

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 4447

Proficient Cache-Supported Path Preparation on Roads
Boya Ganesh , S.G. Nawaz

2
, R. Ramachandra

3

1
Dept of CSE, Sri Krishnadevaraya Engineering College, Gooty, Andhra Pradesh

2
 Associate Professor,Dept of CSE, Sri Krishnadevaraya Engineering College, Gooty, Andhra Pradesh

3
 Professor&Principal,Dept of Mech, Sri Krishnadevaraya Engineering College, Gooty, Andhra Pradesh

Email: saiganeshkumar2@ Gmail.com
1

Abstract: Path planning problems greatly arise in many

applications where the objective is to find the shortest path

from a given source to destination. In this paper, we explore

the comparison of programming languages in the context of

parallel workload analysis. We characterize parallel

versions of path planning algorithms, such as the Dijkstra’s

Algorithm, across C/C++ and Python languages.

Programming language comparisons are done to analyze

fine grain scalability and efficiency using a single socket

shared memory multicore processor. Architectural studies,

such as understanding cache effects, are also undertaken to

analyze bottlenecks for each parallelization strategy. Our

results show that a right parallelization strategy for path

planning yields scalability on a commercial multicore

processor. However, several shortcomings exist in the

parallel Python language that must be accounted for by

HPC researchers.

Index Terms: Spatial database, path planning, cache

I. INTRODUCTION

 Due to advances in big data analytics, there is a growing

need for scalable parallel algorithms. These algorithms

encompass many domains including graph processing,

machine learning, and signal processing. However, one of

the most challenging algorithms lie in graph processing.

Graph algorithms are known to exhibit low locality, data

dependence memory accesses, and high memory

requirements. Even their parallel versions do not scale

seamlessly, with bottlenecks stemming from architectural

constraints, such as cache effects and on-chip network

traffic.

 Path Planning algorithms, such as the famous Dijkstra’s

algorithm, fall in the domain of graph analytics, and exhibit

similar issues. These algorithms are given a graph

containing many vertices, with some neighboring vertices to

ensure connectivity, and are tasked with finding the shortest

path from a given source vertex to a destination vertex.

Parallel implementations assign a set of vertices or

neighboring vertices to threads, depending on the

parallelization strategy. These strategies naturally introduce

input dependence. Uncertainty in selecting the subsequent

vertex to jump to, results in low locality for data accesses.

Moreover, threads converging onto the same neighboring

vertex sequentialize procedures due to synchronization and

communication. Partitioned data structures and shared

variables ping-pong within on-chip caches, causing

coherence bottlenecks. All these mentioned issues make

parallel path planning a challenge.

 Prior works have explored parallel path planning

problems from various architectural angles. Path planning

algorithms have been implemented in graph frameworks.

These distributed settings mostly involve large clusters, and

in some cases smaller clusters of CPUs. However, these

works mostly optimize workloads across multiple sockets

and nodes, and mostly constitute either complete shared

memory or message passing (MPI) implementations. In the

case of single node (or single-chip) setup, a great deal of

work has been done for GPUs are a few examples to name a

few.

 These works analyze sources of bottlenecks and discuss

ways to mitigate them. Summing up these works, we devise

that most challenges remain in the fine-grain inner loops of

path planning algorithms. We believe that analyzing and

scaling path planning on single-chip setup can minimize the

fine-grain bottlenecks. Since shared memory is efficient at

the hardware level, we proceed with parallelization of the

path planning workload for single-chip multi-cores. The

single-chip parallel implementations can be scaled up at

multiple nodes or clusters granularity, which we discuss.

Furthermore, programming language variations for large

scale processing also cause scalability issues that need to be

analyzed effectively so far the most efficient parallel shared

memory implementations for graph processing are in

C/C++. However, due to security exploits and other

potential vulnerabilities, other safe languages are commonly

used in mission-deployed applications. Safe languages

guarantee dynamic security checks that mitigate

vulnerabilities, and provide ease of programming.

 However, security checks increase memory and

performance overheads. Critical sections of code, such as

locked data structures, now take more time to process, and

hence communication and synchronization overheads

exacerbate for parallel implementations. Python is a subtle

example of a safe language, and hence we analyze it’s

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 4448

overheads in the context of our parallel path planning

workloads. This paper makes the following contributions:

We study sources of bottlenecks arising in parallel path

planning workloads, such as input dependence and

scalability, in the context of a single node, single chip setup.

We analyze issues arising from safe languages, in our case

Python, and discuss what safe languages need to ensure for

seamless scalability.

We plan to open source all characterized programs with the

publication of this paper.

II. PATH PLANNING ALGORITHMS AND

PARALLELIZATIONS

 Dijkstra that is an optimal algorithm, is the de facto

baseline used in path planning applications. However,

several heuristic based variations exist that trade-off

parameters such as parallelism and accuracy. ∆-stepping is

one example

Fig.1. Dijkstra’s Algorithm Parallelization’s. Vertices

allocated to threads shown in different colors.

which classifies graph vertices and processes them in

different stages of the algorithm. The A*/D* algorithms are

another example that use aggressive heuristics to prune out

computational work (graph vertices), and only visit vertices

that occur in the shortest path. In order to maintain

optimality and a suitable baseline, we focus on Dijkstra’s

algorithm in this paper.

A. Dijkstra’s Algorithm and Structure

 Dijkstra’s algorithm consists of two main loops, an

outer loop that traverses each graph vertex once, and an

inner loop that traverses the neighboring vertices of the

vertex selected by the outer loop. The most efficient generic

implementation of Dijkstra’s algorithm utilizes a heap

structure, and has a complexity of O(E + V logV). However,

in parallel implementations, queues are used instead of

heaps, to reduce overheads associated with re-balancing the

heap after each parallel iteration. Algorithm 1 shows the

generic pseudo-code skeleton for Dijkstra’s algorithm. For

each vertex, each neighboring vertex is visited and

compared with other neighboring vertices in the context of

distance from the source vertex (the starting vertex). The

neighboring vertex with the minimum distance cost is

selected as the next best vertex for the next outer loop

iteration. The distances from the source vertex to the

neighboring vertices are then updated in the program data

structures, after which the algorithm repeats for the next

selected vertex. A larger graph size means more outer loop

iterations, while a large graph density means more inner

loop iterations. Consequently, these iterations translate into

parallelism, with the graph’s size and density dictating how

much parallelism is exploitable. We discuss the

parallelizations in subsequent subsections and show

examples in Fig 1.

B. Inner Loop Parallelization

 The inner loop in Algorithm 1 parallelizes the

neighboring vertex checking. Each thread is given a set of

neighboring vertices of the current vertex, and it computes a

local minimum and updates that neighboring vertex’s

distance. A master thread is then called to take all the local

minimums, and reduce to find a global minimum, which

becomes the next best vertex to jump to in the next outer

loop iteration. Barriers are required between local minimum

and global minimum reduction steps as the global

minimums can only be calculated when the master thread

has access to all the local minimums. Parallelism is

therefore dependent on the graph density, i.e. the number of

neighboring vertices per vertex. Sparse graphs constitute

low density, and therefore cannot scale with this type of

parallelization. Dense graphs having high densities are

expected to scale in this case.

C. Outer Loop Parallelization

 The outer loop parallelization strategy partitions the

graph vertices among threads, depicted in Algorithm 1.

Each thread runs inner loop iterations over its vertices, and

updates the distance arrays in the process. However, atomic

clocks over shared memory are required to update vertex

distances, as vertices may be sharing neighbors in different

threads.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 4449

 1) Convergence Outer Loop Parallelization: The

convergence based outer loop statically partitions the graph

vertices to threads. Threads work on their allocated chunks

independently, update tentative distance arrays, and update

the final distance array once each thread completes work on

its allocated vertices. The algorithm then repeats, until the

final distance arrays stabilize, where the stabilization sets

the convergence condition. Significant redundant work is

involved as each vertex is computed upon multiple times

during the course of this algorithm’s execution.

 2) Ranged based Outer Loop Parallelization: The

range based outer loop parallelization opens pare to fronts

on vertices in each iteration. Vertices in these fronts are

equally divided amongst threads to compute on, however,

atomic clocks are still required due to vertex sharing. As

pare to fronts are intelligently opened using the graph

connectivity, a vertex can be safely relaxed just once during

the course of the algorithm. Redundant work is therefore

mitigated, while maintaining significant parallelism.

However, as initial and final pare to fronts contain less

vertices, limited parallelism is available during the initial

and final phases of the algorithm. Higher parallelism is

available during the middle phases of the algorithm. This

algorithm’s available parallelism hereto follows a normal

distribution, with time on the x-axis.

III. METHODS

 This section outlines multicore machine configuration

and programming methods used for analysis. We also

explain the graph structures used for the various path

planning workloads.

A. Many-core Real Machine Setups

 We use Intel’s Core i7-4790 has well processor to

analyze our workloads. The machine has 4 cores with 2-way

hyper threading; an 8MB shared L3 cache, and a 256KB

per-core private L2 cache.

B. Metrics and Programming Language Variations

 We use C/C++ to create efficient implementations of

our parallel path planning algorithms. We use the p thread

parallel library, and enforce gcc/g++ compiler -O3

optimizations to ensure maximum performance. The p

thread library is preferred over Open MP to allow for the

use of lower level synchronization primitives and

optimizations. For Python implementations, we use both

threading and multiprocessing libraries to parallelize

programs, with Python3 as the language version. We use

these two parallelization paradigms to show the limitations

and shortcomings in parallel safe language paradigms.

 For each simulation run, we measure the Completion

Time, i.e., the time in parallel region of the benchmark. The

time is measured just before threads/processes are

spawned/forked, and also after they are joined, after which

the time difference is measured as the Completion Time. To

ensure an unbiased comparison to sequential runs, we

measure the Completion Time for only the parallelized code

regions. These parallel completion times are compared with

the best sequential implementations to compute speedups, as

given by Eq (1). Values greater than 1 show speedups, while

values between 0 and 1 depict slowdowns in addition to

performance, memory effects in a specific parallelization

strategy also affect scalability. To evaluate cache effects, the

cache accesses are therefore measured using hardware

performance counters.

Speedup = Sequential Time/Parallel Time (1)

C. Graph Input Data Sets and Structures

 Synthetic graphs and datasets are generated using a

modified version of the GT Graph generator, which uses

RMAT graphs from Graph500. We also use real world

graphs from the Stanford Large Network Dataset Collection

(SNAP), such as road networks. These are undirected

graphs, with a degree irregularly varying from 1 to 4.

Generated graphs have random edge weights and

connectivity. All graphs are represented in the form of

adjacency lists, with one data structure containing the edge

weights, and another for edge connectivity, and all values

represented by integers. Both sparse and dense graphs are

used to analyze parallelizations across different input types,

as shown in Table I. We also scale synthetic graphs from

16K vertices to 1M vertices, and the graph density from 16

up to 8K connections per vertex.

TABLE I

SYNTHETIC GRAPHS USED FOR EVALUATION

IV. EXPERIMENTS

4.1 Dataset

 We conduct a comprehensive performance evaluation

of the proposed PPC system using the road network dataset

of Seattle obtained from ACM SIGSPATIAL Cup 2012.

The dataset has 25,604 nodes and 74,276 edges. For the

query log, we obtain the Points-of-interest (POIs) in Seattle

from. Next, we randomly select pairs of nodes from these

POIs as the source and destination nodes for path planning

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 4450

queries. Four sets of query logs with different distributions

are used in the experiments: QLnormal and QLuniform are query

logs with normal and uniform distributions, respectively.

QLcentral is used to simulate a large-scale event (e.g., the

Olympics or the World Cup) held in a city. QLdirection is to

simulate possible driving behavior (e.g., changing direction)

based on a random walk method described as follows. We

firstly randomly generate a query to be the initial

navigational route. Next, we randomly draw a probability to

determine the chance for a driver to change direction. The

point of direction change is treated as a new source. This

process is repeated until the anticipated numbers of queries

are generated. The parameters used in our experiments are

shown in Table 2.

4.2 Cache-Supported System Performance

4.2.1 Cache versus Non-Cache

 The main idea of a cache-supported system is to

leverage the cached query results to answer a new query.

Thus, we are interested in finding how much improvement

our path planning system achieves over a conventional non-

cache system. We generate query sets of various sizes to

compare the paths generated by our PPC and A* algorithm.

The performance is evaluated by two metrics: a) Total

number of visited nodes: it counts the number of nodes

visited by an

TABLE 2

Experimental Parameters

TABLE 3

Performance Comparison between PPC and the Non-

Cache Algorithm

algorithm under comparison in computing a path, and b)

Total query time: it is the total time an algorithm takes to

compute the path. By default, we apply 3,000 randomly

generated queries to warm up the cache before proceeding

to measure experimental results. Table 5 summarizes the

statistics of the above two metrics with five different sized

query sets. From the statistics we find that our cache-

supported algorithm greatly reduces both the total visited

nodes and the total query time. On average, PPC saves 23

percent of visiting nodes and 30.22 percent of response time

compared with a non-cache system.

4.2.2 Cache with Different Mechanisms

 Performance comparison: We further compare the

performance of our system (PPC) with three other cache

supported systems (LRU, LFU, SPC*) which adopt various

cache replacement policies or cache lookup policies. The

first two algorithms detect conventional (complete) cache

hits when a new query is inserted, but update the cache

contents using either the Latest Recent Used algorithm

(denoted as LRU) or the Least-Frequently Used replacement

policies (LFU), respectively. The third compared algorithm,

namely, the shortest-path-cache (SPC*), is a state-of-the-art

cache supported system specifically designed for path

planning as PPC is. SPC* also detects if any historical

queries in the cache match the new query perfectly, but it

considers all sub-paths in historical query paths as historical

queries as well. We compare these four cache mechanisms

by converting the two metrics, number of visited nodes and

response time, to saving ratios against non-cache system for

better presentation

𝛿node = nodes𝑐𝑎𝑐 ℎ𝑒/nodes𝑛𝑜𝑛𝑐𝑎𝑐 ℎ𝑒 × 100% (2)

𝛿time = time𝑐𝑎𝑐 ℎ𝑒/time𝑛𝑜𝑛𝑐𝑎𝑐 ℎ𝑒 × 100% (3)

Visited node saving ratio and Query time saving ratio

indicate how many nodes and how much time an algorithm

can save from a non-cache routing algorithm (e.g., A*),

respectively. A larger value indicates better performance. In

the experiment, we increase the total query number from 1k

to 5k and calculate the above two metrics using each cache

mechanism with the results shown in Fig.2.

 The x-axis represents the total number of queries while

the y-axis indicates the metric values in percentages. From

these figures, we can see clearly that our cache policy

always achieves the best performance among all

measurements. On average, LFU, LRU, SPC* and PPC visit

30.47 26.86 27.78 and 34.73 percent fewer nodes than A*

algorithm, and reduces the computational time from A*

algorithm by 29.83, 26.32, 27.04 and 32.09 percent,

respectively.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 4451

Fig.2. Performance comparison with four cache

mechanisms in terms of (a) visited node saving ratio, and

(b) query time saving ratio with different numbers of

queries.

 As shown, our algorithm outperforms the other cache

mechanisms in path planning significantly.

 Performance analysis: In a cache-supported system, if

the cached results can be (partially) reused, the server

workload can be alleviated. Thus, we measure the hit ratio

as follows:

𝛿ℎ𝑖𝑡 = ℎ𝑖𝑡𝑠𝑐𝑎𝑐 ℎ𝑒/|𝑄| × 100% (4)

where hitscache is the total number of hits and |Q| is the total

number of queries. The hit ratio results using different cache

mechanisms are compared in Fig. 3, from which we find

that, as expected, PPC achieves a much higher hit ratio than

the other three methods in all scenarios. We further analyze

the correlation between the hit ratio and the performance

metrics in terms of visited node saving ratio and query time

saving ratio with the results shown in Fig. 4. From the

figures, we make the following observations:

i. The visited node saving ratio and query time saving ratio

are proportional to the hit ratio. Generally, with a higher hit

ratio, the system performance improves as well. This is

reasonable as the system does not need to re-compute the

paths by analyzing the original road network graph, but

retrieves the results directly from the cache when a cache hit

occurs.

ii. However, saving ratios for visited nodes are not the same

as for the query time. For example, PPC visits around 50 to

60 percent fewer nodes, but the response time saved is

around 30 to 40 percent. A possible reason is that different

nodes play different roles in the roadmap. When a query

occurs at sub graphs with more complex structures, the

routing usually takes longer as its computation may have

more constraints than other nodes.

iii. The inconsistency above is particularly obvious in PPC,

probably because PPC leverages partial hits to answer a new

query. However, the remaining segments still need the

computation from the road

Fig.3. Performance comparison with four cache

replacement mechanisms in terms of hit ratio.

Fig.4. Correlation between (a) hit ratio and visited node

saving ratio, and (b) hit ratio and query time saving

ratio.

network graph, i.e., PPC does not always save sub paths if

they require complex computations.

 Because PPC leverages both complete and partial hit

queries to answer a new query, we additionally measure the

saving node ratio for partial hits. We ran an experiment with

5k queries, and have plotted the results in Fig. 5. From the

figure we can see that partial hits appear evenly along the

temporal dimension. On average it achieves a 97.63 percent

saving ratio, which is quite close to the complete hit saving

ratio (100 percent). Among all cache hits, the take-up

percentages of complete and partial hits are illustrated in

Fig. 6a and their saving node percentage is shown in Fig.

6b. The x-axis is the query size and the y-axis is the

percentage values. Notice that partial hit does not achieve a

100 percent saving node ratio. However, as partial hits occur

much more frequently than complete hits, its overall benefit

to the system performance outweighs that of the complete

hits. On average, partial hits take up to 92.14 percent of the

whole cache hit. The average saving node ratio is 31.67

percent by partial hits, 10 times as much as that from

complete hits at 3.04 percent.

4.2.3 Cache Construction Time

 Because both SPC* and PPC are cache-supported

systems for path planning, we additionally compare their

cache construction time. SPC* is designed as a static cache,

i.e., the cache updates after a pre-determined number of

queries has accumulated, so the cache is constructed

periodically. PPC is designed as a dynamic cache, i.e., the

cache is updated whenever a new query is inserted, i.e., the

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 4452

cache is constructed gradually over time. Therefore, for a

fair comparison, we apply our algorithm to a batch of

consecutively inserted queries and calculate their total cache

update time (Note that the routing time has been removed

for both

Fig.5. Visited node saving ratio distribution among

partial hit queries with #Q = 5K.

Fig.6. Comparison between partial hits and complete

hits using PPC with different query sets in terms of (a)

hit ratio and (b) visited node saving ratio.

systems). The comparison result is illustrated in Table 4.

From the statistics in this table, we can see that our

algorithm significantly reduces the construction time to 0.01

percent of SPC* on average. Such significant improvement

may be due to the following reason. Let the total size of the

log files be n nodes. The time complexity for computing

usability values for the paths in the cache is O (n). However,

SPC* needs to compute the usability values for all possible

paths, resulting in a time complexity of O (n2).

4.2.4 Query log Distributions

 Previous experiments are conducted on queries

generated with a normal distribution. However, in realistic

scenarios, the queries may appear in different distribution.

To investigate whether our algorithm can robustly achieve

satisfactory results under different distributions, we generate

three more query sets by uniform, directional and central

distributions (denoted as QLuniform, QLcentral and QLdirectional,

respectively). Under a uniform distribution, each query on

the road network appears with equal probability. Central

distribution appears when there exists a large-scale event.

Directional distribution is used to formulate the driving

behavior in which a driver may continuously change

directions. Experiments are carried out to measure both

saving node ratio and saving response time ratio by the

LFU, LRU, SPC*, and PPC algorithms. All other

TABLE 4

Cache Update Time Comparison between PPC and

SPC* with Different Numbers of Queries (Unit: ms)

Fig.7. Performance comparison among four cache

mechanisms with various data distributions for query

logs in terms of (a,c,e) visited node saving ratio and

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 4453

(b,d,f) query time saving ratio with different numbers of

queries.

parameters use the default values. The results for each

distribution are shown in Fig. 7. As shown, PPC always

achieves the highest score in all scenarios.

 A statistical analysis of these metrics is summarized in

Table 5. In order to measure the performance improvement,

we calculate an improvement factor over the second best

method, denoted by ∆, as follows:

∆= 𝛿𝑃𝑃𝐶/max⁡{𝛿𝐿𝑅𝑈 , 𝛿𝐿𝐹𝑈 , 𝛿𝑆𝑃𝐶∗} (5)

From these results, we make the following observations:

i. PPC always outperforms LFU, LRU and SPC* under all

query distributions. In both uniform and directional

scenarios, SPC* works slightly better than LFU

TABLE 5

Average Performance Using Four Cache Mechanisms

for Different Query Distributions

Fig.8. PPC performance analysis: effect of grid size. (a)

Visited node saving ratio and query time saving ratio,

and (b) average deviation percentage.

and LRU. However, under the central distribution, SPC*

performs the worst.

ii. PPC receives the highest saving ratio (e.g., δtime =

45.67%) under the central distributed queries, but achieves

the best performance improvement (e.g., ∆time = 22.84) from

the second best method in directional distributions.

iii. In directional distribution, we observe a low saving ratio

below 2 percent for LFU, LRU and SPC*. This happens

because cache-supported systems introduce an additional

cache lookup overhead. When the hit ratio is very low (e.g.,

1.19 percent for SPC*), the average response time quickly

increases due to the frequent requests to the server.

Following a directional distribution, queries are very likely

to be a subpart of next queries. Such characteristics fit well

with the PPC model but not with the other models.

4.3 Parameter Analysis

 PPC successfully reduces the system workload by

making full use of the cached results to estimate the shortest

path for the new query within a tolerable distance

difference. So together with the benefit in terms of visited

node saving ratio and query time saving ratio, PPC

introduces a service cost due to this distance difference as

well. This cost can be measured by the average deviation

percentage [2] using Eq. (6), where a smaller value implies

a smaller cost:

𝛿𝑑𝑖𝑠𝑡 = 𝑝 ∗ − SDP q /SDP(𝑞) × 100% (6)

 What follows is a discussion of how the system benefit

and the cost are affected by various system parameters such

as grid-cell size, cache size, source-destination minimal

length and temporal factor.

4.3.1 Effect of Grid-Cell Size

 PPC adopts a grid-based solution to detect the potential

PPatterns for a new query, so the size of the grid-cell

directly impacts the hit ratio and the system performance we

examine the system performance in terms of both benefit

and cost by varying grid-cell sizes from 1 to 5 km. The

results are shown in Figs. 8a and 8b, respectively. The x-

axis indicates the grid size and the y-axis indicates the

metric values as a percentage.

 From these figures, we find that the system obtains

higher visited node saving ratios and query time saving

ratios as the grid size increases. However, the average

deviation percentage increases at the same time. By

increasing

Fig.9. PPC performance analysis: effect of cache size. (a)

Visited node saving ratio and query time saving ratio,

and (b) average deviation percentage.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 4454

the grid size, more cached paths are retrieved as a cache hit

which thus prevent sending a complete new query to the

server. However, it may retrieve paths that are less relevant

so the average deviation percentage increases as well. In a

real system, by adjusting the grid-cell size, we can keep a

satisfactory balance between the benefit and cost

empirically.

4.3.2 Effect of Cache Size

 The size of a cache directly determines the maximal

number of paths a system can maintain. In this section, we

measure the system performance by varying cache sizes

with the results shown in Fig. 9. The x-axis is the cache size

in terms of the total number of nodes a system can save. We

vary it from 1k to 10k nodes with an incremental step of 1k.

The y-axis indicates the metric values.

 We observe that as cache size increases, the system

saves more visited nodes and query time, but with a larger

deviation percentage. This is because a bigger cache can

potentially maintain more paths and thus increases the

opportunity of a cache hit. However it may also introduce a

less relevant path. We can choose a proper cache size to

avoid unsatisfactory deviation while still saving query time.

4.3.3 Effect of Source-Destination Minimal Length

 The minimal source and destination node distance (i.e.,

Dl ¼ =|s0, t0|) in the PPatterns detection algorithm

(Algorithm 1) is another tunable factor. Fig. 10 illustrates

the system performance with different distance values. By

increasing this distance threshold, the deviation percentage

reduces as expected because the coherency property

indicates that queries are more likely to share sub paths

when the source node is distant from the end node.

However, the visited node saving ratio and query time

saving ratio decrease because it takes more space to store a

longer path therefore, the total number of paths retained in

Fig.10. PPC performance analysis: effect of minimal

source-destination distance. (a) Visited node saving ratio

and query time saving ratio, and (b) average deviation

percentage.

Fig.11. PPC performance analysis: effect of temporal

factor. (a) Visited node saving ratio and query time

saving ratio, and (b) average deviation percentage.

cache reduces, with the probability of a cache hit

consequently decreasing.

4.3.4 Effect of the Temporal Factor

 Lastly, we investigate the system performance as time

passes. We consecutively insert into the system 50 query

groups, each with 100 queries, and observe the average

saving ratio and deviation percentage for each group. The

statistics are illustrated in Fig. 11. The x-axis indicates the

group ID from 1 to 50 and the y-axis indicates the value of

different evaluation metrics. As shown, these three ratios are

continuously changing as time passes. However, such

variation remains steady, which implies that our system

robustly and efficiently plans the path for a new query.

V. CONCLUSION

 Path planning is an important graph workload, and is

used ubiquitously in various real world applications. While

many studies have been done on distributed systems, limited

comparative studies have been done on its parallelization’s

in single node setups. In this paper, we study different

parallelizations of Dijkstra’s algorithm for single node

machines, and analyze algorithmic and architectural

bottlenecks for each parallelization strategy. We show that

cache sizes and algorithmic data sharing contribute greatly

to scalability. We also compare safe languages, such as

Python, to more efficient implementations in C/C++. Our

results show that shared memory parallelization of path

planning workload scales on single node setup. We also

discuss what limitations safe languages have and what

should be done to improve them.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 04 Issue14

November 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 4455

VI. REFERENCES

[1] Ying Zhang, Member, IEEE, Yu-Ling Hsueh, Member,

IEEE, Wang-Chien Lee, Member, IEEE, and Yi-Hao Jhang,

“Efficient Cache-Supported Path Planning on Roads”, IEEE

Transactions on Knowledge and Data Engineering, Vol. 28,

No. 4, April 2016.

[2] H. Mahmud, A. M. Amin, M. E. Ali, and T. Hashem,

“Shared execution of path queries on road networks,”

Clinical Orthopaedics Related Res., vol. abs/1210.6746,

2012.

[3] L. Zammit, M. Attard, and K. Scerri, “Bayesian

hierarchical modelling of traffic flow - With application to

Malta’s road network,” in Proc. Int. IEEE Conf. Intell.

Transp. Syst., 2013, pp. 1376–1381.

[4] S. Jung and S. Pramanik, “An efficient path computation

model for hierarchically structured topographical road

maps,” IEEE Trans. Knowl. Data Eng., vol. 14, no. 5, pp.

1029–1046, Sep. 2002.

[5] E. W. Dijkstra, “A note on two problems in connation

with graphs,” Num. Math., vol. 1, no. 1, pp. 269–271, 1959.

[6] U. Zwick, “Exact and approximate distances in graphs –

a survey,” in Proc. 9th Annu. Eur. Symp. Algorithms, 2001,

vol. 2161, pp. 33–48.

[7] A. V. Goldberg and C. Silverstein, “Implementations of

Dijkstra’s algorithm based on multi-level buckets,” Network

Optimization, vol. 450, pp. 292–327, 1997.

[8] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for

the heuristic determination of minimum cost paths,” IEEE

Trans. Syst. Sci. Cybern., vol. SSC-4, no. 2, pp. 100–107,

Jul. 1968.

[9] A. V. Goldberg and C. Harrelson, “Computing the

shortest path: A search meets graph theory,” in Proc. ACM

Symp. Discr. Algorithms, 2005, pp. 156–165.

[10] R. Gutman, “Reach-based routing: A new approach to

shortest path algorithms optimized for road networks,” in

Proc. Workshop Algorithm Eng. Experiments, 2004, pp.

100–111.

[11] A. V. Goldberg, H. Kaplan, and R. F. Werneck, “Reach

for A*: Efficient point-to-point shortest path algorithms,” in

Proc. Workshop Algorithm Eng. Experiments, 2006, pp.

129–143.

[12] S. Jung and S. Pramanik, “An efficient path

computation model for hierarchically structured

topographical road maps,” IEEE Trans. Knowl. Data Eng.,

vol. 14, no. 5, pp. 1029–1046, Sep. 2002.

