

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

 Amarjit Kumar

P a g e | 1787

Study on Sorting and Dictionaries

Sujeet Kumar & Ashish Gupta

Department of Information and technology Dronacharya College of Engineering, Gurgaon-122001, India

Email:sujeet.16939@ggnindia.dronacharya.info ; Email:ashish.16907@ggnindia.dronacharya.info

Abstract-

Arrays and linked lists are two basic data structures used to store

information. We may wish to search, insert or delete records in a

database based on a key value. This section examines the performance

of these operations on arrays and linked lists. In this research paper we

studied about the sorting and types of sorting. This is followed by

techniques for implementing dictionaries, structures that allow efficient

search, insert, and delete operations. We have also illustrated

algorithms that sort data and implement dictionaries for very large files

Keywords-

insertion sort,quick sort, sort,binary search tree,skip list.

1. INTRODUCTION

Arrays and linked lists are two basic data structures used to

store information. We may wish to search, insert or delete

records in a database based on a key value. This section

examines the performance of these operations on arrays and

linked lists.

1.1 ARRAYS

Figure 1-1 shows an array, seven elements long, containing

numeric values. To search the array sequentially, we may

use the algorithm in Figure 1-2. The maximum number of

comparisons is 7, and occurs when the key we are

searching for is in A[6].

Figure 1-1: An Array

int function

SequentialSearch(Array A , int

Lb, int Ub, int Key);

 begin

 for i= Lbto Ub do

 if A [i]= Key then

 return i ;

 return –1;

 end;

Figure 1-2: Sequential Search

If the data is sorted, a binary search may be done (Figure 1-

3). Variables Lb and Ub keep track of the lower bound and

upper bound of the array. We begin from the middle

element of the array. If the key we are searching for is less

than the middle element, then it must reside in the top half

of the array. Thus, we set Ub to (M –1). It restricts our next

iteration through the loop to the top half of the array. Each

iteration halves the size of the array to be searched. After

the second iteration, there will be one item left to test.

Therefore it takes only three iterations to find any number.

int function BinarySearch(Array

A, int Lb, int Ub, int Key);

begin

do forever

 M = (Lb + Ub)/2;

if (Key< A[M])then

 Ub = M – 1;

 else if (Key >

A[M])then

 Lb = M + 1;

 else

 return M;

 if (Lb > Ub)then

 return –1;

end;

Figure 1-3: Binary Search

mailto:azxxzc?subject=scs
ashish.16907@ggnindia.dronacharya.info

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

 Amarjit Kumar

P a g e | 1788

In searching, we may wish to insert or delete data.we know,

an array is not a good arrangement for these operations. For

example, to insert the number 18 in Figure 1-1, we would

need to shift A[3]…A[6] down by one slot. Then we could

copy number 18 into A[3]. A similar problem arises when

deleting numbers. To improve the efficiency of insert and

delete operations, linked lists may be used.

1.2 LINKEDLISTS

Figure 1-4: A Linked List

In Figure 1-4 we have the same values stored in a linked

list. Assuming pointers Xand P, as shown in the figure,

values may be inserted as follows:

X->Next = P->Next;

P->Next = X;

2.1 INSERTION SORT

It is the simplest methods to sort an array is an insertion

sort. An example of an insertion sort occurs in everyday life

while playing cards.

2.1.1 THEORY

Starting near the top of the array in Figure 2-1(a), we

extract the 3. Then the above elements are shifted down

until we find the correct place to insert the 3. This process

repeats in Figure 2-1(b) with the next number. Finally, in

Figure 2-1(c), we complete the sort by inserting 2 in the

correct place.

Assuming there are nelements in the array, we must index

through n – 1 entries. For each entry, we may need to

examine and shift up to n –1 other entries. No extra

memory is required. The insertion sort is also a stablesort.

Stable sorts retain the original ordering of keys when

identical keys are present in the input data.

Figure 2-1: Insertion Sort

2.2 SHELLSORT

Shell sort, developed by Donald L. Shell, is a non-stable

in-place sort. Shell sort improves the efficiency of

insertion sort by quickly shifting values to their

destination. Average sort time is O(n
1.25

), while

worst-case time is O(n
1.5

).

2.2.1 THEORY

In Figure 2.2(a) we have an example of sorting by

insertion. First we extract 1, shift 3 and down one

slot, and then insert the 1, for a count of 2 shifts. In

the next frame, two shifts are required before we

can insert the 2. The process continues until the

last frame, where a total of 2+ 2 + 1 = 5 shifts have

been made.

Example of shell sort is illustrated in fig 2.2(b). We begin

by doing an insertion sort using a spacingof two. In the

first frame we examine numbers 3-1. Extracting 1, we

shift 3 down one slot for a shift count of 1. Next we

examine numbers 5-2. We extract 2, shift 5 down,and

then insert 2. After sorting with a spacing of two, a final

pass is made with a spacing of one. This is simply the

traditional insertion sort. The total shift count using shell

sort is 1+1+1 = 3.By using an initial spacing larger than

one, we were able to quickly shift values to their proper

destination.

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

 Amarjit Kumar

P a g e | 1789

Figure 2-2: Shell Sort

2.3 QUICKSORT

The shell sort algorithm is significantly better than

insertion sort, there is still room for

improvement.Quicksort executes in O(n log n) on

average, and O(n
2
) in the worst-case.Quicksort is a

non-stable sort.

2.3.1 THEORY

The quicksort algorithm works by partitioning the

array to be sorted, then recursively sorting each

partition. In Partition(Figure 2-3), one of the array

elements is selected as a pivot value. Values

smaller than the pivot value are placed to the left

of the pivot, while larger values are placed to the

right.

int function Partition(Array A, int Lb, int Ub);

 begin

 select apivot fromA[Lb]…A[Ub];

 reorder A[Lb]…A[Ub] such that:

 all values to the left of thepivot are ≤pivot

 all values to the right of thepivot are ≥pivot

 return pivot position;

 end;

procedure QuickSort(Array A, int Lb, int Ub);

 begin

 if Lb< Ubthen

 M = Partition (A, Lb, Ub);

 QuickSort (A, Lb, M – 1);

QuickSort (A, M + 1, Ub);

 end;

Figure 2.3

2.3.2 IMPLEMENTATION

Several enhancements have been made to the basic

quicksort algorithm:

1. The center element is selected as a pivot in

partition. If the list is partially ordered,this will be

a good choice. Worst-case behavior occurs when

the center element happens to be the largest or

smallest element each time partitionis invoked.

2. For short arrays, insertSortis called. Due to

recursion and other overhead, quicksort is not an

efficient algorithm to use on small arrays.

Consequently, any array with fewer than 12

elements is sorted using an insertion sort. The

optimal cutoff value is not critical and varies based

on the quality of generated code.

3.Tail recursion occurs when the last statement in

a function is a call to the function itself. Tail

recursion may be replaced by iteration, resulting in

a better utilization of stack space. This has been

done with the second call to QuickSorting Figure

2-3.

4. After an array is partitioned, the smallest

partition is sorted first. This results in a better

utilization of stack space, as short partitions are

quickly sorted and dispensed with.An ANSI-C

standard library function usually implemented

with quicksort. Recursive calls were replaced by

explicit stack operations. Table 2.1 shows timing

statistics and stack utilization before and after the

enhancements were applied.

Table 2-1: Effect of Enhancements on Speed and

Stack Utilization

3. DICTIONARIES

Dictionariesare data structures that support search,

insert, and deleteoperations. One of the most

effective representations is a hash table. A simple

function is applied to the key to determine its place

in the dictionary. Also included are binary

treesand red-black trees. Both treemethods use a

technique similar to the binary search algorithm to

minimize the number of comparisons during

search and update operations on the dictionary.

Finally, skip lists illustrate a simple approach that

utilizes random numbers to construct a dictionary.

3.1 HASHTABLES

Hash tables are a simple and effective method to

implement dictionaries. Average time to search for

an element is O(1), while worst-case time is O(n).

3.1.1 THEORY

A hash table is simply an array that is addressed

via a hash function. See Figure 3.1 is HashTableis

an array with 8 elements. Each element is a pointer

to a linked list of numeric data. The hash function

for this example simply divides the data key by 8,

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

 Amarjit Kumar

P a g e | 1790

and uses the remainder as an index into the table.

This yields a number from 0 to 7. Since the range

of indices for Hash Table is 0 to 7, we are sure that

the index is valid.

Figure 3.1

3.2 BINARYSEARCHTREES

We used the binary search algorithm to find data

stored in an array. This method is very effective,

each iteration reduced the number of items to

search by one-half. Binary search trees store data

in nodes that are linked in a tree-like fashion.[2]

3.2.1THEORY

A binary search tree is a tree where each node has

a left and right child.Assuming k represents the

value of a given node, then a binary search tree

also has the following property: all children to the

left of the node have values smaller than k, and all

children to the right of the node have values larger

than k. The top of a tree is known as the root, and

the exposed nodes at the bottom are known as

leaves. In Figure 3-2, the root is node 20 and the

leaves are nodes 4, 16, 37, and 43. The heightof a

tree is the length of the longest path from root to

leaf. For this example the tree height is 2.

Figure 3-2: A Binary Search Tree

3.2.2 IMPLEMENTATION

Each Node consists of left, right, and parent

pointers designating each child and the parent.

Data is stored in the data field. The tree is based at

root, and is initially NULL. Function insert Node

allocates a new node and inserts it in the tree.

Function delete Node deletes and frees a node

from the tree. Function find Node searches the tree

for a particular value.

3.3SKIPLISTS

Skip lists are linked lists that allow you to skipto

the correct node. The performance bottleneck

inherent in a sequential scan is avoided, while

insertion and deletion remain relatively efficient.

Average search time is O(lg n). Worst-case search

time is O(n), but is extremely unlikely. An

excellent reference for skip lists is [5]Pugh [1990].

3.3.1THEORY

The indexing scheme employed in skip lists is

similar in nature to the method used to lookup

names in an address book. To lookup a name, you

index to the tab representing the first character of

the desired entry. In Figure 3.8, for example, the

top-most list represents a simple linked list with no

tabs. Adding tabs (middle figure) facilitates the

search. In this case, level-1 pointers are traversed.

Once the correct segment of the list is found,

level-0 pointers are traversed to find the specific

entry.

Figure 3-3: Skip List Construction

The previous algorithms have assumed that all

data reside in memory. However, there may be

times when the dataset is too large, and alternative

methods are required. This includes techniques for

sorting (external sorts) and implementing

dictionaries (B-trees) for very large files. For

external sorting use reference [1]Knuth[1998].and

for B-tree [2]Cormen[1998] and [3]Aho[1983].

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

 Amarjit Kumar

P a g e | 1791

4.CONCLUSION

The research paper concludes on searching

algorithms and dictionaries.Descriptions are brief

and intuitive, the first section introduces basic data

structures and notation. The next section presents

several sortingalgorithms. This is followed by

techniques for implementing dictionaries,

structures that allow efficient search, insert, and

deleteoperations. The last section illustrates

algorithms that sort data and implement

dictionaries.

5.REFERENCES

1.Aho, Alfred V. and Jeffrey D. Ullman

[1983]. Data Structures and Algorithms.

AddisonWesley, Reading,Massachusetts.

2.Cormen, Thomas H., Charles E. Leiserson

and Ronald L. Rivest [1990]. Introduction

toAlgorithms. McGraw-Hill, New York.

3.Knuth, Donald. E. [1998]. The Art of

Computer Programming, Volume 3, Sorting

andSearching. Addison-Wesley, Reading,

Massachusetts.

4.Pearson, Peter K [1990]. Fast Hashing of

Variable-Length Text Strings.

Communications ofthe ACM, 33(6):677-680,

June 1990.

5.Pugh, William [1990]. Skip lists: A

Probabilistic Alternative To Balanced

Trees.Communications of the ACM,

33(6):668-676, June 1990.

