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Abstract- 

Set theory is the branch of mathematical logic that studies sets, which 

are collections of objects. Although any type of object can be collected 

into a set, set theory is applied most often to objects that are relevant to 

mathematics.In this research paper we studied about Basic concepts and 

notation, some ontology  and applications. We have also study about 

combinational set theory, forcing, cardinal invariants, fuzzy set theory. 

We have described all the basic concepts of Set Theory. 
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1. INTRODUCTION 

Set theory is the branch of mathematical logic that studies 

sets, which are collections of objects. Although any type of 

object can be collected into a set, set theory is applied most 

often to objects that are relevant to mathematics. The 

language of set theory can be used in the definitions of 

nearly all mathematical objects. 

1.1 HISTORY 

Since the 5th century BC, beginning with Greek 

mathematician Zeno of Elea in the West and early Indian 

mathematicians in the East, mathematicians had struggled 

with the concept of infinity. Especially notable is the work 

of Bernard Bolzano in the first half of the 19th century.[3] 

Modern understanding of infinity began in 1867–71, with 

Cantor's work on number theory. An 1872 meeting between 

Cantor and Richard Dedekind influenced Cantor's thinking 

and culminated in Cantor's 1874 paper. 

1.2 BASIC CONCEPTS  

 Union of the sets A and B, denoted A ∪ B, 

is the set of all objects that are a member 

of A, or B, or both. The union of {1, 2, 

3} and {2, 3, 4} is the set {1, 2, 3, 4} . 

 Intersection of the sets A and B, 

denoted A ∩ B, is the set of all objects that 

are members of both A and B. The 

intersection of {1, 2, 3} and{2, 3, 4} is the 

set {2, 3} . 

 Set difference of U and A, denoted U \ A, 

is the set of all members of Uthat are not 

members of A. The set difference {1,2,3} \ 

{2,3,4} is {1} , while, conversely, the set 

difference {2,3,4} \ {1,2,3} is {4} . 

When A is a subset of U, the set 

difference U \ A is also called 

the complement of A inU. In this case, if 

the choice of U is clear from the context, 

the notation A
c
is sometimes used instead 

of U \ A, particularly if U is a universal 

set as in the study of Venn diagrams. 

 Symmetric difference of sets A and B, 

denoted A △ B or A ⊖ B, is the set of all 

objects that are a member of exactly one 

of A and B (elements which are in one of 

the sets, but not in both). For instance, for 

the sets{1,2,3} and {2,3,4} , the 

symmetric difference set is {1,4} . It is the 

set difference of the union and the 

intersection, (A ∪ B) \ (A ∩ B) or(A \ B) ∪ 

(B \ A). 

 Cartesianproduct of A and B, 

denoted A × B, is the set whose members 

are all possible ordered 

pairs (a,b) where a is a member 

of A and b is a member of B. The cartesian 

product of{1, 2} and {red, white} is {(1, 

red), (1, white), (2, red), (2, white)}. 

 Power set of a set A is the set whose 

members are all possible subsets ofA. For 

example, the power set of {1, 2} is { {}, 

{1}, {2}, {1,2} } . 

1.3 SOME ONTOLOGY 

A set is pure if all of its members are sets, all 

members of its members are sets, and so on. 

For example, the set {{}} containing only the 

empty set is a nonempty pure set. In modern 

set theory, it is common to restrict attention to 

the von Neumann universe of pure sets, and 
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many systems of axiomatic set theory are 

designed to axiomatize the pure sets only. 

There are many technical advantages to this 

restriction, and little generality is lost, because 

essentially all mathematical concepts can be 

modeled by pure sets. Sets in the von 

Neumann universe are organized into a 

cumulative hierarchy, based on how deeply 

their members, members of members, etc. are 

nested. Each set in this hierarchy is assigned 

(by transfinite recursion) an ordinal number α, 

known as its rank. The rank of a pure set X is 

defined to be the least upper bound of all 

successors of ranks of members of X. For 

example, the empty set is assigned rank 0, 

while the set {{}} containing only the empty 

set is assigned rank 1. For each ordinal α, the 

set Vα is defined to consist of all pure sets 

with rank less than α. The entire von Neumann 

universe is denoted V. 

1.4 AXIOMATRIC SET THEORY 

Elementary set theory can be studied 

informally and intuitively, and so can be 

taught in primary schools using Venn 

diagrams. The intuitive approach tacitly 

assumes that a set may be formed from the 

class of all objects satisfying any particular 

defining condition. This assumption gives rise 

to paradoxes, the simplest and best known of 

which are Russell's paradox and the Burali-

Forti paradox. Axiomatic set theory was 

originally devised to rid set theory of such 

paradoxes.  

The most widely studied systems of axiomatic 

set theory imply that all sets form a cumulative 

hierarchy. Such systems come in two flavors, 

those whose ontologyconsists of: 

 Sets alone. This includes the most 

common axiomatic set theory, Zermelo–

Fraenkel set theory (ZFC), which 

includes the axiom of choice. Fragments 

of ZFC include: 

 Zermelo set theory, which 

replaces the axiom schema of 

replacement with that 

of separation; 

 General set theory, a small 

fragment of Zermelo set 

theory sufficient for the Peano 

axioms and finite sets; 

 Kripke–Platek set theory, which 

omits the axioms of 

infinity, powerset, and choice, 

and weakens the axiom schemata 

of separation and replacement. 

 Sets and proper classes. These 

include Von Neumann–Bernays–Gödel 

set theory, which has the same strength 

as ZFC for theorems about sets alone, 

and Morse-Kelley set theory and Tarski–

Grothendieck set theory, both of which 

are stronger than ZFC. 

1.5 APPLICATIONS 

Many mathematical concepts can be defined 

precisely using only set theoretic concepts. For 

example, mathematical structures as diverse 

as graphs, manifolds, rings, and vector 

spaces can all be defined as sets satisfying 

various (axiomatic) 

properties. Equivalence and order relations are 

ubiquitous in mathematics, and the theory of 

mathematical relations can be described in set 

theory. 

Set theory is also a promising foundational 

system for much of mathematics. Since the 

publication of the first volume of Principia 

Mathematica, it has been claimed that most or 

even all mathematical theorems can be derived 

using an aptly designed set of axioms for set 

theory, augmented with many definitions, 

using first or second order logic. For example, 

properties of the natural and real numbers can 

be derived within set theory, as each number 

system can be identified with a set 

of equivalence classes under a 

suitable equivalence relation whose field is 

some infinite set. 

Set theory as a foundation for mathematical 

analysis, topology, abstract algebra, 

and discrete mathematics is likewise 

uncontroversial; mathematicians accept that 

(in principle) theorems in these areas can be 

derived from the relevant definitions and the 

axioms of set theory. Few full derivations of 

complex mathematical theorems from set 

theory have been formally verified, however, 

because such formal derivations are often 

much longer than the natural language proofs 

mathematicians commonly present. One 

verification project, Metamath, includes 
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derivations of more than 10,000 theorems 

starting from the ZFC axioms and using first 

order logic. 

1.6 AREAS OF STUDY 

Combinatorial set theory 

Main article: Infinitarycombinatorics 

Combinatorial set theory concerns 

extensions of finite combinatorics to infinite 

sets. This includes the study of cardinal 

arithmetic and the study of extensions 

of Ramsey's theorem such as the Erdős–Rado 

theorem. 

Descriptive set theory 

Main article: Descriptive set theory 

Descriptive set theory is the study of subsets 

of the real line and, more generally, subsets 

of Polish spaces. It begins with the study 

of pointclasses in the Borel hierarchy and 

extends to the study of more complex 

hierarchies such as the projective 

hierarchy and the Wadge hierarchy. Many 

properties of Borel sets can be established in 

ZFC, but proving these properties hold for 

more complicated sets requires additional 

axioms related to determinacy and large 

cardinals. 

The field of effective descriptive set theory is 

between set theory and recursion theory. It 

includes the study of lightface pointclasses, 

and is closely related to hyperarithmetical 

theory. In many cases, results of classical 

descriptive set theory have effective versions; 

in some cases, new results are obtained by 

proving the effective version first and then 

extending ("relativizing") it to make it more 

broadly applicable. 

A recent area of research concerns Borel 

equivalence relations and more complicated 

definable equivalence relations. This has 

important applications to the study 

of invariants in many fields of mathematics. 

Fuzzy set theory[edit] 

Main article: Fuzzy set theory 

In set theory as Cantor defined 

and Zermelo and Fraenkel axiomatized, an 

object is either a member of a set or not. 

In fuzzy set theory this condition was relaxed 

by Lotfi A. Zadeh so an object has a degree of 

membership in a set, a number between 0 and 

1. For example, the degree of membership of a 

person in the set of "tall people" is more 

flexible than a simple yes or no answer and 

can be a real number such as 0.75. 

Inner model theory[edit] 

Main article: Inner model theory 

An inner model of Zermelo–Fraenkel set 

theory (ZF) is a transitive class that includes 

all the ordinals and satisfies all the axioms of 

ZF. The canonical example is the constructible 

universe L developed by Gödel. One reason 

that the study of inner models is of interest is 

that it can be used to prove consistency results. 

For example, it can be shown that regardless 

of whether a model V of ZF satisfies 

the continuum hypothesisor the axiom of 

choice, the inner model L constructed inside 

the original model will satisfy both the 

generalized continuum hypothesis and the 

axiom of choice. Thus the assumption that ZF 

is consistent (has at least one model) implies 

that ZF together with these two principles is 

consistent. 

The study of inner models is common in the 

study of determinacy and large cardinals, 

especially when considering axioms such as 

the axiom of determinacy that contradict the 

axiom of choice. Even if a fixed model of set 

theory satisfies the axiom of choice, it is 

possible for an inner model to fail to satisfy 

the axiom of choice. For example, the 

existence of sufficiently large cardinals 

implies that there is an inner model satisfying 

the axiom of determinacy (and thus not 

satisfying the axiom of choice).
[5]

 

Large cardinals 

A large cardinal is a cardinal number with an 

extra property. Many such properties are 

studied, including inaccessible 

cardinals, measurable cardinals, and many 

more. These properties typically imply the 

cardinal number must be very large, with the 

existence of a cardinal with the specified 

property unprovable in Zermelo-Fraenkel set 

theory. 

Determinacy 
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Determinacy refers to the fact that, under 

appropriate assumptions, certain two-player 

games of perfect information are determined 

from the start in the sense that one player must 

have a winning strategy. The existence of 

these strategies has important consequences in 

descriptive set theory, as the assumption that a 

broader class of games is determined often 

implies that a broader class of sets will have a 

topological property. The axiom of 

determinacy (AD) is an important object of 

study; although incompatible with the axiom 

of choice, AD implies that all subsets of the 

real line are well behaved (in particular, 

measurable and with the perfect set property). 

AD can be used to prove that the Wedge 

degrees have an elegant structure. 

Forcing[edit] 

Main article: Forcing (mathematics) 

Paul Cohen invented the method 

of forcing while searching for 

a model of ZFC in which the continuum 

hypothesis fails, or a model of ZF in which 

the axiom of choice fails. Forcing adjoins to 

some given model of set theory additional sets 

in order to create a larger model with 

properties determined (i.e. "forced") by the 

construction and the original model. For 

example, Cohen's construction adjoins 

additional subsets of the natural 

numbers without changing any of the cardinal 

numbers of the original model. Forcing is also 

one of two methods for proving relative 

consistency by finitistic methods, the other 

method being Boolean-valued models. 

Cardinal invariants[edit] 

A cardinal invariant is a property of the real 

line measured by a cardinal number. For 

example, a well-studied invariant is the 

smallest cardinality of a collection of meagre 

sets of reals whose union is the entire real line. 

These are invariants in the sense that any two 

isomorphic models of set theory must give the 

same cardinal for each invariant. Many 

cardinal invariants have been studied, and the 

relationships between them are often complex 

and related to axioms of set theory. 

Set-theoretic topology[edit] 

Set-theoretic topology studies questions 

of general topology that are set-theoretic in 

nature or that require advanced methods of set 

theory for their solution. Many of these 

theorems are independent of ZFC, requiring 

stronger axioms for their proof. A famous 

problem is the normal Moore space question, a 

question in general topology that was the 

subject of intense research. The answer to the 

normal Moore space question was eventually 

proved to be independent of ZFC. 
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