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Abstract:  Path planning problems greatly arise in many 

applications where the objective is to find the shortest path 

from a given source to destination. In this paper, we explore 

the comparison of programming languages in the context of 

parallel workload analysis. We characterize parallel 

versions of path planning algorithms, such as the Dijkstra’s 

Algorithm, across C/C++ and Python languages. 

Programming language comparisons are done to analyze 

fine grain scalability and efficiency using a single socket 

shared memory multicore processor. Architectural studies, 

such as understanding cache effects, are also undertaken to 

analyze bottlenecks for each parallelization strategy. Our 

results show that a right parallelization strategy for path 

planning yields scalability on a commercial multicore 

processor. However, several shortcomings exist in the 

parallel Python language that must be accounted for by 

HPC researchers. 
 

Index Terms: Spatial database, path planning, cache 

 

I. INTRODUCTION 

 

     Due to advances in big data analytics, there is a growing 

need for scalable parallel algorithms. These algorithms 

encompass many domains including graph processing, 

machine learning, and signal processing. However, one of 

the most challenging algorithms lie in graph processing. 

Graph algorithms are known to exhibit low locality, data 

dependence memory accesses, and high memory 

requirements. Even their parallel versions do not scale 

seamlessly, with bottlenecks stemming from architectural 

constraints, such as cache effects and on-chip network 

traffic. 

 

      Path Planning algorithms, such as the famous Dijkstra’s 

algorithm, fall in the domain of graph analytics, and exhibit 

similar issues. These algorithms are given a graph 

containing many vertices, with some neighboring vertices to 

ensure connectivity, and are tasked with finding the shortest 

path from a given source vertex to a destination vertex. 

Parallel implementations assign a set of vertices or 

neighboring vertices to threads, depending on the 

parallelization strategy. These strategies naturally introduce 

input dependence. Uncertainty in selecting the subsequent 

vertex to jump to, results in low locality for data accesses.  

 

 

Moreover, threads converging onto the same neighboring 

vertex sequentialize procedures due to synchronization and  

communication. Partitioned data structures and shared 

variables ping-pong within on-chip caches, causing 

coherence bottlenecks. All these mentioned issues make 

parallel path planning a challenge. 

 

       Prior works have explored parallel path planning 

problems from various architectural angles. Path planning 

algorithms have been implemented in graph frameworks. 

These distributed settings mostly involve large clusters, and 

in some cases smaller clusters of CPUs. However, these 

works mostly optimize workloads across multiple sockets 

and nodes, and mostly constitute either complete shared 

memory or message passing (MPI) implementations. In the 

case of single node (or single-chip) setup, a great deal of 

work has been done for GPUs are a few examples to name a 

few.  

 

      These works analyze sources of bottlenecks and discuss 

ways to mitigate them. Summing up these works, we devise 

that most challenges remain in the fine-grain inner loops of 

path planning algorithms. We believe that analyzing and 

scaling path planning on single-chip setup can minimize the 

fine-grain bottlenecks. Since shared memory is efficient at 

the hardware level, we proceed with parallelization of the 

path planning workload for single-chip multi-cores. The 

single-chip parallel implementations can be scaled up at 

multiple nodes or clusters granularity, which we discuss. 

Furthermore, programming language variations for large 

scale processing also cause scalability issues that need to be 

analyzed effectively so far the most efficient parallel shared 

memory implementations for graph processing are in 

C/C++. However, due to security exploits and other 

potential vulnerabilities, other safe languages are commonly 

used in mission-deployed applications. Safe languages 

guarantee dynamic security checks that mitigate 

vulnerabilities, and provide ease of programming. 

 

     However, security checks increase memory and 

performance overheads. Critical sections of code, such as 

locked data structures, now take more time to process, and 

hence communication and synchronization overheads 

exacerbate for parallel implementations. Python is a subtle 

example of a safe language, and hence we analyze it’s 
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overheads in the context of our parallel path planning 

workloads. This paper makes the following contributions: 

 

We study sources of bottlenecks arising in parallel path 

planning workloads, such as input dependence and 

scalability, in the context of a single node, single chip setup. 

 

We analyze issues arising from safe languages, in our case 

Python, and discuss what safe languages need to ensure for 

seamless scalability. 

 

We plan to open source all characterized programs with the 

publication of this paper. 

 

II. PATH PLANNING ALGORITHMS AND 

PARALLELIZATIONS 

 

        Dijkstra that is an optimal algorithm, is the de facto 

baseline used in path planning applications. However, 

several heuristic based variations exist that trade-off 

parameters such as parallelism and accuracy. ∆-stepping is 

one example  

 
Fig.1. Dijkstra’s Algorithm Parallelization’s. Vertices 

allocated to threads shown in different colors. 

 

which classifies graph vertices and processes them in 

different stages of the algorithm. The A*/D* algorithms are 

another example that use aggressive heuristics to prune out 

computational work (graph vertices), and only visit vertices 

that occur in the shortest path. In order to maintain 

optimality and a suitable baseline, we focus on Dijkstra’s 

algorithm in this paper. 

 

A. Dijkstra’s Algorithm and Structure 

 

        Dijkstra’s algorithm consists of two main loops, an 

outer loop that traverses each graph vertex once, and an 

inner loop that traverses the neighboring vertices of the 

vertex selected by the outer loop. The most efficient generic 

implementation of Dijkstra’s algorithm utilizes a heap 

structure, and has a complexity of O(E + V logV). However, 

in parallel implementations, queues are used instead of 

heaps, to reduce overheads associated with re-balancing the 

heap after each parallel iteration. Algorithm 1 shows the 

generic pseudo-code skeleton for Dijkstra’s algorithm. For 

each vertex, each neighboring vertex is visited and 

compared with other neighboring vertices in the context of 

distance from the source vertex (the starting vertex). The 

neighboring vertex with the minimum distance cost is 

selected as the next best vertex for the next outer loop 

iteration. The distances from the source vertex to the 

neighboring vertices are then updated in the program data 

structures, after which the algorithm repeats for the next 

selected vertex. A larger graph size means more outer loop 

iterations, while a large graph density means more inner 

loop iterations. Consequently, these iterations translate into 

parallelism, with the graph’s size and density dictating how 

much parallelism is exploitable. We discuss the 

parallelizations in subsequent subsections and show 

examples in Fig 1. 

 
B. Inner Loop Parallelization 

 

       The inner loop in Algorithm 1 parallelizes the 

neighboring vertex checking. Each thread is given a set of 

neighboring vertices of the current vertex, and it computes a 

local minimum and updates that neighboring vertex’s 

distance. A master thread is then called to take all the local 

minimums, and reduce to find a global minimum, which 

becomes the next best vertex to jump to in the next outer 

loop iteration. Barriers are required between local minimum 

and global minimum reduction steps as the global 

minimums can only be calculated when the master thread 

has access to all the local minimums. Parallelism is 

therefore dependent on the graph density, i.e. the number of 

neighboring vertices per vertex. Sparse graphs constitute 

low density, and therefore cannot scale with this type of 

parallelization. Dense graphs having high densities are 

expected to scale in this case. 

 

C. Outer Loop Parallelization 

 

       The outer loop parallelization strategy partitions the 

graph vertices among threads, depicted in Algorithm 1. 

Each thread runs inner loop iterations over its vertices, and 

updates the distance arrays in the process. However, atomic 

clocks over shared memory are required to update vertex 

distances, as vertices may be sharing neighbors in different 

threads. 
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       1) Convergence Outer Loop Parallelization: The 

convergence based outer loop statically partitions the graph 

vertices to threads. Threads work on their allocated chunks 

independently, update tentative distance arrays, and update 

the final distance array once each thread completes work on 

its allocated vertices. The algorithm then repeats, until the 

final distance arrays stabilize, where the stabilization sets 

the convergence condition. Significant redundant work is 

involved as each vertex is computed upon multiple times 

during the course of this algorithm’s execution. 

 

     2) Ranged based Outer Loop Parallelization: The 

range based outer loop parallelization opens pare to fronts 

on vertices in each iteration. Vertices in these fronts are 

equally divided amongst threads to compute on, however, 

atomic clocks are still required due to vertex sharing. As 

pare to fronts are intelligently opened using the graph 

connectivity, a vertex can be safely relaxed just once during 

the course of the algorithm. Redundant work is therefore 

mitigated, while maintaining significant parallelism. 

However, as initial and final pare to fronts contain less 

vertices, limited parallelism is available during the initial 

and final phases of the algorithm. Higher parallelism is 

available during the middle phases of the algorithm. This 

algorithm’s available parallelism hereto follows a normal 

distribution, with time on the x-axis. 

 

III. METHODS 

 

       This section outlines multicore machine configuration 

and programming methods used for analysis. We also 

explain the graph structures used for the various path 

planning workloads. 

 

A. Many-core Real Machine Setups 

 

      We use Intel’s Core i7-4790 has well processor to 

analyze our workloads. The machine has 4 cores with 2-way 

hyper threading; an 8MB shared L3 cache, and a 256KB 

per-core private L2 cache. 

 

B. Metrics and Programming Language Variations 

 

       We use C/C++ to create efficient implementations of 

our parallel path planning algorithms. We use the p thread 

parallel library, and enforce gcc/g++ compiler -O3 

optimizations to ensure maximum performance. The p 

thread library is preferred over Open MP to allow for the 

use of lower level synchronization primitives and 

optimizations. For Python implementations, we use both 

threading and multiprocessing libraries to parallelize 

programs, with Python3 as the language version. We use 

these two parallelization paradigms to show the limitations 

and shortcomings in parallel safe language paradigms.  

 

      For each simulation run, we measure the Completion 

Time, i.e., the time in parallel region of the benchmark. The 

time is measured just before threads/processes are 

spawned/forked, and also after they are joined, after which 

the time difference is measured as the Completion Time. To 

ensure an unbiased comparison to sequential runs, we 

measure the Completion Time for only the parallelized code 

regions. These parallel completion times are compared with 

the best sequential implementations to compute speedups, as 

given by Eq (1). Values greater than 1 show speedups, while 

values between 0 and 1 depict slowdowns in addition to 

performance, memory effects in a specific parallelization 

strategy also affect scalability. To evaluate cache effects, the 

cache accesses are therefore measured using hardware 

performance counters. 

 

Speedup = Sequential Time/Parallel Time      (1) 

 

C. Graph Input Data Sets and Structures 

 

        Synthetic graphs and datasets are generated using a 

modified version of the GT Graph generator, which uses 

RMAT graphs from Graph500. We also use real world 

graphs from the Stanford Large Network Dataset Collection 

(SNAP), such as road networks. These are undirected 

graphs, with a degree irregularly varying from 1 to 4. 

Generated graphs have random edge weights and 

connectivity. All graphs are represented in the form of 

adjacency lists, with one data structure containing the edge 

weights, and another for edge connectivity, and all values 

represented by integers. Both sparse and dense graphs are 

used to analyze parallelizations across different input types, 

as shown in Table I. We also scale synthetic graphs from 

16K vertices to 1M vertices, and the graph density from 16 

up to 8K connections per vertex. 

 

TABLE I 

SYNTHETIC GRAPHS USED FOR EVALUATION 

 
IV. EXPERIMENTS 

 

4.1 Dataset 

 

       We conduct a comprehensive performance evaluation 

of the proposed PPC system using the road network dataset 

of Seattle obtained from ACM SIGSPATIAL Cup 2012. 

The dataset has 25,604 nodes and 74,276 edges. For the 

query log, we obtain the Points-of-interest (POIs) in Seattle 

from. Next, we randomly select pairs of nodes from these 

POIs as the source and destination nodes for path planning 
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queries. Four sets of query logs with different distributions 

are used in the experiments: QLnormal and QLuniform are query 

logs with normal and uniform distributions, respectively. 

QLcentral is used to simulate a large-scale event (e.g., the 

Olympics or the World Cup) held in a city. QLdirection is to 

simulate possible driving behavior (e.g., changing direction) 

based on a random walk method described as follows. We 

firstly randomly generate a query to be the initial 

navigational route. Next, we randomly draw a probability to 

determine the chance for a driver to change direction. The 

point of direction change is treated as a new source. This 

process is repeated until the anticipated numbers of queries 

are generated. The parameters used in our experiments are 

shown in Table 2. 

 

4.2 Cache-Supported System Performance 

 

4.2.1 Cache versus Non-Cache 

 

        The main idea of a cache-supported system is to 

leverage the cached query results to answer a new query. 

Thus, we are interested in finding how much improvement 

our path planning system achieves over a conventional non-

cache system. We generate query sets of various sizes to 

compare the paths generated by our PPC and A* algorithm. 

The performance is evaluated by two metrics: a) Total 

number of visited nodes: it counts the number of nodes 

visited by an 

 

 

 

 

TABLE 2 

Experimental Parameters 

 
TABLE 3 

Performance Comparison between PPC and the Non-

Cache Algorithm 

 
algorithm under comparison in computing a path, and b) 

Total query time: it is the total time an algorithm takes to 

compute the path. By default, we apply 3,000 randomly 

generated queries to warm up the cache before proceeding 

to measure experimental results. Table 5 summarizes the 

statistics of the above two metrics with five different sized 

query sets. From the statistics we find that our cache-

supported algorithm greatly reduces both the total visited 

nodes and the total query time. On average, PPC saves 23 

percent of visiting nodes and 30.22 percent of response time 

compared with a non-cache system. 

 

4.2.2 Cache with Different Mechanisms 

 

      Performance comparison: We further compare the 

performance of our system (PPC) with three other cache 

supported systems (LRU, LFU, SPC*) which adopt various 

cache replacement policies or cache lookup policies. The 

first two algorithms detect conventional (complete) cache 

hits when a new query is inserted, but update the cache 

contents using either the Latest Recent Used algorithm 

(denoted as LRU) or the Least-Frequently Used replacement 

policies (LFU), respectively. The third compared algorithm, 

namely, the shortest-path-cache (SPC*), is a state-of-the-art 

cache supported system specifically designed for path 

planning as PPC is. SPC* also detects if any historical 

queries in the cache match the new query perfectly, but it 

considers all sub-paths in historical query paths as historical 

queries as well. We compare these four cache mechanisms 

by converting the two metrics, number of visited nodes and 

response time, to saving ratios against non-cache system for 

better presentation  

 

𝛿node = nodes𝑐𝑎𝑐 ℎ𝑒/nodes𝑛𝑜𝑛𝑐𝑎𝑐 ℎ𝑒 × 100%     (2) 

𝛿time = time𝑐𝑎𝑐 ℎ𝑒/time𝑛𝑜𝑛𝑐𝑎𝑐 ℎ𝑒 × 100%       (3) 

 

Visited node saving ratio and Query time saving ratio 

indicate how many nodes and how much time an algorithm 

can save from a non-cache routing algorithm (e.g., A*), 

respectively.  A larger value indicates better performance. In 

the experiment, we increase the total query number from 1k 

to 5k and calculate the above two metrics using each cache 

mechanism with the results shown in Fig.2. 

 

       The x-axis represents the total number of queries while 

the y-axis indicates the metric values in percentages. From 

these figures, we can see clearly that our cache policy 

always achieves the best performance among all 

measurements. On average, LFU, LRU, SPC* and PPC visit 

30.47 26.86 27.78 and 34.73 percent fewer nodes than A* 

algorithm, and reduces the computational time from A* 

algorithm by 29.83, 26.32, 27.04 and 32.09 percent, 

respectively. 
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Fig.2. Performance comparison with four cache 

mechanisms in terms of (a) visited node saving ratio, and 

(b) query time saving ratio with different numbers of 

queries. 

 

       As shown, our algorithm outperforms the other cache 

mechanisms in path planning significantly. 

 

       Performance analysis: In a cache-supported system, if 

the cached results can be (partially) reused, the server 

workload can be alleviated. Thus, we measure the hit ratio 

as follows: 

𝛿ℎ𝑖𝑡 = ℎ𝑖𝑡𝑠𝑐𝑎𝑐 ℎ𝑒/|𝑄| × 100%           (4) 

      

where hitscache is the total number of hits and |Q| is the total 

number of queries. The hit ratio results using different cache 

mechanisms are compared in Fig. 3, from which we find 

that, as expected, PPC achieves a much higher hit ratio than 

the other three methods in all scenarios. We further analyze 

the correlation between the hit ratio and the performance 

metrics in terms of visited node saving ratio and query time 

saving ratio with the results shown in Fig. 4. From the 

figures, we make the following observations: 

 

i. The visited node saving ratio and query time saving ratio 

are proportional to the hit ratio. Generally, with a higher hit 

ratio, the system performance improves as well. This is 

reasonable as the system does not need to re-compute the 

paths by analyzing the original road network graph, but 

retrieves the results directly from the cache when a cache hit 

occurs.  

 

ii. However, saving ratios for visited nodes are not the same 

as for the query time. For example, PPC visits around 50 to 

60 percent fewer nodes, but the response time saved is 

around 30 to 40 percent. A possible reason is that different 

nodes play different roles in the roadmap. When a query 

occurs at sub graphs with more complex structures, the 

routing usually takes longer as its computation may have 

more constraints than other nodes. 

 

iii. The inconsistency above is particularly obvious in PPC, 

probably because PPC leverages partial hits to answer a new 

query. However, the remaining segments still need the 

computation from the road  

 
Fig.3. Performance comparison with four cache 

replacement mechanisms in terms of hit ratio. 

 
Fig.4. Correlation between (a) hit ratio and visited node 

saving ratio, and (b) hit ratio and query time saving 

ratio. 

 

network graph, i.e., PPC does not always save sub paths if 

they require complex computations. 

 

      Because PPC leverages both complete and partial hit 

queries to answer a new query, we additionally measure the 

saving node ratio for partial hits. We ran an experiment with 

5k queries, and have plotted the results in Fig. 5. From the 

figure we can see that partial hits appear evenly along the 

temporal dimension. On average it achieves a 97.63 percent 

saving ratio, which is quite close to the complete hit saving 

ratio (100 percent). Among all cache hits, the take-up 

percentages of complete and partial hits are illustrated in 

Fig. 6a and their saving node percentage is shown in Fig.  

6b. The x-axis is the query size and the y-axis is the 

percentage values. Notice that partial hit does not achieve a 

100 percent saving node ratio. However, as partial hits occur 

much more frequently than complete hits, its overall benefit 

to the system performance outweighs that of the complete 

hits. On average, partial hits take up to 92.14 percent of the 

whole cache hit. The average saving node ratio is 31.67 

percent by partial hits, 10 times as much as that from 

complete hits at 3.04 percent. 

 

4.2.3 Cache Construction Time 

 

        Because both SPC* and PPC are cache-supported 

systems for path planning, we additionally compare their 

cache construction time. SPC* is designed as a static cache, 

i.e., the cache updates after a pre-determined number of 

queries has accumulated, so the cache is constructed 

periodically. PPC is designed as a dynamic cache, i.e., the 

cache is updated whenever a new query is inserted, i.e., the 
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cache is constructed gradually over time. Therefore, for a 

fair comparison, we apply our algorithm to a batch of 

consecutively inserted queries and calculate their total cache 

update time (Note that the routing time has been removed 

for both 

 
Fig.5. Visited node saving ratio distribution among 

partial hit queries with #Q = 5K. 

 
Fig.6. Comparison between partial hits and complete 

hits using PPC with different query sets in terms of (a) 

hit ratio and (b) visited node saving ratio. 

 

systems). The comparison result is illustrated in Table 4. 

From the statistics in this table, we can see that our 

algorithm significantly reduces the construction time to 0.01 

percent of SPC* on average. Such significant improvement 

may be due to the following reason. Let the total size of the 

log files be n nodes. The time complexity for computing 

usability values for the paths in the cache is O (n). However, 

SPC* needs to compute the usability values for all possible 

paths, resulting in a time complexity of O (n2). 

 

4.2.4 Query log Distributions 

 

        Previous experiments are conducted on queries 

generated with a normal distribution. However, in realistic 

scenarios, the queries may appear in different distribution. 

To investigate whether our algorithm can robustly achieve 

satisfactory results under different distributions, we generate 

three more query sets by uniform, directional and central 

distributions (denoted as QLuniform, QLcentral and QLdirectional, 

respectively). Under a uniform distribution, each query on 

the road network appears with equal probability. Central 

distribution appears when there exists a large-scale event. 

Directional distribution is used to formulate the driving 

behavior in which a driver may continuously change 

directions. Experiments are carried out to measure both 

saving node ratio and saving response time ratio by the 

LFU, LRU, SPC*, and PPC algorithms. All other 

 

TABLE 4 

Cache Update Time Comparison between PPC and 

SPC* with Different Numbers of Queries (Unit: ms) 

 

 
Fig.7. Performance comparison among four cache 

mechanisms with various data distributions for query 

logs in terms of (a,c,e) visited node saving ratio and 
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(b,d,f) query time saving ratio with different numbers of 

queries. 

 

parameters use the default values. The results for each 

distribution are shown in Fig. 7. As shown, PPC always 

achieves the highest score in all scenarios. 

 

        A statistical analysis of these metrics is summarized in 

Table 5. In order to measure the performance improvement, 

we calculate an improvement factor over the second best 

method, denoted by ∆, as follows: 

 

∆= 𝛿𝑃𝑃𝐶/max{𝛿𝐿𝑅𝑈 ,𝛿𝐿𝐹𝑈 ,𝛿𝑆𝑃𝐶∗}          (5) 

 

From these results, we make the following observations: 

 

i. PPC always outperforms LFU, LRU and SPC* under all 

query distributions. In both uniform and directional 

scenarios, SPC* works slightly better than LFU 

 

TABLE 5 

Average Performance Using Four Cache Mechanisms 

for Different Query Distributions 

 

 
Fig.8. PPC performance analysis: effect of grid size. (a) 

Visited node saving ratio and query time saving ratio, 

and (b) average deviation percentage. 

 

and LRU. However, under the central distribution, SPC* 

performs the worst. 

ii. PPC receives the highest saving ratio (e.g., δtime = 

45.67%) under the central distributed queries, but achieves 

the best performance improvement (e.g., ∆time = 22.84) from 

the second best method in directional distributions. 

 

iii. In directional distribution, we observe a low saving ratio 

below 2 percent for LFU, LRU and SPC*. This happens 

because cache-supported systems introduce an additional 

cache lookup overhead. When the hit ratio is very low (e.g., 

1.19 percent for SPC*), the average response time quickly 

increases due to the frequent requests to the server. 

Following a directional distribution, queries are very likely 

to be a subpart of next queries. Such characteristics fit well 

with the PPC model but not with the other models.  

 

4.3 Parameter Analysis 

 

      PPC successfully reduces the system workload by 

making full use of the cached results to estimate the shortest 

path for the new query within a tolerable distance 

difference. So together with the benefit in terms of visited 

node saving ratio and query time saving ratio, PPC 

introduces a service cost due to this distance difference as 

well. This cost can be measured by the average deviation 

percentage [2] using Eq. (6), where a smaller value implies 

a smaller cost: 

 

𝛿𝑑𝑖𝑠𝑡 =   𝑝 ∗  −  SDP q   /SDP(𝑞) × 100%     (6) 

 

      What follows is a discussion of how the system benefit 

and the cost are affected by various system parameters such 

as grid-cell size, cache size, source-destination minimal 

length and temporal factor. 

 

4.3.1 Effect of Grid-Cell Size 

 

      PPC adopts a grid-based solution to detect the potential 

PPatterns for a new query, so the size of the grid-cell 

directly impacts the hit ratio and the system performance we 

examine the system performance in terms of both benefit 

and cost by varying grid-cell sizes from 1 to 5 km. The 

results are shown in Figs. 8a and 8b, respectively. The x-

axis indicates the grid size and the y-axis indicates the 

metric values as a percentage. 

 

       From these figures, we find that the system obtains 

higher visited node saving ratios and query time saving 

ratios as the grid size increases. However, the average 

deviation percentage increases at the same time. By 

increasing 

 
Fig.9. PPC performance analysis: effect of cache size. (a) 

Visited node saving ratio and query time saving ratio, 

and (b) average deviation percentage. 
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the grid size, more cached paths are retrieved as a cache hit 

which thus prevent sending a complete new query to the 

server. However, it may retrieve paths that are less relevant 

so the average deviation percentage increases as well. In a 

real system, by adjusting the grid-cell size, we can keep a 

satisfactory balance between the benefit and cost 

empirically. 

 

4.3.2 Effect of Cache Size 

      The size of a cache directly determines the maximal 

number of paths a system can maintain. In this section, we 

measure the system performance by varying cache sizes 

with the results shown in Fig. 9. The x-axis is the cache size 

in terms of the total number of nodes a system can save. We 

vary it from 1k to 10k nodes with an incremental step of 1k. 

The y-axis indicates the metric values. 

 

       We observe that as cache size increases, the system 

saves more visited nodes and query time, but with a larger 

deviation percentage. This is because a bigger cache can 

potentially maintain more paths and thus increases the 

opportunity of a cache hit. However it may also introduce a 

less relevant path. We can choose a proper cache size to 

avoid unsatisfactory deviation while still saving query time.  

 

4.3.3 Effect of Source-Destination Minimal Length 

 

     The minimal source and destination node distance (i.e., 

Dl ¼ =|s0, t0|) in the PPatterns detection algorithm 

(Algorithm 1) is another tunable factor. Fig. 10 illustrates 

the system performance with different distance values. By 

increasing this distance threshold, the deviation percentage 

reduces as expected because the coherency property 

indicates that queries are more likely to share sub paths 

when the source node is distant from the end node. 

However, the visited node saving ratio and query time 

saving ratio decrease because it takes more space to store a 

longer path therefore, the total number of paths retained in 

 
Fig.10. PPC performance analysis: effect of minimal 

source-destination distance. (a) Visited node saving ratio 

and query time saving ratio, and (b) average deviation 

percentage. 

 
Fig.11. PPC performance analysis: effect of temporal 

factor. (a) Visited node saving ratio and query time 

saving ratio, and (b) average deviation percentage. 

 

cache reduces, with the probability of a cache hit 

consequently decreasing. 

 

4.3.4 Effect of the Temporal Factor 

 

      Lastly, we investigate the system performance as time 

passes. We consecutively insert into the system 50 query 

groups, each with 100 queries, and observe the average 

saving ratio and deviation percentage for each group. The 

statistics are illustrated in Fig. 11. The x-axis indicates the 

group ID from 1 to 50 and the y-axis indicates the value of 

different evaluation metrics. As shown, these three ratios are 

continuously changing as time passes. However, such 

variation remains steady, which implies that our system 

robustly and efficiently plans the path for a new query. 

 

V. CONCLUSION 

 

      Path planning is an important graph workload, and is 

used ubiquitously in various real world applications. While 

many studies have been done on distributed systems, limited 

comparative studies have been done on its parallelization’s 

in single node setups. In this paper, we study different 

parallelizations of Dijkstra’s algorithm for single node 

machines, and analyze algorithmic and architectural 

bottlenecks for each parallelization strategy. We show that 

cache sizes and algorithmic data sharing contribute greatly 

to scalability. We also compare safe languages, such as 

Python, to more efficient implementations in C/C++. Our 

results show that shared memory parallelization of path 

planning workload scales on single node setup. We also 

discuss what limitations safe languages have and what 

should be done to improve them. 
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