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Abstract: In this paper, we introduce a novel approach to 

automatically detect salient regions in an image. Our 

approach consists of global and local features, which 

complement each other to compute a saliency map. The first 

key idea of our work is to create a saliency map of an 

image by using a linear combination of colors in a high-

dimensional color space. This is based on an observation 

that salient regions often have distinctive colors compared 

with backgrounds in human perception, however, human 

perception is complicated and highly nonlinear. By 

mapping the low-dimensional red, green, and blue color to 

a feature vector in a high-dimensional color space, we 

show that we can composite an accurate saliency map by 

finding the optimal linear combination of color coefficients 

in the high-dimensional color space. To further improve the 

performance of our saliency estimation, our second key 

idea is to utilize relative location and color contrast 

between superpixels as features and to resolve the saliency 

estimation from a trimap via a learning-based algorithm. 

The additional local features and learning-based algorithm 

complement the global estimation from the high-

dimensional color transform-based algorithm. The 

experimental results on three benchmark datasets show that 

our approach is effective in comparison with the previous 

state-of-the-art saliency estimation methods. 

Keywords: Salient region detection, superpixel, trimap, 

random forest, color channels, high-dimensional color 

space. 

I.INTRODUCTION 

SALIENT region detection is important in image 

understanding and analysis. Its goal is to detect salient 

regions in an image in terms of a saliency map, where the 

detected regions would draw humans’ attention. Many 

previous studies have shown that salient region detection is 

useful, and it has been applied to many applications 

including segmentation [20], object recognition [21], image 

retargetting [26], photo rearrangement [27], image quality 

assessment [28], image thumbnailing [29], and video 

compression [30]. 

 

Fig. 1:  Examples of our salient region detection from a 

trimap. (a) Inputs. (b) Trimaps. (c) Saliency maps. (d) 

Salient regions. 

The development of salient region detection has 

often been inspired by the concepts of human visual 

perception. One important concept is how ―distinct to a 

certain extent‖ [37] the salient region is compared to the 

other parts of an image. As color is a very important visual 

cue to human, many salient region detection techniques are 

built upon distinctive color detection from an image. In this 

paper, we propose a novel approach to automatically detect 

salient regions in an image. Our approach first estimates the 

approximate locations of salient regions by using a tree-

based classifier. The tree-based classifier classifies each 

super pixel as either foreground, background or unknown. 

The foreground and background are regions where the 

classifier classifies salient and non-salient regions with high 

confidence. The unknown regions are the regions with 

ambiguous features where the classifier classifies the 

regions with low confidence.  

 

The foreground, background and unknown regions 

form an initial trimap, and our goal is to resolve the 

ambiguity in the unknown regions to estimate accurate 

saliency map. From the trimap, we propose two different 

methods, high-dimensional color transform (HDCT)-based 
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method and local learningbased method to estimate the 

saliency map. The results of these two methods will be 

combined together to form our final saliency map. Fig. 1 

shows examples of our saliency map and salient regions 

from trimaps. The overview of our method is presented in 

Fig. 2. Our algorithm is performed in superpixellevel in 

order to reduce computations (Fig. 2 (b)). The initial 

saliency trimap composed of a foreground candidate, 

background candidate, and unknown regions using existing 

saliency detection techniques are shown in Fig. 2 (c). 

 
Fig. 2:  Overview of our algorithm: (a) Input image. (b) Over-segmentation to superpixels. (c) Initial saliency trimap. 

(d) Global salient region detection via HDCT. (e) Local salient region detection via random forest. (f) Our final 

saliency map. 

The HDCT-based method is a global method. The 

motivation is to find color features which can efficiently 

separate salient regions and background, as illustrated in 

Fig. 4. The key idea is to exploit the power of different 

color space representations to resolve the ambiguities of 

colors in the unknown regions. The high dimensional color 

transform combines several representative color spaces 

such as red, green, and blue (RGB), CIELab, and HSV 

together with different power-law transformations to enrich 

the representative power of the HDCT space. Note that each 

of the color spaces has a different measurement about color 

similarity. For example, two colors in RGB with short 

distance may have long distance from each other in HSV or 

CIELab color spaces. Using the HDCT, we map a low-

dimensional RGB color tuple into a high-dimensional 

feature vector. Starting from a few initial color examples of 

the detected salient regions and backgrounds, the HDCT-

based method estimates an optimal linear combination of 

color values in the HDCT space that results in a per-pixel 

saliency map as shown in Fig. 2 (d).  

The local learning-based method utilizes a random 

forest [50] with local features, i.e. relative location and 

color contrast between super pixels. Since the HDCT-based 

method uses only color information, it can be easily 

affected by texture and noise. We overcome this limitation 

by using location and contrast features. If a super pixel is 

closer to the foreground regions than the background 

regions, it has higher chance to be a salient region. Based 

on this assumption, we train a random forest classifier to 

evaluate the saliency of a super pixel by comparing the 

distance and color contrast of a super pixel to the K-nearest 

foreground super pixels and the K-nearest background 

super pixels. Fig. 2 (e) shows an example of saliency map 

obtained by the local learning-based method. The value of 

K for the K-nearest neighbor is systemically found by 

measuring the performance of the local learning-based 

method on a validation set. We combine the saliency maps 

from the HDCT-based method and the local learning-based 

method by weighted combination (Fig. 2 (f)). Similar to the 

value of K in local learning-based method, the combination 

weights are determined by evaluating the performance of 

the saliency map on a validation set.  

A shorter version of this work was presented in 

[2], where the focus was the HDCT-based method. This 

paper improves our previous work by introducing the new 

local learningbased method, and the weighted combination 
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of saliency map. Although the work in [2] also utilizes 

spatial refinement to enhance performance of the HDCT-

based method, our new local learning-based method 

outperforms the spatial refinement method. The 

experimental results show that using the learning-based 

local saliency detection method, instead of the spatial 

refinement, significantly helps to improve the performance 

of our algorithm. Finally, we have also examined the effects 

of different initialization of trimap. We notice that by using 

the DRFI method [33] as the initial saliency trimap, we can 

further improve the performance of DRFI since our HDCT-

based and local learning based methods are able to resolve 

ambiguities in low confidence regions in saliency detection.  

The key contributions of our paper are 

summarized as follows: 

• An HDCT-based salient region detection 

algorithm [2] is introduced. The key idea is to estimate the 

linear combination of various color spaces that separate 

foreground and background regions.  

• We propose a local learning-based saliency 

detection method that considers local spatial relations and 

color contrast between superpixels. This relatively simple 

method has low computational complexity and is an 

excellent complement to the HDCT-based global saliency 

map estimation method. In addition, the two resulting 

saliency maps are combined in a principled way via a 

supervised weighted sum-based fusion. 

 • We showed that our proposed method can 

further improve performance of other methods for salient 

region detection, by using their results as the initial saliency 

trimap.  

The remainder of this paper is organized as 

follows. Section II reviews related works on salient region 

detection. Section III describes the initial trimap generation 

method. Section IV presents the two methods for saliency 

estimation from a trimap. It also introduces the HDCT-

based global saliency estimation and regression-based local 

saliency estimation methods. Section V presents the 

experimental results and comparisons with several state-of-

the-art salient region detection methods. Section VI 

concludes our paper with discussions. 

II. RELATED WORKS 

This section reviews representative state-of-the-art 

salient region detection methods. A survey and a 

benchmark comparison of state-of-the-art salient region 

detection algorithms are presented in [3] and [4] 

respectively. As reported in [4], our HDCT-based method 

presented in [2] is one of the top six algorithms in salient 

region detection.  

Local-contrast-based models detect salient regions 

by detecting rarity of image features in a small local region. 

Itti et al. [5] proposed a saliency detection method which 

utilizes visual filters called ―center-surround difference‖ to 

compute local color contrast. Harel et al. [6] suggested a 

graph-based visual saliency (GBVS) model which is based 

on the Markovian approach on an activation map. This 

model examines the dissimilarity of center-surround feature 

histograms. Goferman et al. [8] combined global and local 

contrast saliency to improve detection performance. Klein 

and Frintrop [10] utilized information theory and defined 

the saliency of an image using the Kullback-Leibler 

divergence (KLD). The KLD measures the center-surround 

difference to combine different image features to compute 

the saliency. Hou et al. [11] used the term ―information 

divergence‖ which expresses the non-uniform distribution 

of the visual information in an image for saliency detection.  

Several methods estimated saliency in superpixel 

level instead of pixel-wise level to reduce the computational 

time. Jiang et al. [12] performed salient object segmentation 

with multiscale superpixel-based saliency and a closed 

boundary prior. Their approach iteratively updates both the 

saliency map and the shape prior under an energy 

minimization framework. Perazzi et al. [34] decomposed an 

image into compact and perceptually homogeneous 

elements, and then considered the uniqueness and spatial 

distribution of these elements in the CIELab color to detect 

salient regions. Yan et al. [14] used a hierarchical model by 

computing contrast features at different scales of an image 

and fused them into a single saliency map using a graphical 

model. Zhu et al. [42] proposed a background measure that 

characterizes the spatial layout of image regions with a 

novel optimization framework.  

These models tend to give a higher saliency at 

around edges and texture areas that have high contrasts, 

where humans tend to focus on in an image. However, these 

models tend to catch only parts of an object. Also, they tend 
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to give non-uniform weight to the same salient object when 

different features presented in the same salient object.  

Global-contrast-based models use color contrast 

with respect to the entire image to detect salient regions. 

These models can detect salient regions of an image 

uniformly with low computational complexity. Achanta et 

al. [7] proposed a frequency-tuned approach to determine 

the center-surround contrast using the color and luminance 

in the frequency domain as features. Shen and Wu [35] 

divided an image into two parts—a low-rank matrix and 

sparse noise—where the former explains the background 

regions and the latter indicates the salient regions. Cheng et 

al. [40] proposed a Gaussian mixture model (GMM)-based 

abstract representation method that simultaneously 

evaluates the global contrast differences and spatial 

coherence to capture perceptually homogeneous elements 

and improve the salient region detection accuracy. Li et al. 

[43] showed that the unique refocusing capability of light 

fields can robustly handle challenging saliency detection 

problems such as similar foreground and background in a 

single image. He and Lau [46] used a pair of flash and no-

flash images, inspired by the brightness of foreground 

objects for salient region detection. 

These global-contrast-based models provide 

reliable results at low computational cost as they mainly 

consider a few specific colors that separate the foreground 

and the background of an image without using spatial 

relationships.  

Statistical-learning-based models have also been 

examined for saliency detection. Wang et al. [15] proposed 

a method that jointly estimates the segmentation of objects 

learned by a trained classifier called the auto-context model 

to enhance an appearance-based energy minimization 

framework for salient region detection. Yang et al. [36] 

ranked the similarity of image regions with foreground cues 

and background cues using graph-based manifold ranking 

based on affinity matrices and successfully conducted 

saliency detection. Siva et al. [17] used an unsupervised 

approach to learn patches that are highly likely to be parts 

of salient objects from unlabeled images and then sampled 

the object saliency map to find object locations and detect 

saliency regions. Li et al. [39] proposed a saliency measure 

via dense and sparse representation errors of each image 

region using a set of background templates as the basis for 

reconstruction, and they constructed the saliency map by 

integrating multiscale reconstruction errors. Jiang et al. [41] 

suggested a bottomup saliency detection algorithm that 

considers the appearance divergence and spatial distribution 

of salient objects and the background using the time 

property in an absorbing Markov chain. Lu et al. [45] used 

an optimal set of salient seeds obtained by learning a large 

margin formulation of the discriminant saliency principle.  

As many novel saliency detection datasets have 

become available recently, supervised saliency estimation 

algorithms have also been proposed. Borji and Itti [16] used 

complementary local and global patch-based dictionary 

learning for rarity-based saliency in different color 

spaces—RGB and LAB—and then combined them into the 

final saliency map for saliency detection. Jiang et al. [33] 

proposed a multilevel image segmentation method based on 

the supervised learning approach that performed a regional 

saliency regressor using regional descriptors to build a 

saliency map to find salient regions.  

These models are usually highly accurate and have 

a simple detection structure. However, they tend to require 

a lot of computational time. Therefore, superpixel-wise 

saliency detection is used to overcome the high 

computational complexity. 

TABLE I  

FEATURES USED TO COMPUTE FEATURE VECTOR 

FOR EACH SUPERPIXEL 

 

III. INITIAL SALIENCY TRIMAP GENERATION 

In this section, we describe our method to detect 

the initial location of salient regions in an image. Our 

method is a learning-based method and it processes an 
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image in superpixel level. The initial saliency trimap 

consists of foreground candidate, background candidate, 

and unknown regions. A similar approach has already been 

used in a previous method [33], which demonstrated 

superiority and efficiency in their results. However, their 

algorithms require considerable computational time because 

their features’ computational complexity is very large. In 

our work, we only use some of the most effective features 

that can be calculated rapidly, such as color contrast and 

location features. As our goal in this step is to 

―approximately‖ find the salient regions of an image, we 

found that the salient region could be found accurately 

using even a smaller number of features. By allowing for 

the classification of some ambiguous regions as unknown, 

we can further improve the accuracy of our initial saliency 

trimap. 

A. Super pixel Saliency Features  

As demonstrated in recent studies [33]–[36], 

features from superpixels are effective and efficient for 

salient object detection. For an input image I, we first 

perform over-segmentation to form superpixels X = {X1,..., 

XN }. We use the SLIC superpixel [1] because of its low 

computational cost and high performance, and we set the 

number of superpixels to N = 500. To build feature vectors 

for saliency detection, we combine multiple information 

that are commonly used in saliency detection. We first 

concatenate the superpixels’ x- and y-locations into our 

feature vector. The location feature is used because humans 

tend to focus more on objects that are located around the 

center of an image [18]. Then, we concatenate the color 

features, as this is one of the most important cues in the 

human visual system and certain colors tend to draw more 

attention than others [35]. We compute the average pixel 

color and represent the color features using different color 

space representations. Next, we concatenate histogram 

features as this is one of the most effective measurements 

for the saliency feature, as demonstrated in [33]. The 

histogram features of the ith superpixel DHi is measured 

using the chi-square distance between other superpixels’ 

histograms. It is defined as 

 

where b is the number of histogram bins. In our work, we 

used eight bins for each histogram. We have also used the 

global contrast and local contrast as color features [7], [19], 

[34]. The global contrast of the ith superpixel DGi is given 

by 

 

where d(ci, c j) denotes the Euclidean distance between the ith 

and the jth superpixels’ color values, ci and cj, respectively. 

We use the RGB, CIELab, hue, and saturation of eight 

color channels to calculate the color contrast feature so that 

it has eight dimensions. The local contrast of the color 

features DLi is defined as 

 

where pi ∈ [0, 1] × [0, 1] denotes the normalized position of 

the i th superpixel and Zi is the normalization term. The 

weight function in Eq. (4) is widely used in many 

applications including spectral clustering [13]. We adopt 

this function to give more weight to neighboring 

superpixels. In our experiments, we set σ 2 p = 0.25. In 

addition to the global and local contrast, we further evaluate 

the element distribution [34] by measuring the compactness 

of colors in terms of their spatial color variance. For texture 

and shape features, we utilize the superpixel area, histogram 

of gradients (HOG), and singular value feature. The HOG 

provides appearance features using the pixels’ gradient 

information at a fast speed. We use the HOG features 

implemented by Felzenszwalb et al. [22], which have 31 

dimensions. The singular value feature (SVF) [23] is used 

to detect the blurred region from a test image because a 

blurred region often tends to be a background. The SVF is a 

feature based on eigenimages [25], which decompose an 

image by a weighted summation of a number of 

eigenimages, where each weight is the singular value 

obtained by singular value decomposition. The eigenimages 

corresponding to the largest singular values determine the 
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overall outline of the original image, and other smaller 

singular values depict detailed information. Therefore, 

some of the largest singular values occupy much higher 

weights for blurred images. 

The aforementioned features are concatenated and 

are used to generate our initial saliency trimap. Table I 

summarizes the features that we have used. In short, our 

superpixel feature vectors consist of 71 dimensions that 

combine multiple evaluation metrics for saliency detection.  

B. Initial Saliency Trimap via Random Forest 

Classification  

After we calculate the feature vectors for every 

superpixel, we use a classification algorithm to check 

whether each region is salient. In this study, we use the 

random forest [50] classification because of its efficiency 

on large databases and its generalization ability. A random 

forest is an ensemble method that operates by constructing 

multiple decision trees at training time and decides the class 

by examining each tree’s leaf response value at test time. 

This method combines the bootstrap aggregating idea and 

random feature selection to minimize the generalization 

error. To train each tree, we sample the data with the 

replacement and train a decision tree with only a few 

features that are randomly selected. Typically, a few 

hundred to several thousand trees are used, as increasing the 

number of trees tends to decrease the variance of the model.  

TABLE II 

COMPARISON OF TRIMAP PERFORMANCE ON 

MSRA-B DATASET [49] 

 

In our previous work [2], we used a regression 

method to estimate the saliency degree for each superpixel 

and classified it via adaptive thresholding. As our goal is to 

classify each superpixel as foreground and background, we 

found that using a classification method is more suitable 

than the regression for trimap generation. Table II shows a 

comparison of the trimap performance, in which the Fg. 

Precision (FP), Bg. Precision (BP), error rate (E R) are 

defined as below: 

 

in which | · | denotes the number of pixels, FC and BC 

denote the foreground/background candidates, FGT and 

BGT denote the ground-truth annotations’ 

foreground/background, respectively, and I denotes the 

whole image. The error rate (E R) denotes the ratio of the 

area of misclassified regions to the image size, and the 

unknown rate is the ratio of the area of the regions 

classified as unknown to the image size. We used 2,500 

images from the MSRA-B dataset [49], which are selected 

as a training set from Jiang et al. [33] for training data, and 

we used the annotated ground truth images for labels. We 

generated N feature vectors for each image. In total, we 

have approximately one million vectors for the training 

data. 

We used the code provided by Becker et al. [51] 

for random forest classification. In our implementation, we 

use 200 trees and we set the maximum tree depth to 10. 

From the outputs of the random forest, we use a three-class 

classification to generate a trimap, instead of a binary 

classification, to detect highly reliable foreground/ 

background regions. Trimap has been commonly used in 

matting methods [31], [32]. In our work, we use the concept 

of trimap at the initial saliency estimation step. We set the 

relatively reliable regions of salient and non-salient regions 

to foreground or background respectively, and consider the 

ambiguous regions as unknown. Fig. 3 shows a visual 

example of an initial trimap. Compared to the binary maps 

without unknown regions, we found that classifying 

ambiguous regions as unknown regions can help to obtain 

more reliable locations of salient regions. We decided 

whether each superpixel belongs to foreground candidate, 

background candidate, or unknown regions using the 

response value extracted from the classifier. In our 

experiments, we used threshold values T f ore = 1 and 

Tback = −1. If a superpixel’s response value exceeds T f 

ore, then it belongs to the foreground; however, if the value 

is lower than Tback, then it belongs to the background; 

otherwise, it is considered as unknown. 
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Fig. 3:  Some results of the initial saliency trimap. (a) 

Input image. (b) Binary map without unknown region. 

(c) Our initial saliency trimap with unknown region 

indicated in gray color. (d) Ground truth. 

IV. SALIENCY ESTIMATION FROM TRIMAP 

In this section, we present our global salient region 

detection via HDCT and learning-based local salient region 

detection, and we describe a step-by-step process to obtain 

our final saliency map starting with the initial saliency map. 

In section IV-A, we propose a global saliency estimation 

method via HDCT [2]. The idea of global saliency 

estimation implicitly assumes that pixels in the salient 

region have independent and identical color distribution. 

With this assumption, we depict the saliency map of a test 

image as a linear combination of high-dimensional color 

channels that distinctively separate salient regions and 

backgrounds. In section IV-B, we propose a local saliency 

estimation via learning-based regression. Local features 

such as color contrast can reduce the gap between an 

independent and identical color distribution model implied 

by HDCT and true distributions of realistic images. In 

section IV-C, we analyze how to combine these two maps 

to obtain the best result. 

A. Global Saliency Estimation via HDCT  

Colors are important cues in the human visual 

system. Many previous studies [52] have noted that the 

RGB color space does not fully correspond to the space in 

which the human brain processes colors. It is also 

inconvenient to process colors in the RGB space as 

illumination and colors are nested here. Therefore, many 

different color spaces have been introduced, including 

YUV, YIQ, CIELab, and HSV. Nevertheless, which color 

space is the best for processing images remains unknown, 

especially for applications such as saliency detection, which 

are strongly correlated to human perception. Instead of 

picking a particular color space for processing, we 

introduce a HDCT that unifies the strength of many 

different color representations. Our goal is to find a linear 

combination of color coefficients in the HDCT space such 

that the colors of salient regions and those of backgrounds 

can be distinctively separated. Fig. 4 illustrates the idea of 

using the linear combination of color coefficients for 

saliency detection.  

 
Fig. 4: Illustrations of linear coefficient combinations 

for HDCT-based saliency map construction. The first 

column images are input original images, the second 

column images are saliency maps which are obtained by 

using a linear combination of RGB channels, and the 

third column images are ground truth saliency maps. 

To build our HDCT space, we concatenate 

different nonlinear RGB transformed color space 

representations, as illustrated in Fig. 5. We concatenate 

only the nonlinear RGB transformed color space, because 

the effects of the coefficients of a linear transformed color 

space such as YUV/YIQ will be cancelled when we linearly 

combine the color coefficient to form our saliency map. The 

color spaces we concatenated included the CIELab color 

space and the hue and saturation channel in the HSV color 

space. We also included color gradients in the RGB space 

as human perception is more sensitive to relative color 

differences than absolute color values.  
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Fig. 5: Our HDCT space. We concatenate different 

nonlinear RGB transformed color space representations 

to form a high-dimensional feature vector to represent 

the color of a pixel. 

The different magnitudes in the color gradients can 

also be used to handle cases in which salient regions and 

backgrounds have different amounts of defocus and 

different color contrasts. In summary, 11 different color 

channel representations are used in our HDCT space. To 

further enrich the representative power of our HDCT space, 

we apply power-law transformations to each color 

coefficient after normalizing the coefficient between [0, 1]. 

We used three gamma values: {0.5, 1.0, and 2.0}.1 This 

resulted in a high-dimensional matrix to represent the colors 

of an image: 

 

In which Ri and Gi denote the test image’s i th superpixel’s 

mean pixel value of the R color channel and G color 

channel, respectively. By using 11 color channels such as 

RGB, CIELab, hue, and saturation, we can obtain an HDCT 

matrix K with l = 11 × 3 = 33. The nonlinear power-law 

transformation takes into account the fact that our human 

perception responds nonlinearly to incoming illumination. 

It also stretches/compresses the intensity contrast within 

different ranges of color coefficients. Table III summarizes 

the color coefficients concatenated in our HDCT space. 

This process is applied to each superpixel in an input image 

individually. 

TABLE III 

SUMMARY OF COLOR COEFFICIENTS 

CONCATENATED IN OUR HDCT SPACE 

 

 

 

Fig. 6: A test images’ superpixel data visualization using LDA [24], with x-axis as the response value and y-axis as the 

distribution. We used different color channels for visualization: (a) only RGB; (b) RGB with power-law 
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transformations; (c) RGB, CIELab, hue, and saturation; and (d) RGB, CIELab, hue, and saturation with power-law 

transformations. The overlap rate is (a) 16.49%, (b) 11.52%, (c) 9.92%, and (d) 5.84%.

To evaluate the effectiveness of the multiple color 

channels and power-law transformations, we use the LDA 

projection [24] on the 2,500 training images in the MSRA-

B dataset [49] as used by Jiang et al. [33] to calculate the 

projection matrix and use the 500 validation set images for 

visualization. A self-comparison of our HDCT via LDA 

with other combinations of color channels is shown in Fig. 

6. The result shows that the performance is undesirable 

when only RGB is used and that using various nonlinear 

RGB transformed color spaces and power-law 

transformations helps to classify the salient regions more 

accurately.  

To obtain our saliency map, we utilize the 

foreground candidate and background candidate color 

samples in our trimap to estimate an optimal linear 

combination of color coefficients to separate the salient 

region color and background color. We formulate this 

problem as a l2 regularized least squares problem that 

minimizes 

 

where α ∈ Rl is the coefficient vector that we want to 

estimate, λ is a weighting parameter to control the 

magnitude of α, and K is a M×l matrix with each row of K 

corresponding to color samples in the 

foreground/background candidate regions: 

 

where FSi and BS j denote the i th foreground candidate 

superpixel among entire superpixels and the j th 

background superpixel among entire superpixels that are 

classified at the trimap generation step, respectively. M is 

the number of color samples in the foreground/background 

candidate regions (M  N), and f and b denote the number of 

foreground and background regions, respectively, such that 

M = f + b. U is an M dimensional vector with value equal to 

1 and 0 if a color sample belongs to the foreground and 

background candidate, respectively: 

 

Since we have a greater number of color samples 

than the dimensions of the coefficient vector, the l2 

regularized least squares problem is a well-conditioned 

problem that can be readily minimized with respect to α as 

α∗ = (KT K + λI)−1KT U. In all experiments, we use λ = 

0.05 to produce the best results. After we obtain α∗, the 

saliency map can be constructed as 

 

which denotes the linear combination of the color 

coefficient of our HDCT space. The l2 regularizer in the 

least square formulation in Eq. (9) restricts the magnitude 

of the coefficient vector to avoid over-fitting to U. With this 

l2 regularizer, the constructed saliency map is more reliable 

for the both foreground and background superpixels that are 

initially classified in the trimap. We tested several values of 

λ, and the regularized l2 least square with nonzero λ 

produces better saliency maps than the least square method 

without regularizer (λ = 0). Note that the popular l1 

regularizer for sparse solution could also be considered, but 

the l1 regularizer is not essential in our work, since more 

accurate representation of both foreground and background 

superpixels in HDCT space is important. Also, it is not 

necessary for the coefficient vector to be sparse. The overall 

process of the HDCT-based saliency detection is described 

in algorithm 1. 
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B. Local Saliency Estimation via Regression  

Although the HDCT-based salient region detection 

provides a competitive result with a low false positive rate, 

this method has a limitation in that it is easily affected by 

the texture of the salient region, and therefore, it has a 

relatively high false negative rate. To overcome this 

limitation, we present a learning-based local salient region 

detection that is based on the spatial and color distance 

from neighboring superpixels. Table IV summarizes the 

features used in this section. First, for each superpixel, we 

find the K -nearest foreground superpixels and K -nearest 

background superpixels as described in Fig. 7.  

 

Fig. 7: An illustration of local saliency features. Black, 

white, and gray regions denote background superpixels, 

foreground superpixels, and unknown superpixels, 

respectively. We use K -nearest foreground superpixels 

and K -nearest background superpixels to calculate a 

feature vector. 

For each superpixel Xi, we find the K -nearest 

foreground superpixels XFS = {XFS1, XFS2, . . . , XFSK } and 

K -nearest background superpixels XBS = {XBS1, XBS2, . . . , 

XBSK }, and we use the Euclidean distance between a 

superpixel Xi and superpixels XF S or XBS as features. The 

Euclidean distance to the K-nearest foreground (dFSi ∈ 

RK×1) and background (dBSi ∈ RK×1) features of the i th 

superpixel is defined as follows: 

 

in which FSij denotes the jth nearest foreground superpixel 

and BSij denotes the jth nearest background superpixel from 

the i th superpixel. As objects tend to be located in a 

compact region in an image, the spatial distances between a 

candidate superpixel and the nearby foreground/background 

superpixels can be a very useful feature for estimating the 

saliency degree. We also use the color distance features 

between superpixels. The feature vector of color distances 

from the i th superpixel to the K-nearest foreground (dCFi ∈ 

R8K×1) and background (dCBi ∈ R8K×1) superpixels is defined 

as follows: 

 

 

TABLE IV 

LOCAL SALIENCY FEATURES THAT ARE USED TO 

COMPUTE THE FEATURE VECTOR FOR EACH 

SUPERPIXEL 

 

Although a superpixel located near the foreground 

superpixels tends to be a foreground, if the color is 

different, there is a high possibility that it is a background 

superpixel located near the boundary of an object. We use 

eight color channels—RGB, CIELab, hue, and saturation—

to measure the color distance, where ci, cF Sij , and cBSij 
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are eight-dimensional color vectors. The distance vector 

d(ci, cF Sij ) is also an eight-dimensional vector, where 

each element of d(ci, cF Sij ) is the distance in a single 

color channel. To decide the optimal number of nearest 

superpixels K , we calculate the F-measure rate for each 

parameter. Fig. 8 shows the result, and we set K = 25, 

which shows the best result.2 For saliency estimation, we 

used the superpixel-wise random forest [50] regression 

algorithm, which is effective for large high-dimensional 

data.  

 

Fig. 8:  F-measure rate of validation results on different 

number of nearest superpixels K as features in the 

MSRA-B dataset. 

 

Fig. 9: Comparison of precision-recall curves of each 

step on the MSRA-B dataset. 

We extracted feature vectors using the initial 

trimap, and then, we estimated the saliency degree for all 

superpixels. For this local saliency map, even those 

classified as foreground/background candidate superpixels 

in the initial trimap are reevaluated because they could still 

be misclassified. It should be noted that the initial trimap is 

generated by a random forest classifier and that the next 

random forest regressor generates a local saliency map. 

Considering that we have two stages of cascaded random 

forests, we divided the training data set into two disjoint 

sets so that the second random forest is trained with more 

realistic inputs. Toward this end, we trained the first 

random forest with one data set, and we obtained the 

training data set for the second random forest from the 

trimaps generated for the other data set, which is not used 

for training the first random forest. This process is repeated 

in a manner similar to five-fold cross-validation. We used 

the code provided by Becker et al. [51] for random forest 

regression using 200 trees and setting the maximum tree 

depth to 10. 

C. Final Saliency Map Generation  

After we generated the global and the local 

saliency maps, we combined them to generate our final 

saliency map. Fig. 10 shows some examples of the two 

maps. Table V shows the quantitative performance measure 

of the two maps. The examples show that the HDCT-based 

saliency map tends to catch the object precisely; however, 

the false negative rate is relatively high owing to textures or 

noise. In contrast, the learning-based saliency map is less 

affected by noise, and therefore, it has a low false negative 

rate but a high false positive rate. Therefore, combining the 

two maps is a significant step in our algorithm.  

TABLE V 

QUANTITATIVE RESULTS OF HDCT-BASED 

GLOBAL SALIENCY DETECTION AND 

REGRESSION-BASED LOCAL SALIENCY 

ESTIMATION ON ADAPTIVE THRESHOLDED 

SALIENCY MAP ON MSRA-B DATASET 
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Fig. 10: Some visual examples. (a) input image, (b) 

HDCT result, (c) local saliency estimation result, (d) 

combined result, (e) ground truth, (f)–(g) are adaptive 

thresholded maps of (b)–(d), respectively 

Borji et al. [38] proposed two approaches to 

combine the two saliency maps. The first approach is to 

perform the pixelwise multiplication of the two maps, as 

shown below: 

 

In which Z is a normalization factor, p(.) is a pixel-

wise combination function, SG is the global saliency result 

(Section IV-A), and SL is the local saliency result (Section 

IV-B). However, this combination tends to showdarker 

pixels and suppresses bright pixels, and therefore, some 

false negative pixels from a global saliency map will 

suppress the local saliency map, and the merit of the local 

saliency map will decrease. The second approach is to 

combine the two maps using a summation: 

 

In our study, we combine the two maps more 

adaptively to maximize our performance. Based on Eq. 

(16), we adopt p(x) = exp(x) as a combination function to 

give greater weightage to the highly salient regions. The 

weight values are determined by comparing the saliency 

map with the ground truth. We calculate the optimal weight 

values for the linear summation by solving the nonlinear 

least-squares problem, as shown below: 

 

in which GT is the ground truth of an image in the training 

data. To find the most effective weights, we iteratively 

optimize the nonnegative least-squares objective function in 

Eq. (17) with respect to each variable. As the objective 

function in Eq. (17) is bi-convex, it must converge after a 

few optimization steps; however, different local solutions 

are obtained by the different initializations. To obtain the 

best solution (i.e., the solution that yields the smallest value 

of the objective function in Eq. (17) among several local 

solutions), we repeat the optimization process with 

randomly initialized variables several times, and the final 

solution for the objective function in Eq. (17) is obtained as 

ω1 = 1.15, ω2 = 0.74, ω3 = 1.57, and ω4 = 0.89. Fig. 9 

shows the precision-recall curve of the combined map. We 

found that our performance further improves with the 

values of the solution. Finally, we defined the equation of 

the final saliency map combination as 
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Fig. 11: Comparison of the precision-recall curve with state-of-the-art algorithms on three representative benchmark 

datasets: MSRA-B dataset, ECSSD dataset, and PASCAL-S dataset. 

Fig. 10 (d) shows some examples of a combined 

map. We observe that the performance greatly improves 

after combining the two maps: highly salient regions that 

have been caught by the local saliency map are preserved, 

and the false negative region that is vaguely salient is 

discarded. To evaluate the effectiveness of our local 

saliency estimation, we compare the precision-recall curve 

with that of the spectral matting algorithm [48] that extracts 

foregrounds from the user input. We use the trimap result 

instead of the user input for automatic matting. Fig. 15 (h) 

shows some results. Although the matting algorithm can 

provide a reasonable result without being influenced by 

textures, we found that the matting method heavily relies on 

the input trimap and is therefore easily affected by 

misclassified superpixels. On the other hand, the learning-

based method can determine the saliency degree by 

observing the spatial distribution of the nearest foreground 

and background superpixels, and therefore, our method is 

more robust to misclassified errors. Fig. 9 shows that the 

learning-based method provides a better result than the 

matting algorithm. 

V. EXPERIMENTS 

We evaluate and compare the performances of our 

algorithm against previous algorithms, including those 

proposed by Zhai and Shah (LC) [9], Cheng et al. (HC, RC) 

[19], Shen and Wu (LR) [35], Perazzi et al. (SF) [34], Yan 

et al. (HS) [14], Yang et al. (GMR) [36], Jiang et al. (DRFI) 

[33], Li et al. (DSR) [39], Cheng et al. (GC) [40], Jiang et 

al. (MC) [41], and Zhu et al. (RBD) [42] as well as our own 

preliminary work (HDCT) [2] on three representative 

benchmark datasets: MSRA-B salient object dataset [49], 

Extended Complex Scene Saliency Dataset (ECCSD) [14], 

and PASCAL-S Dataset [44].  

A. Benchmark Datasets for Salient Region Detection  

1) MSRA-B Dataset: The MSRA-B salient object dataset 

[49] contains 5,000 images with the pixel-wise ground truth 

used by the authors provided by Jiang et al. [33]. This 

dataset mostly contains comparatively obvious salient 

objects in which the colors are definitely different from the 

background, and therefore, it is considered a less 

challenging dataset for salient object detection. We use the 

same training set including 2,500 images and the test set 

including 2,000 images used in [33] as the training and test 

data, respectively. 

2) ECSSD Dataset: The ECSSD dataset [14] contains 1,000 

images that include multiple salient objects with 

structurally complex backgrounds that make the detection 

task much more challenging, such as a green apple on a tree 
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or a yellow butterfly on yellow flowers. In addition, many images contain a single salient object  

 

Fig. 12: Comparison of the F-measure curve with 12 state-of-the-art algorithms on three representative benchmark 

datasets: MSRA-B dataset, ECSSD dataset, and PASCAL-S dataset. 

TABLE VI 

COMPARISON OF THE PRECISION, RECALL, AND F-MEASURE RATE OF THE ADAPTIVELY THRESHOLDED 

SALIENCY MAP WITH STATE-OF-THE-ART ALGORITHMS ON THREE REPRESENTATIVE BENCHMARK 

DATASETS: MSRA-B DATASET, ECSSD DATASET, AND PASCAL-S DATASET. THE THREE BEST RESULTS 

ARE HIGHLIGHTED IN RED, GREEN, AND BLUE, RESPECTIVELY 

 

TABLE VII 

COMPARISON OF AVERAGE RUN TIME (SECONDS PER IMAGE) OF THE MOST RECENT SALIENCY 

DETECTION ALGORITHMS 

with multiple colors, making it harder to detect the salient 

object entirely. We used all images from this dataset for 

testing using the pixel-wise binary ground-truth images.  

3) PASCAL-S Dataset: The PASCAL-S dataset [44] 

contains 850 images with multiple objects in a single image 

with pixel-wise ground-truth annotations. This dataset 

provides both fixations and salient object annotations. 

However, this dataset is challenging as it contains many test 
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images with very large or very small salient objects that are 

relatively difficult to detect entirely. We used all images 

from this dataset for testing using the pixel-wise binary 

ground-truth images.  

B. Performance Evaluation 

In our study, we use two standard criteria for evaluating our 

salient region detection algorithm: precision-recall rate and 

F-measure rate. These evaluation criteria were proposed by 

Achanta et al. [7], and most saliency detection methods are 

evaluated by these criteria [3], [4].  

 

Fig. 13: Some failure cases in PASCAL-S dataset [44]. 

(a) Original Image. (b) Ground Truth. (c) DRFI [33]. (d) 

DRFI+ours. 

1) Precision-Recall Evaluation: The precision is also called 

the positive predictive value, and it is defined as the ratio of 

the number of ground-truth pixels retrieved as a salient 

region to the total number of pixels retrieved as the salient 

region. The recall rate is also called the sensitivity, and it is 

defined as the ratio of the number of salient regions 

retrieved to the total number of ground-truth regions. We 

use two different approaches to examine the precision-

recall rate. The first is to measure the rate for each pixel 

threshold. We bi-segment the saliency map using every 

threshold from 0 to 255 and calculate the precision rate and 

recall rate to plot the precisionrecall curve with the x-axis 

as the recall rate and the y-axis as the precision rate. The 

second is the precision and recall rate determined from the 

adaptively thresholded saliency map. In [7], [34], and [35], 

the threshold value is defined as two times the mean value 

of the saliency map. However, as recent saliency detection 

datasets, such as PASCAL-S [44], include some test images 

that contain a salient object that is larger than the 

background, we found that two times the mean value of the 

saliency map is not suitable for thresholding. Instead, we 

used the Otsu adaptive thresholding algorithm [47] to 

obtain the thresholded saliency map. We calculated the 

precision and recall rate for every thresholded saliency map 

and evaluated it by averaging these values.  

2) F-Measure Rate Evaluation: The second evaluation index 

is the F-measure rate. The F-measure combines the 

precision and the recall rate for a comprehensive 

evaluation. In our study, we used the Fβ measure, as 

defined below: 

 

As in previous methods [7], [14], [35], we used β2 

= 0.3. Similarly, as the precision-recall curve, we bi-

segmented the map for every threshold and plotted the 

curve with the x-axis as the threshold and the y-axis as the 

F-measure rate. We also measured the F-measure rate from 

the adaptively thresholded saliency map. First, we drew the 

precision-recall (PR) curve and the F-measure curve of our 

entire algorithm, and to verify the effectiveness of saliency 

estimation after the trimap step, we used the final result 

obtained in Jiang et al. [33], which is a state-of-the-art 

method, as an initial map and used a simple thresholding 

method to transform it into a trimap. In Fig. 11, we indicate 

the PR curve of our entire algorithm as ―Ours‖ and that of 

the DRFI method-based trimap and our final saliency 

estimation algorithm as ―DRFI+Ours.‖ Similarly, in Fig. 

12, we show the F-measure curve of the state-ofthe-art 

algorithms, including our method. Table VI shows the 

quantitative performance analysis of the adaptively 

thresholded saliency map. The results show that our 

methods achieved a competitive performance compared to 

the other methods, and when we substituted the DRFI [33] 

result map for the initial trimap, our method further 

improved the map and attained the best performance 

compared to the other algorithms. 
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Fig. 14. Some examples of failure cases. (a) Input 

images. (b) Our initial trimap. (c) Our results. (d) 

Ground truth. 

To further demonstrate the efficiency of our 

algorithm, we show the average computational time for 

each image of the state-of-the-art methods, including our 

algorithm. Table VII shows a comparison of the average 

run times of the three state-of-the-art methods. The running 

time is measured on a computer with an Intel Dual Core i5-

2500K 3.30 GHz CPU. Considering that our method is 

implemented by using MATLAB with unoptimized code, 

the computational complexity of the proposed method is 

comparable to that of other methods.  

The experimental results show that our algorithm 

is effective and computationally efficient. Although our 

algorithm does not outperform DRFI [33], its computational 

speed is much higher. The result for the case in which we 

substitute the results of DRFI [33] for the initial trimaps 

indicates that if we obtain the trimap more accurately, we 

have more potential to obtain a better result. Fig. 15 shows 

some examples of salient object detection that demonstrate 

the effectiveness of our proposed method.  

 
Fig. 15. Comparisons of our results and the results of previous methods. (a) Test image, (b) ground truth, (c) ours, (d) 

DRFI [33]+ours, (e) RBD [42], (f) DRFI [33], (g) HDCT [2], (h) matting [48], (i) GMR [36], (j) HS [14], (k) DSR [39], 

(l) GC [40], (m) MC [41], (n) SF [34], (o) LR [35], (p) RC [19], and (q) HC [19]. 

In the PASCAL-S dataset, we found that the PR 

curve of DRFI+ours does not improve compared with 

DRFI. Fig. 13 shows some failure cases. As our method 

uses a fixed number of fore-/background superpixels K , 

our algorithm tends to highlight the most salient region with 

moderate size; therefore, our method is relatively weak 

against test images with very large or very small salient 

regions. In the case of the MSRA-B and ECSSD datasets, 

the DRFI+ours method shows the best performance 

compared with the other state-ofthe-art methods, as they 

contain images with salient regions of moderate size. 

C. Failure Cases  

Although our method detects most salient objects 

accurately, it still has some limitations. For example, our 

HDCT might not fully coincide with human vision. 

However, it is still effective in increasing the success of 

foreground and background color separation as the low-
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dimensional RGB space is very densewhere distributions of 

the foreground and background colors largely overlap, 

whereas in high-dimensional color space, the space is less 

dense and the overlap decreases, as shown in Fig. 6. 

Furthermore, if identical colors appear in both the 

foreground and the background or the initialization of the 

color seed estimation is very wrong, our result is 

undesirable. Fig. 14 shows some examples of failure cases. 

In the first row, the foreground and background have 

exactly the same color, and therefore, the initial trimap fails 

to classify the object as foreground. In the second row, the 

dog has the same color as the background, and therefore, 

our method only detects its tongue, which is of a different 

color compared to the background. 

VI. CONCLUSION 

We have presented a novel salient region detection method 

that estimates the foreground regions from a trimap using 

two different methods: global saliency estimation via 

HDCT and local saliency estimation via regression. The 

trimap-based robust estimation overcomes the limitations of 

inaccurate initial saliency classification. As a result, our 

method achieves good performance and is computationally 

efficient in comparison to the state-of-the art methods. We 

also showed that our proposed method can further improve 

DRFI [33], which is the best performing method for salient 

region detection. In the future, we aim to extend the 

features for the initial trimap to further improve our 

algorithm’s performance.  
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