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Abstract- 

Topological design of terrestrial 
networks for communication via 
satellites is studied in the paper. 
Quantitative model of the network cost-
analysis minimizing the total 
transmission and switching cost is 
described. Several algorithms solving 
combinatorial problem of the optimal 
topology design based on binary 
partitioning, a minimax parametric 
search and dynamic programming are 
developed by the author and 
demonstrated with a numeric example. 
Analysis of average 

complexity of the minimax parametric 
search algorithm is also provided.  

 

Index terms- 

satellite communication network;  
terrestrial networks;  network topology 
design;  switching/transmission cost;  
network-cost analysis;  binary 
partitioning;  dynamic programming;  
average complexity;  clustering;  
combinatorial problem  

 

1. INTRODUCTION  

 

Modern wide-area satellite 

communication networks consist of 

terrestrial users interconnected via 

terrestrial links with routers/switches 

called earth stations (ES). An earth 

station (ES) communicates as a 

transmitter and receiver with one or 

several satellites [6], [11], [20], [21], 

[25]. Widely dispersed “satellite dishes” 

do not provide quality two-way 

communications. Only large 

corporations, major governmental 

agencies, and large telecommunications 

vendors can afford individual ESs. 

Small or medium sized corporations 

among other users must share a single 

ES.  

Modern telecommunications is a 

highly competitive business that strives 

to reduce service fees to increase market 

share by making their services more 

economically attractive to potential 

customers. 
1
Such a 

communicationscompany must expertly 

locate its various ESs, which may be of 

different capacities, and also decide how 

its customers should be interconnected 

withthese ESs, [1],[3], [5], [8], [18], 

[19], [26], [27]. An optimally designed 

network canpotentially 

save hundreds of millions of dollars 

annually and thereby attract additional 

users with its lower service fees [10].  

From a computational point of view, 

the network design task is a formidable  

combinatorial problem, i.e., it requires 

bruteforce algorithms or heuristics with 

exponential time-complexity, because 

they must determine an optimal way of 

clustering all users, [7], [12], [14].  

Several algorithms developed by the 

author [22]-[24] are described in this 

paper and demonstrated with a detailed 

numeric example. These algorithms are 

based on statistical properties observed 

by the author in thousands of computer 

experiments. They solve the problem of 
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clustering and locating all ESs with a 

polynomial time complexity. All related 

proofs are provided in [22]-[24]. For 

additional insights into the problems and 

algorithms related to network design see 

[2], [10], [15]-[17], [21].  

 

2. PROBLEM STATEMENT  

 

1). Let us consider the locations of n 

users with coordinates Pi=(ai,bi), 

i=1,…,n. Each user is characterized by 

a“volume” of incoming andoutgoing 

communication flow wi (“weight” of the 

i-th user);  

2). Let  Ck =(uk ,vk ) denote the location 

of the k-th ES, k=1,2,..,m;   

3). Let Sk be a set of all users connected 

with  

Ck;   

4). Let f(wi,Pi 
C

k ) describe a cost 

function of the transmission link 

connecting 
P

i -user  and  

Ck.  

For all i=1,2,..,n 
P

i are the inputs and for 

all k=1,2,..,m 
C

k and 
S

k are the decision 

variables/outputs.  

With these inputs, a minimal total cost 

of all terrestrial links and all ESs equals  

 
m 

  

min min∑∑ f (wi ,Pi ,Ck )+qk ∑wi  

(2.1)  

S1 ,..,Sm C1 ,..,Cm k=1 i∈Sk  i∈Sk

  

  

where qk ∑wi  is the cost of k-th ES  

 i∈Sk  

representing a non-linear function of all 

outgoing and incoming flows. Thus the 

problem (2.1) requires a comprehensive 

analysis to determine the optimal 

clusters (subsets) S1,..,Sm and locations 

of the routers/ESs C1,..,Cm. 

Complexity of clustering in general 

has been studied and described in [7]. 

Surveys on quantitative modeling and 

algorithms related to clustering are 

provided in [12] and [14].  

 

3. FOUR SPECIAL CASES  

 

Case1: If the locations of all 

switches/ESs are specified and the cost 

function of every ES is flow-

independent, then it is easy to find the 

clusters Sk. Indeed,  

Sk:={i: min 
f
(wi,Pi ,Cj )=f(wi ,Pi ,Ck 

)
} 

(3.1)  

1≤ j≤m 

Case2: If for k=1,…,m Sk are known, 

then the optimal location of every ES 

can be determined independently:  
min

∑ 

f(wi ,Pi ,Ck ) for k=1,…,m.(3.2)  

C 

k  i∈S k 

Case3: If f(wi,Pi,Ck)= 
wdist

i (
P

i ,
C

k ) (3.3) 

then the problem (3) is known as a 

Weber problem. This class of problems 

has been investigated by many authors 

over the last forty years, [4] and [9].  

  

Case4: If qk ∑wi  is a linear or 

convex  

 i∈Sk  

function, i.e.,  

 qk (w
1
+ w

2 
)≥ qk (w

1 
)+qk (w

2   
) ,  (3.4)  

then  

      
qk∑wi ≥q2k  ∑ wi +q2k+1 ∑ 

wi  ,  i∈Sk   i∈S2k   

i∈S2k+1  

which implies that the greater the 

number of clusters the lower the total 

costs of all routers/ESs.  

Difficulties arise if  

• the clusters Sk are not known; or  
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• the cost of every ES is neither small 

nor flow-independent; or  

• the number m of ESs and their 

optimal locations (uk, vk) for every k 

are not known.  

 

4. PARTITION INTO TWO   

CLUSTERS  

 

It is important to stress that there is a 

substantial difference between the two 

cases: m=1 and m=2. In the latter case 

the problem can be solved by 

repetitive application of an algorithm 

designed for the Weber problem. This 

must be done for all possible pairs of 

clusters S1 and S2. There are 2
n−1   

−1 

different ways to partition n points into 

two subsets S1 and S2 and, for each 

clustering, two Weber problems must 

be solved. Thus, even for m=2 the total 

time complexity of this brute-force 

combinatorial approach is O(2 
n
), [13].  

 

5. BINARY PARAMETRIC  

PARTITIONING  

 

In this section we provide a procedure that 

divides a network N with one ES S into 

two sub-networks N1 and N2 with two 

earth stations and two clusters S1 and S2.   

StepA1: {find an optimal location of the 

"center of gravity" 
C

0 for all n users, [18]}: 

consider m=1 and solve the  

Problem   min C f(wi ,Pi ,C);  

 (5.1)  

StepA2: Consider a straight line L and 

rotate it around the center of gravity 

{CoG} 
C

0 ; StepA3: For every user 

consider their polar coordinates (
d

i ,ϕi ) 

using 
C

0 as the originof the coordinate 

system; {here ϕi is an angular coordinate 

of Pi};  

Remark1: The line L divides all n points 

into two clusters, S1(x) and S2(x), by at most 

n different ways as the angle x increases 

from 0 to π;  

StepA4: for i=1 to n do if π≤ϕi <2π, then 

xi :=ϕi −π;    (5.2)  

 sort all xi in ascending order; StepA5: if 
x
i=ϕi , then ci:=1 else 

c
i:=−1; StepA6: if 

(x− xi )ci≥ 0 ,          (5.3)  then Pi ∈S1(x) 

else Pi ∈S2 (x) ;  

{see Table1 for illustration};  

 

Table1: {using, as example, x=1.53}  

 

 

StepA7: for k=1,2 and 
P

i ∈
S

k (x) (5.4) 

compute  gk(Sk(x)):= 
min 

∑ f (wi ,Pi ,Ck ) 

;       (5.5)  

C k
 

i∈Sk 

StepA8: {compute the cost of two 

routers/ESs and all connecting links}:  

2    

h(x):
=
∑j=1 


qj i

∑∈S   j wi + g j(S 

j(x))  (5.6)  

StepA9: {rotate the line L and find an angle 

that minimizes function h(x)}:  

  h(r):=min0≤x≤πh(x) ;           (5.7)  

StepA10: if for i∈S1(r)   

 f(wi,Pi,C1)>f(wi,Pi,C2),    then 

reassign i∈S2(r);          (5.8)  

if for i∈S2(r)  f(wi,Pi,C2)>f(wi,Pi,C1),  

  then reassign i∈S1(r);          (5.9) StepA11: 

using (5.8) and (5.9), update  

 

optimal locations of C 1 and C2 for new 

values of S1(r) and S 2(r);  

Remark2: we define S 1(r) and S2(r) as 

the optimal binary partitioning.  
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Table2  

6. SEARCH FOR THE "CENTER  

OF  

GRAVITY"  

 

StepB1: assign flag:=0;  

u :
=∑

i∈N 1 wai i 
/ 
∑i∈N1 wi; 

           (6.1) v:=∑i∈N 1 wbi i / ∑i∈N1 

wi; 

StepB2: compute for every i∈N
1 

Ri := (u−ai )
2 

+(v−bi )
2   

;         (6.2)  

StepB3: old(u,v):=(u,v); compute  

u :=(∑i   wi xi / Ri ) /(∑i wi / Ri ); 

  (6.3) v:=(∑i   wi yi / Ri ) /(∑i wi / Ri ); 

StepB4: while dist 


old 

(u,v),(u,v)


>ε 

repeat Steps B2 and B3; {search for a 

stationary point SP; ε is a specified 

accuracy for the  

location of the CoG}; 

StepB5: let SP:=(u,v);  

StepB6: if for all j∈N
1
dist

(SP,Pj )>ε 

and flag=0, then SP is the CoG; if 

for all j∈N
1
dist

(SP,Pj )>ε;    (6.4) and 

flag =−1,  

then 
N

1 := 
N

1 +{pnt} ; flag:=0;       (6.5) 

goto  StepB2;  

StepB7: if dist(SP,Pk )≤ε,           (6.6) 

then flag =−1; pnt:=k; 
N

1 := 
N

1 −{pnt} .  

For validation of the CoG algorithm see 

Lemmas 1 and 2 in the Appendix; 

Remark3: Table2 lists all possible cases 

of the algorithm:  

 

7. MINIMAX SEARCH FOR minh(x)  

 

Let h be a function computable on a set 

S of M discrete points 
x
1,...,

x
M . We 

demonstrate an optimal search algorithm 

designed for the case where h is a 

periodic function with known period P, 

i.e., h(xi + sP)= h(xi ) holds for every 

integer s and for every i=1,..,M. Here all 

values 
x
1,...,

x
M are known.  

It is obvious that M evaluations of h at 

points x1,...,
x
M are sufficient to solve any 

problem by total enumeration. The 

optimal search algorithm provided 

below requires time complexity of order  

Θ(log M ).  

          (7.1)  

For the sake of simplicity of 

notation let  hi := h(xi ) and g(t):= 

h(xt ) .         (7.2)  

Below we provide the optimal search 

algorithm for the case if M = 
F

n , where  
F

n  is n-th Fibonacci number.   

The algorithm can be adjusted if  

 
F

n−1 <M <
F

n .            (7.3)  

A detailed description of the algorithm 

searching for minimum of a function 

and proof of its optimality are provided 

in [22],  
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[23].  

8. OPTIMAL SEARCHING  

ALGORITHM  

 

The algorithm is optimal in the 

following sense: Let H be a set of all 

functions of a period P; let Q be a set of 

all possible strategies that find a 

minimum 
h

r of h(x); and let e(h,q) be the 

number of required evaluations of h(x)  

to determine the minimum 
h

r . Then q* 

is optimal in the worst case if  

minmaxe(h,q)= maxe(h,q*) . (8.1)  

q∈Q h∈H h∈H 

StepC1: if 
F

n =1, then 
h

r := 
h

1; 
x
r := 

x
1;  

stop; else select a random integer 
L

0 ;  

 
R

0 := 
L

0 + 
F 

n−1   ;        (8.2)  

StepC2: compute g(R0) and g(L0) ;  

StepC3: {selecting an initial detecting 

state}; if g(L0)≥ g(R0), then  

A1 := L0;B1 := L0   + Fn; 

        (8.3)  

R1 := R0;L1 := A1 + 

Fn−2 ; else   B1 := R0; A1 := 

R0 − Fn; 

          (8.4)  

L1 := L0;R1 := B1 − F n−2 

StepC4: if g(Lk )≥ g(Rk ) ; then  

Ak+1 := Lk ;temp := g(Rk ); 

    (8.5)  

Lk+1 := Rk ;Rk+1 := 2Lk − Ak ; 

compute 
g
(
R

k+1) ; assign  

Bk+1:=Bk ;Ik:=Bk−Lk ;g(Lk+1):= temp;  

(8.6) else assign  

Bk+1 := Rk ;temp := g(Lk ); 

    (8.7)  

Rk+1 := Lk ;Lk+1   := 2Rk − Bk ; 

compute 
g
(
L

k+1); assign  

Ak+1:=Ak ;Ik:=Rk−Ak ;g(Rk+1):= temp;  

(8.8)  

Remark4: 
I
k is the size of the interval of 

uncertainty containing a minimizer of 

h(x) after k evaluation of this function; 

StepC5: while 
I
k >1 repeat StepC4;  

StepC6: 
h

r := temp ; stop.  

 

9. BINARY PARTITIONING AND 

ASSOCIATED BINARY TREE  

 

Let us consider an algorithm that divides 

the network/cluster N1 into two 

subnetworks N2 and N3 with 

corresponding transmission costs t2 and 

t3 and corresponding costs of ESs q2 and 

q3. Let   
d

k := 
t
k +

q
k ,           (9.1) where dk 

is the hardware cost of the network  

Nk.  

We assume that the algorithm divides N1 

into two subnetworks in such a way that 
d

2 + 
d

3 is minimal. For further 

consideration we represent the binary 

partitioning as a binary tree where the 

root of the tree represents a cluster (set 

of all users) S1 and associated with it 

network N1. In general, a k-th node of 

the binary tree represents a cluster Sk 

and associated with it sub-network Nk. 

The two children of the k-th node 

represent two subnetworks N2k and 

N2k+1 that resulted from the binary 

partitioning of the network Nk.  

From the above definitions and from 

the essence of the problem it is clear that 

for all k the following inequalities hold:  

qk≥q2k, qk≥q2k+1 and 

tk≥t2k+t2k+1. (9.2)  

The latter inequality holds because each 

subnetwork N2k  and N2k+1 has a smaller 

number of users than Nk.  

 

10. ANALYSIS OF HARDWARE 

COST  

If   dk >d2k +d2k+1,           

(10.1)  
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then it is obvious that a partitioning into 

two clusters (subnetworks) is cost-wise 

beneficial. Yet, dk <d2k +d2k+1 does not 

imply that any further partitioning is not 

cost-wise beneficial. To illustrate this let 

us consider a network Nk and its six sub-

networks N2k, N2k+1, N4k, N4k+1,  

N4k+2, N4k+3. 

Remark5: To demonstrate various cases 

we consider two scenarios with inputs 

for  
t
k and for 

t 
4k+1 as shown in Table3:  

 

A) 
t
k =34 and for 

t
4k+1 = 5 ;  

B) 
t
k =31 and for 

t
4k+1   = 3 .  

Case A: dk=46; since dk>d2k+d2k+1,(10.2) 

then the binary partitioning of Nk into 

two subnetworks is worthwhile;  

Case B: dk=43; {local costs-analysis of 

hardware does not provide a correct 

insight};  

in this case dk<d2k+d2k+1,  (10.3) which 

only implies that there is no reason to 

divide the network Nk into two 

subnetworks  

N2k and N2k+1.  

However, further analysis shows that  

      dk>d4k+d4k+1+d4k+2+d4k+3       

(10.4)  

if   d4k+1=10;  

and      dk>d2k+d4k+2+d4k+3         (10.5)  

if   d4k+1=12. 

These examples illustrate that for a 

proper partitioning a global rather than a 

local analysis is required.  

Definition1: We say that a network Nk  is 

indivisible if there is no cost-wise 

advantage to dividing it any further.  

In addition, a network designer may 

stipulate that some sub-networks may 

not be further divisible if they do not 

satisfy at least one of the following 

threshold conditions:  

a) Their combined “weight” 

{incoming and outgoing flow w} is 

lower than a specified threshold;  

b) The number of users in the 

cluster {subnetwork} is smaller than a 

specified by the designer threshold.  

Definition2:  We  say  that  an 

 optimal configuration of a 

communication network is determined if 

all indivisible sub-networks of the initial 

network N1 are known.  

11. DYNAMIC PROGRAMMING 

ALGORITHM  

This algorithm initially assigns labels to 

all nodes of the associated binary tree, 

then determines final labels and then  
 

finds the optimal clustering. It consists 

of two stages: bottom-up stage and top-

down stage. The algorithm described 

below was developed by the author of 

this paper years ago, but it has not been 

published.  

 

11.1 Assignment of final labels 

Here we assume that for all k=1, 

2,…,m the values of all 
d
k are 

pre-computed.  

Bottom-up stage:  

Table3  
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a) Assign to k-node a label:      
L

k := 
d
k , 

k=1, 2,…,m;               (11.1)  

b) if i-th node is a leaf, then its final 

label 

 
F

i := 
L

i ;                  (11.2)  

c) if both children of k-th node have 

final  

labels, then  

 Fk := min(Lk, F2k+F2k+1);    (11.3)  

d) if the final labels Fk are computed 

for       all nodes, then goto the next 

stage. For explanations see 

paragraph 12.2 and Fig.13 in the 

Appendix.  

 

11.2 Principle of optimality 

Top-down stage:  

e) Starting from j=1 assign for every 

node, if  

Lj =Fj   ,  

       then 
w

j :=1 else 
w

j := 0        (11.4)  

g) {Principle of optimality}: if for the k- 

th node 
w

k :=1 and for every its ancestor 

a(k) 
w

a(k) := 0 , then this node is optimal 

and the corresponding cluster 
S

k is non-

divisible.  

Therefore, the sub-network 
N

k is optimal.  

Remark6: It can be shown that it is not 

costwise advantageous to consider the   

descendants of this node, i.e., the 

corresponding cluster/sub-network is 

indivisible. For further clarification see 

the illustrative example below.  

Preposition: The set 
P(opt)

 of all optimal 

subnetworks represents the optimal 

partitioning.  

 

12. ILLUSTRATIVE EXAMPLE  

 

Remark7: For the sake of simplicity, we 

assume that the following sub-networks 

are not further divisible:  

• N10, N11, N33, N39, N58, N63, N77 {for 

instance, as initial conditions 

specified by a network designer};  

• N6, N17, N18, N28, N30, N32, N59, 

N62, N76 {for example, because 

they do not satisfy at least one of the 

threshold conditions}.  

This example is presented with different 

forms of data handling: including a 

table, a binary tree and the 

corresponding arrays.  

 

12.1 Computation of final labels In the 

following Tables 4.1-4.3 we treat all 

indivisible subnetworks as leaves of the 

binary tree and indicate this with an 

underline. From Tables 4.1-4.3 we 

determine:  

• The set of all nodes 
N

k , for which 
w

k 

:=1 ; {totally twenty nodes for k=5; 

6; 10;  

11; 14; 16; 17; 18; 19; 28; 30; 32; 33; 

39; 58; 59; 62; 63; 76; 77};  

• The set of all optimal nodes 
N

k 
o
 

{totally ten optimal nodes for k=5; 6; 

14; 16; 17; 18; 19; 30; 62; 63}.  

NB: In the Tables 4.1-4.3 the final 

labels, for which hold 
L

j = 
F

j , are shown 

in bold italics.  
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Table 4.1  

Table 4.2  
 

 

Table4.3  
 

 

As it follows from Tables 4.1-4.3, the 

minimal total cost of all hardware 

elements {the transmission links plus 

the routers/ESs} equals  

F5 + F6 + F14 + F16 + F17 + F18 + 

F19 + 

F30 + F62 + F63 = 55+60+36+15 

(12.1)+17+19+13+7+10 = 248 = F1. 

 

12.2 Search for optimal clusters via 

binary-tree algorithmEach node of 

the binary tree is described in form 

{k,wk} , where computation of wk is 

described in (11.4). As a result, we 

have the following list:  

 

{1,0};{2,0};{3,0};{4,0};{5,1};{6,1};{7,

0};  

{8,0};{9,0};{10,1};{11,1};{14,1};{15,0

}; 

{16,1};{17,1};{18,1};{19,1};{28,1};{2

9,0}; 

{30,1};{31,0};{32,1};{33,1};{38,0};{3

9,1}; 

{58,1};{59,1};{62,1};{63,1};{76,1};{7

7,1}. 

Since for all ancestors of node 
N

5 

hold
w

a(5) := 0, therefore by the principle 

of optimality 
N

5
o
 is optimal. 

Analogously, for all ancestors of the 

node 
N

6hold 
w

a(6) := 0   , therefore by the 

principle of optimality 
N

6 
o 

 is also 

optimal.  

Applying the principle of optimality we 

find that for k=5; 6; 14; 16; 17; 18; 19; 

30; 62; 63 the nodes 
N

k
o
 are indivisible, 

therefore they are optimal.  



 

 

International Journal of Research (IJR)   Vol-1, Issue-10 November 2014   ISSN 2348-6848 

Design of Optimal Topology of Satellite-Based Terrestrial Communication Networks Naveen Yadav , Monish 
Batra, Pravesh Sharma 

 

P a g e  | 1842 

This algorithm is designed by the author 

of this paper.  

 

13. STATISTICAL PROPERTIES OF 

COST-FUNCTION h(x)  

 

More than eighteen hundred computer 

experiments confirmed that the cost-

function h(x) has rather stable statistical 

properties. Let R(x):= 


maxh(x)−minh(x)


/minh(x)  be  

the range of h(x).  

Property1: if n >>10 and h(x) has a 

range R(x) larger than 5%, then h(x) is a 

bimodal function on the period x∈ (0,π);  

Property2: if the range R(x) is smaller 

than 5% or the number of users is small 

(n<25), then h(x) has more than one 

local minimum. In this case, if the range 

R(x) is small, then h(x) is a shallow 

function and its optimization does not 

provide a substantial gain. On the other 

hand, if n is small, then time complexity 

to check all n rotations is also small. 

These statistical properties of the 

function h(x) have been discovered by 

the author of this paper twenty four 

years ago via numerous computer 

experiments.  

Therefore, Property1 can be used to 

design a more elaborate algorithm that 

requires substantially  less 

 computation  than  the thorough 

parametric search over interval  

 x∈ (0,π), [22], [23].  

 

14. COMPLEXITY ANALYSIS OF 

OPTIMAL SEARCH FOR 

LARGE n  

 

It is easy to see that the parametric 

partitioning requires in the general case 

exactly n rotations of the separating line 

L. As a result, the timecomplexity T(n) 

to divide n users into two clusters equals 

T(n)=an
2
+ Ο(

n
) for large n.  

However, in the instances where 

Property 1 of h(x) is applicable, this 

complexity can be substantially reduced. 

In this case the search algorithm for a 

minimum of function h(x) requires 

O(logn) rotations of the separating line 

L. As a result, T(n)=bnlogn+ Ο(n) for 

large n and overall worst-case 

complexity is of order 
Ο
(n

2
logn) .  

The methods of complexity evaluation 

developed by the author of this paper in 

[24] demonstrate that the average 

complexity of the overall binary 

partitioning is of order 
Ο
(nlog

2
n) .  

 

15. CONCLUSION  

 

Several algorithms developed by the 

author are described in the paper. These 

algorithms provide a foundation for 

optimal design of configuration of 

terrestrial networks based on satellite 

communication. The author reduced 

thecomplexity of the problem by 

employing the statistical properties of 

the optimizedfunction. It is demonstrated 

that the entire process of optimal design 

for large number of users has 

polynomial time complexity.  
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