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Abstract:  

This paper presents a numerical method for 

solving fractional differential equations in the 

Riemann -Liouville sense. The approach is 

based on the Euler’s method. The main 

characteristic behind the approach is that Euler 

method has intuitive geometric meaning. The 

algorithm is presented and the convergence of 

the algorithm is proved. As applications of main 

results, three specific numerical examples are 

given. 
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1 Introduction: 

 With the rapid development of high-tech, the 

fractional calculus gets involved in more and 

more areas, especially in control theory – 

viscoelastic, theory-electronic, chemicals -

fractal theory and so on. See reference [1]-[5]. 

The Existence and uniqueness for fractional 

differential equations has been investigated by 

many authors (see, e.g., [6]-[8]). Finding 

accurate and efficient methods for solving FDEs 

has been an active research undertaking. In the  

 

past few decades, many methods have been 

developed for solving FDEs from the numerical 

point of view, such as the Legendre wavelet 

method, the spectral method and quartered 

shifted Legendre method based on Gauss 

C.Labatt. See reference [9]-[11]. Euler’s method 

has been proven to be efficient solving ordinary 

differential equations (ODEs) and other kinds of 

equations. See reference [12, 13]. A question 

arise naturally: can we have Euler method to 

derive numerical solution of FDEs? This paper 

is concerned with the numerical solution of 

following initial value problem of FDE 

 = f(x, y) Where 0 < α < 1 and fractional 

derivative is in Riemann-Liouville sense. In this 

paper, we give the Euler method for the 

fractional differential equations.  This paper is 

organized as follows. 

 In section 2 we introduce some definitions and 

some relevant properties of Riemann-Liouville 

derivative and Caputo derivative. In section 3 

we present the proof of convergence of the 

algorithm and error analysis of the algorithm. In 

section 4 improved algorithms are given. In 
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section 5 we give three specific numerical 

examples equipped with comparing figure of 

numerical solution and analytical solution. 

Finally we conclude the paper with some 

remarks. 

2 Preliminaries:   There are a great number of 

definitions of fractional integration and 

fractional derivative (see, [14]-[17]). We will 

only present Riemann-Liouville and Caputo. 

 Let f : [a, b] → R be a function, α is a positive 

real number satisfying n − 1 ≤ α < n, and Γ the 

Euler gamma function. 

 Definition 1:   The left and right Riemann-Liouville fractional integration of order α is defined by 

 

Definition 2:    The left and right Riemann-Liouville fractional derivative of order α is defined by 

 

Definition 3:  The left and right Caputo fractional derivative of order α is defined by 
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There exists a relation between the Riemann-Liouville fractional derivative and Caputo fractional 

derivative. 

 

 

Holds almost everywhere on [a ,b]. 

3. Euler’s method to fractional differential equations and error analysis: 

This paper is concerened with the numerical solution of following initial value problem of FDE. 

 

 The fractional derivative is in Riemann - Liouville sense with order 0<α<1   By using the properties of 

fractional integration and fractional derivative we can do analogously  transformation as in this paper. If 

we apply Riemann- Liouville fractional derivative of 1- α order on (2) we get the following equation. 

 

According to the Euler’s method we get the following algorathim: 

 

With the Matlab software, the algorithm can be achieved in computer. And the algorithm is proved to be 

efficient and convergent. Before the proof, we will give some relevant definitions and Lemma. 
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Definition 6 [19] Let f1(x), f2(x)---,fn(x), be sequence of functions on interval I. It is called uniformly 

bounded if there exists a constant K > 0 such that |fn(x) | ≤ K to all x є I and n є N. 

Definition 7 [19] Let f1(x), f2(x), _ _ _ , fn(x), _ _ _ be sequence of functions on interval I. It is called 

equicontinuous if arbitrary ε there exists δ such that for arbitrary x1, x2 є I such that when 

| x1 –x2|< δ, |fn(x1) – fn (x2)| < ε holds for all n.  

Lemma 8 [19] Let f1(x), f2(x), _ _ _ , fn(x), _ _ _ be sequence of functions on finite closed interval I. I fit 

is uniformly bounded and equicontinuous, there is a  subsequence which is uniformly continuous. 

Lemma 9 [20] Function y has continuous left fractional derivative, then it is necessarily that 

 y(a) = 0  

Theorem 10 Let the function f(x, y) satisfies conditions that f(x0, y(x0)) = 0 and fx(x, y) is continuous 

on R       0 ≤ x ─ x0 ≤ c, |y ─y0 | ≤b 

then the FDEs (2)–(3) have at least one solution at theinterval 0 ≤ x ─ x0  ≤ H  with  

H = min {   }  

 

Proof: Divide the interval  0 ≤ x ─ x0  ≤ H  into n equal parts. We can get n + 1 points: 

xk = x0 + , k = 0, 1, 2 _ _ _ n. 

From the initial point P0 (x0, y0), we denote intersection point of the direction of P0 (x0, y0)  and vertical 

line x = x1 as P1(x1, y1), line segment [P0,P1] as the first Euler line. Successively we get the Euler line γn. 

For any x satisfying 0 ≤ x ─ x0  ≤ H  there exists an integer 0 ≤ s ≤ n ─ 1 such that xs < x ≤ xs+1. For each 

n є N , let {φn(x) } denote the sequence: 



 

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  
p-ISSN: 2348-795X  
Volume 04 Issue14 

November 2017 

 

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e  | 4323 

 

Since |y─ y0 | ≤ b, we have {φn (x) ─ y0} ≤ b, which implies {φn(x)}  is uniformly bounded. Due to f(x0, 

y(x0)) = 0 and equation (1), the Riemann- Liouville fractional derivatives is equal to the Caputo 

fractional derivative, i.e., 

 

By continuity of fx(x, y) and equation (7), the term f(x, y) is continuous,  

and f(x, y) is bounded. So we have 

{φn(s) ─ φn(t)} ≤ M (x ─ t) 

Namely, {φn(x)} is equicontinuous. According Ascoli Lemma, we can choose a subsequence of Eulers 

function which is uniformly convergent at the interval 0 ≤ x─ x0 ≤ H. Denote the chosen subsequence: 

φn1 , φn2 , _ _ _ , φnk , _ _ _ . 

Let F(x, y) =  f(x, y). We shall prove φn(x) = y0 + (x, φn(x))dx + δn(x) 

and δn(x) → 0. Noticing that 

 F(xi, yi ) (xi+1 ─ xi) =  (xi, yi)dx we have 

F(xi, yi)(xi+1 ─ xi) = (x, φn(x)))dx+dn(i) where  

dn(i) =  [F(xi, yi) ─F(x, φn(x))]dx for i = 0, 1, _ _ _ , s ─1.For xs <x ≤ xs+1 
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F(xs, ys)(x ─ xs) = (x, φn(x)))dx + dn
*
(x)  

And 

 dn 
*
(x) = (xs, ys)─F (x, φn(x)]dx. 

Thus the identity (6) is equivalent to 

φn(x) = y0 + (x, φn(x)dx   + δn(x) 

where 

δn(x) = n(i) +  (x) 

According to the structure of Euler’s method, we have 

|x ─ xi| ≤ n          and       |ϕn(x) ─ yi| ≤  

for xi < x xi+1. Since  f(x, y) is continuous, for arbitrary Ɛ, there exists N such that for arbitraryxi < x 

≤ xi+1,  

|F(xi, yi) ─ F(x, φn(x)) |< .    Therefore, 

dn(i) ≤ (xi, yi) ─ F(x, φn(x))| dx < .     . And for n > N, xs < x ≤ xs+1, 

 we have | (x| < .      

 So when n > N, |δn(x)|< +    ≤ Ɛ      namely, δn(x)  →0 Thus 

φnk (x) = y0 + (x, φnk (x)) dx + δnk (x) Since the subsequence is uniformly convergent and 

δn(x) ≤ 0, let ϕ(x) be the limit of {φnk (x)}, then 

ϕ(x) = y0 + (x, φ (x)) dx      
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for 0 ≤  x─x0 ≤  H. Hence the FDEs (2)–(3) have atleast one solution on [x0, x0 + H].  

Remark 11 In addition, if fx (x, y) satisfies Lipschitz  condition   

|fx (x, y1) ─ f x (x, y2)| ≤ L|y1─y2|, 

Then the solution of FDEs (2)-(3) is unique. 

Lemma 12 If fx(x, y) satisfies Lipschitz condition |fx (x, y1) ─ f x (x, y2)| ≤ L|y1─y2|,  

and conditions in Theorem 10 , then F(x, y) =  f(x, y) also satisfies Lipschitz condition for y. 

Proof: Noting that 

|F(x, y1) -F(x, y2)|=  |  x-t)
α−1

(fx(x, y1) -fx(x, y2)) dt|  ≤  |y1 ─ y2||  x-t)
α−1

dt| 

   

for 0 ≤ x - x0 ≤ c, there exists d which satisfies  |(x -a)
α
|≤ d. Hence 

I F(x, y1) - F(x, y2) |≤ M I y1 - y2I 

 

Where M=    

Theorem 13 If fx(x, y) satisfies Lipschitz condition |fx(x, y1) -  fx(x, y2)| ≤ L|y1 - y2| 

Then y(xn)- yn = O(h). 

Proof: The Euler iteration formula is based on yn = y(xn), Then we can get 

 

So we can easily get 
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Namely        

According to equation (8) and Euler’s iteration formula, we get 

 

 

 Hence, 

 

Therefore, we have estimate 

 

From above we can get the recursion formula 
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At the same time we have e = 0. Consequently |en| ≤     (g ─ 1), namely, y(xn) -yn = O(h).  

Remark 14 Theorem 13 indicates the Euler’s method 

4 Improved Euler’s method 

A question arises naturally: can we improve the ac- curacy of the algorithm? Firstly, we recall backward 

Euler method. It is as follows: 

yn+1 - yn = h  f(x, yn+1)  |x=xn+1. 

It is obvious that the backward Euler’s algorithm is implicit. Euler’s method and backward Euler’s 

method have their own characteristics. Euler’s method is much more convenient. But taking the numeri- 

cal stability factors into account, backward Euler’s method is often chosen. Backward Euler’s equations 

are usually solved by iteration. And the essence of the iterative process is gradually explicit. The specific 

is: 

 

 

By calculation, we can get local truncation error of the two methods 

 

 

It is easy to see that we can get higher accuracy method by the average of the two methods. By the 

average of the two methods, we get implicit trapezoidal method 
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yn+1 -yn   

  

which can be solved by iteration formula? 

 

 

 

Although the trapezoidal method improves the accuracy, the algorithm is complex. In iterative formula, 

iteration operation is repeated several times which leads great amount of computation and difficultly to 

predict the results. In order to decrease the amount of computation, we hope the algorithm transferred to 

the next step calculation after only once or twice iteration operation. Therefore, we propose improved 

Euler’s method 

 

Next we prove the Euler method is effective with first order error 

Theorem 15 If fx(x, y) satisfies Lipschitz condition 

|fx (x, y1) ─ f x (x, y2)| ≤ L|y1─y2|,  

We can get y(xn) - yn = O (h
2
) for improved Euler’s method. 
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Proof: Let Euler iteration formula be based on yn = y(xn). We can get 

 

 

 

 

 

Combining Eq. (12) and Eq. (13), we get y(xn+1) –  n+1= O(h
3
), namely, 

  |y(xn+1) –  n+1 | ≤ ch
2
. (14) 

Let 

φ = (F(x, y) + F(x + h, y + hF(x, y)). 

Then 
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|φ(x, y, h) - φ(x, , h)|≤    |F(x, y) - F(x, )| + F(x + h, y + hF(x, y)) 

 - F(x + h,  + hF(x,  ))   ≤ M (1 +   M) |y - | ≤ M (1 +  M ) |y - |   and 

 

Hence, we have 

 

Thus we get the recursion formula 

IenI  ≤ (1 + hLφ)
n 
    |e0|+       ch

2
  [(1 + hLφ)

n
 -1] 

By xn - x0 = nh ≤H, then  

(1 + hLφ)
n 

≤ (e
hLφ

)
n
 ≤ e

HLφ
 = gφ. 

At the same time we have e0 = 0. Consequently, we get that  

|en| ≤  (gφ - 1), namely, y(xn) - yn =  O(h
2
). 

5 Examples 

In this section, with the help of Matlab, we give two examples to illustrate the convergence of both Euler 

method and improved Euler method by comparison 

figure of numerical solution under different segmentation and analytical solution. 
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Example 16 Consider the following fractional differential equation [20]: 

 = x2, 0 ≤ x  ≤ y(0) = 0 

The analytical solution is 
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For each method, we get three sets of numerical solution when the number of division is n = 20, 

For each method, we get three sets of numerical solution when the number of division is n = 20, n = 100 

and n = 200 respectively. Using the Matlab software, we get Fig.1 for Euler’s method and Fig.2 for 

improved Euler’s method. In the both figures, the yellow, blue, red and black curve are corresponding to 

numerical solution of n = 20, 100, 200 and the analytical solution respectively. 

      From the above two figures, we see that the numerical solution is closer to analytical solution as the 

number of division increase for the same method; 

 

 

 

numerical solution of improved Euler method is closer to analytical solution than the numerical solution 

of Euler method. 
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In this example Euler’s method is enough perfect. In actual use, with improved Euler’s method more 

stable and accurate but Euler’s method operation on the computer is faster; we can choose a more 

suitable upon request method. 

Example 17 Consider the following fractional differential equation [21]: 

 

               y(0) = 0. 

The analytical solution is 

 

Using the MATLAB software, we get Fig.3 for Euler method and Fig.4 for improved Euler method. The 

yellow, blue, red and black curve are corresponding 

to numerical solution of n = 20, 100, 200 and the analytical solution respectively. 

According to the above two figures, the numerical solution appear larger deviation using Euler’s method 

but not made up by improved Euler’s method when n = 20 at the beginning certain number of points. 

This is to say the improved Euler’s method is more accurate. 

Example 18 Consider the following fractional differential equation: 

 

 

y(0) = 0 
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The analytical solution is 
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For each method, we get three sets of numerical solution for the number of division is n = 20, 

n = 100 and n = 200 respectively. Using the Matlab software, we get Fig.5 for Euler method and Fig.6 

for improved Euler method. In the two figure, the yellow, blue, red and black curve are corresponding to 

numerical solution of n = 20, 100, 200 and the analytical solution respectively. 

6 Conclusion: 

In this paper we derive a simple numerical 

method, Euler’s method for solving fractional 

differential equations in the Riemann-Liouville 

sense, which has intuitive geometric meaning. 

And the numerical solution is closer to 

analytical solution as the number 

 

 

of division increase. In actual use, when more 

stable and accurate is needed, we considered 

improve the method, which brings improved 

Euler’s method. Compared with other 

algorithms, the algorithms in this paper are 

easier to understand and more simple to be 

operated on the computer. In this paper we only 

consider the fractional derivatives in Riemann- 

Liouville sense with the order 0 < α < 1, it can 

be generalized to any other order and fractional 

derivatives in other sense by using the 

relationship among various fractional 

derivatives. Acknowledgements: We sincerely 
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