTs,

and 20% for registers and other miscellaneous logic,

following Anderson and Wang and a private

communication. It is important to note that this 50%–

30%–20% model is an estimate based on a traditional full

FPGA design where-by the routing and internal CLB

crossbars are optimized toward 6-LUTs. Production of an

optimized FPGA utilizing our new MUX4 elements would

surely change said model. However, optimizing the entire

routing architecture toward our MUX4 variants,

measuring the routing architecture, and closing the loop by

creating a more accurate model is out of the scope of this

work. Using this model, we can make some observations

about the hybrid CLB architecture. The 30% that normally

would account for ten 6-LUT LEs within the tile is now

split between the smaller MUX4 elements and 6-LUTs.

IV. Technology Mapping Using ABC

ABC was used for technology mapping, with

modifications that allow for MUX4-embeddable function

identification and MUX2-embeddable function

identification in the case of fracturable MUX4s and

custom mapping. The internal data structure used within

the ABC is an AIG, where the logic circuit is represented

using 2-input AND gates with inverters. Priority Cuts

mapping in ABC (invoked with the if command) was

modified to perform our custom technology mapping. This

mapper traverses the AIG from primary inputs to primary

outputs finding intermediate mappings for internal nodes

and finally the primary outputs, using a dynamic

programming approach. The priority cuts mapper

performs multiple passes on the AIG to find the best cut

per node. For depth-oriented mapping, the mapper first

prioritizes mapping depth then optimizes for area

discarding cuts whose selection would increase the overall

depth of the mapped network. Based on this standard

mapper, two mapper variants were produced and

evaluated. The first variant, Natural Mux, evaluates and

identifies internal functions that are MUX4-embeddable,

agnostic of the target architecture; i.e., this flow uses the

default priority cuts mapping and performs a post

processing step to identify MUX4-embeddable functions.

From this mapping, we can evaluate what area savings are

possible without any mapper changes. The second variant

Mux Map, area-weights the MUX4-embeddable cuts

relative to 6-LUT cuts, thereby establishing a preference

for selection/creation of MUX4-embeddable solutions.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3770

V. MODELING USING VPR

VPR was used to perform architectural

evaluation. The standard ten 6-LUT CLB architecture in

40-nm included with the VPR distribution was used for

baseline modeling. The hybrid CLBs shown in Figs. 3 and

4 were modeled using the XML-based VPR architectural

language. The snippet from the architecture file for the

physical block hardened MUX4 element, this code

specifies a MUX4 as a six-input one-output black box to

the VPR. In addition, since all MUX4s can also be

mapped to the 6-LUTs, an additional mode was added to

the 6-LUT physical block. The mode concept allows the

VPR packer to pack LUTs into LUTs (as usual), but also

enables MUX4s to be packed into the LUTs. The

architectures with CLBs having MUX4: LUT ratios from

1:9 to 5:5 were created from the baseline 40-nm

architectures with delays obtained through circuit

simulations of the MUX4 variants. Importantly, we made

minor modifications to the VPR packing algorithm itself,

so that the MUX4 net list elements are preferred to be

packed into the MUX4 Les in the architecture (while

limiting packing MUX4 net list elements into LUTs). The

modifications involved changing the attraction function

during the CLB packing. One change was to ensure that

the logic functions that were MUX4 embeddable were

preferentially packed into a physical MUX4 element and

not into an LUT. Another was to apply a negative weight

on MUX4-embeddable functions when the current CLB’s

physical MUX4 elements are all occupied also preventing

MUX4-embeddable functions from being placed into the

LUTs. Without this, the MUX4 net list elements might

needlessly consume LUTs, which should be reserved,

where possible, for those net list elements that demand

their flexibility. This becomes doubly important for

fracturable architectures, since their packing problem is

more complex. Without this modification, a significant

CLB usage increase was observed across all benchmark

sets.

EXTENSION

FIR FILTER: A FIR (Finite Impulse Response)

filter is defined as a filter that has impulse response for a

finite duration of time. Now the design of FIR filter is

made by using equiripple method. The advantages of

using FIR filters are their guaranteed stability and freedom

from phase distortion.

FIR FILTER STRUCTURE

Figure 6 Direct Structure of an FIR Filter Above

shows the structure of an Direct-form FIR filter and

corresponding equation is given by

y(n) =b¬i x(n-i)= bTxT(n) ………………(1)

The input vectors in fig can be represented as xT

(n) = [x(n), x(n −1),...x(n − L+1)] …(2) The

coefficients in fig can be represented as

 bT=[b0,b1,…..bL-1]……………….(3) Output

of FIR filter is the sum of all the partial products between

input and coefficients. Filters are signal conditioners.

Each functions by accepting an input signal, blocking pre-

specified frequency components, and passing the original

signal minus those components to the output. For example,

a typical phone line acts as a filter that limits frequencies

to a range considerably smaller than the range of

frequencies human beings can hear. That's why listening

to CD- quality music over the phone is not as pleasing to

the ear as listening to it directly.

VI. RESULTS

SIMULATION

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3771

RTL SCHEMATIC

TECHNOLOGY

DESIGN SUMMARY

TIME DELAY

VII. CONCLUSION

In this paper we proposed a new hybrid CLB architecture

containing MUX4 hard MUX elements and shown

techniques for efficiently mapping to these architectures.

We also provided analysis of the benchmark suites post

mapping, discussing the distribution of functions within

each benchmark suite. The area reductions for

nonfracturable architectures, is 8% and MUX4:LUT ratio

is 4:6 and in the case of fracturable architecture the area

reductions are 2%.The CHStone benchmarks being high-

level synthesized with LegUp-HLS also showed

marginally better performance and this could be due to the

way LegUp performs HLS on the CHStone benchmarks

themselves. Overall, the addition of MUX4s to FPGA

architectures minimally impact FMax and show potential

for improving logic-density in nonfracturable architectures

and modest potential for improving logic density in

fracturable architecture.

REFERENCES

[1] J. Rose et al., ―The VTR project: Architecture and

CAD for FPGAs from verilog to routing,‖ inProc.

ACM/SIGDA FPGA, 2012, pp. 77–86.

[2] Y. Hara, H. Tomiyama, S. Honda, and H. Takada,

―Proposal and quantitative analysis of the CHStone

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3772

benchmark program suite for practical C-based high-level

synthesis,‖ J. Inf. Process., vol. 17,pp. 242–254, Oct.

2009.

[3] A. Canis et al., ―LegUp: High-level synthesis for

FPGA-based processor/accelerator systems,‖ in Proc.

ACM/SIGDA FPGA, 2011, pp. 33–36.

[4] E. Ahmed and J. Rose, ―The effect of LUT and cluster

size on deep submicron FPGA performance and density,‖

IEEE Trans. Very Large Scale Integer. (VLSI), vol. 12,

no. 3, pp. 288–298, Mar. 2004.

[5] J. Rose, R. Francis, D. Lewis, and P. Chow,

―Architecture of field programmable gate arrays: The

effect of logic block functionality on area efficiency,‖

IEEE J. Solid-State Circuits, vol. 25, no. 5,pp. 1217–1225,

Oct. 1990.

[6] H. Parandeh-Afshar, H. Benbihi, D. Novo, and P.

Ienne, ―Rethinking FPGAs: Elude the flexibility excess of

LUTs with and-inverter cones,‖ in Proc. ACM/SIGDA

FPGA, 2012, pp. 119–128.

[7] J. Anderson and Q. Wang, ―Improving logic density

through synthesis inspired architecture,‖ inProc. IEEE

FPL, Aug./Sep. 2009, pp. 105–111.

[8] J. Anderson and Q. Wang, ―Area-efficient FPGA logic

elements: Architecture and synthesis,‖ inProc. ASP DAC,

2011, pp. 369–375.

[9] J. Cong, H. Huang, and X. Yuan, ―Technology

mapping and architecture evaluation for k/m-macrocell-

based FPGAs,‖ACM Trans. Design Autom. Electron.

Syst., vol. 10, no. 1, pp. 3–23, Jan. 2005

