

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

Authenticated Data Structures for Graph and Geometric Searching Amit Saini & Akansha Marwah

P a g e | 1849

Authenticated Data Structures for Graph and

Geometric Searching

Amit Saini(16763) & Akansha Marwah(16762)

Batch Year of study(2013-2017)

Department of Electronics and Computer Science Engineering
Dronacharya College of Engineering Khentawas, Farrukh Nagar – 123506

Gurgaon, Haryana
Email: amit.saini0384@gmail.com , makansha1995@gmail.com

Abstract

Following in the spirit of data structure and

algorithm correctness checking,

authenticated data structures provide

cryptographic proofs that their answers are

as accurate as the author intended, even if

the data structure is being maintained by a

remote host. We present techniques for

authenticating data structures that represent

graphs and collection of geometric objects.

We use a model where a data structure

maintained by a trusted source is mirrored

at distributed directories, with the

directories answering queries made by

users. When a user queries a directory, it

receives a cryptographic proof in addition to

the answer, where the proof contains

statements signed by the source. The user

veri_es the proof trusting only the

statements signed by the source. We show

how to e_ciently authenticate data

structures for fundamental problems on

networks, such as path and connectivity

queries, and on geometric objects, such as

intersection and containment queries. Our

work has applications to the authentication

of network management systems and

geographic information systems.

Introduction:-

Overview of the Functionality of a Database

Management System:-Many of the previous

chapters have shown that efficient strategies

for complex data-structuring problems are

ssential in the design of fast algorithms for a

variety of applications, including

combinatorial optimization, information

retrieval and Web search, databases and data

mining, and geometric applications. The

goal of this chapter is to

provide the reader with an overview of the

important data structures that are used in the

implementation of a modern, general-

purpose database management system

(DBMS). In earlier chapters of the book the

reader has already been exposed to many of

the data structures employed in a DBMS

context (e.g., B-trees, buffer trees, quad

trees, R-trees, interval trees, hashing).

Hence, we will focus mainly on their

application but also introduce other

important data structures to solve some of

the fundamental data management problems

such as query processing and optimization,

efficient representation of data on disk, as

well

as the transfer of data from main memory to

external storage. However, due to space

con-

straints, we cannot cover applications of

data structures to solve more advanced

mailto:amit.saini0384@gmail.com
mailto:makansha1995@gmail.com

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

Authenticated Data Structures for Graph and Geometric Searching Amit Saini & Akansha Marwah

P a g e | 1850

problems such as those related to the

management of multi-dimensional data

warehouses, spatial and temporal data,

multimedia data, or XML.

Before we begin our treatment of how data

structures are used in a DBMS, we brie°y

review the basic architecture, its

components, and their functionality. Unless

otherwise noted, our discussion applies to a

class of DBMSs that are based on the

relational data model. Relational database

management systems make up the majority

of systems in use today and are o®ered by

all major vendors including IBM, Microsoft,

Oracle, and Sybase.

Most of the components described here can

also be found in DBMSs based on other

models such as the object-based model or

XML.

Figure 60.1 depicts a conceptual overview

of the main components that make up a

DBMS.

Rectangles represent system components,

the double-sided arrows represent input and

out-

put, and the solid connectors indicate data as

well as process °between two components.

Please note that the inner workings of a

DBMS are quite complex and we are not

attempting to provide a detailed discussion

of its implementation. For an in-depth

treatment the reader should refer to one of

the many excellent database books, e.g., [3,

4, 9, 10].

Starting from the top, users interact with the

DBMS via commands generated from a

variety of user interfaces or application

programs. These commands can either

retrieve or update the data that is managed

by the DBMS or create or update the

underlying meta data that describes the

schema of the data. The former are called

queries, the latter are called data definition

statements. Both types of commands are

processed by the Query Evaluation Engine

which contains sub-modules for parsing the

input, producing an execution plan, and

executing the plan against the underlying

database. In the case of queries, the parsed

command is presented to a query optimizer

sub-module, which uses information about

how the data is stored to produce an efficient

execution plan from the possibly many

alternatives. An execution plan is a set of

instructions for evaluating an input

command, usually represented as a tree of

relational operators. We discuss data

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

Authenticated Data Structures for Graph and Geometric Searching Amit Saini & Akansha Marwah

P a g e | 1851

structures that are used to represent parse

trees, query evaluation plans, external

sorting, and histograms in Section 60.2

when we focus on the query evaluation

engine.

Since databases are normally too large to ft

into the main memory of a computer, the

data of a database resides in secondary

memory, generally on one or more magnetic

disks.

However, to execute queries or mode

captions on data, that data must be

transferred to main memory for processing

and then back to disk for persistent storage.

It is the job of the Storage Subsystem to

accomplish a sophisticated placement of

data on disk, to assure an efficient

localization of these persistent data, to

enable their bidirectional transfer between

disk and main memory, and to allow direct

access to these data from higher DBMS

architecture levels. It consists of two

components: The Disk Space Manager is

responsible for storing physical data items

on disk, managing free regions of the disk

space, hiding device properties from higher

architecture levels, mapping physical blocks

to tracks and sectors of a disc, and

controlling the data transfer of physical data

items between external and internal

memory. The Buffer Manager organizes an

assigned, limited main memory

Data Structures for Query Processing

Query evaluation is performed in several

steps as outlined in Figure 60.2. Starting

with the high-level input query expressed in

a declarative language called SQL (see, for

example, [2]) the Parser scans, parses, and

validates the query. The goal is to check

whether the query

is formulated according to the syntax rules

of the language supported in the DBMS. The

parser also validates that all attribute and

relation names are part of the database

schema that is being queried.

The parser produces a parse tree which

serves as input to the Query Translation and

Rewrite module shown underneath the

parser. Here the query is translated into an

internal representation, which is based on

the relational algebra notation [1]. Besides

its compact form, a major advantage of

using relational algebra is that there exist

transformations (re-write rules) between

equivalent expressions to explore alternate,

more efficient forms of the same query.

Differental gebraic expressions for a query

are called logical query plans and are

represented as expression trees or operator

trees. Using the re-write rules, the initial

logical query plan is transformed into an

equivalent plan that is expected to execute

faster. Query re-writing is guided by a

number of heuristics which help reduce the

amount of intermediary work that must be

performed in order to arrive at the same

result.

A particularly challenging problem is the

selection of the best join ordering for queries

involving the join of three or more relations.

The reason is that the order in which the

input relations are presented to a join

operator (or any other binary operator for

that matter) tends to have an important

impact on the cost of the operation.

Unfortunately, the number of candidate

plans grows rapidly when the number of

input relations grows1.

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

Authenticated Data Structures for Graph and Geometric Searching Amit Saini & Akansha Marwah

P a g e | 1852

The outcome of the query translation and

rewrite module is a set of \improved" logical

query plans representing different execution

orders or combinations of operators of the

original query. The Physical Plan Generator

converts the logical query plans into

physical query plans which contain

information about the algorithms to be used

in computing the relational operators

represented in the plan. In addition, physical

query plans also contain information about

the access methods available for each

relation. Access methods are ways of

retrieving tuples from a table and consist of

either a file scan (i.e., a complete retrieval

of all tuples) or an index plus a matching

selection condition. Given the many

different options for implementing relational

operators and for accessing the data, each

logical plan may lead to a large number of

possible physical plans. Among the many

possible plans, the physical plan generator

evaluates the cost for each and chooses the

one with the lowest overall cost.

Finally, the best physical plan is submitted

to the Code Generator which produces the

executable code that is either executed

directly (interpreted mode) or is stored and

executed later whenever needed (compiled

mode). Query re-writing and physical plan

generation are referred to as query

optimization. However, the term is

misleading since in most cases the chosen

plan represents a reasonably

efficientstrategy for executing a query.

Query evaluation engines are very complex

systems and a detailed description of the

underlying techniques and algorithms

exceeds the scope of this chapter. More

details on this topic can be found in any of

the database textbooks (e.g., [3, 4, 9]). For

an advanced treatment of this subject, the

reader is also referred to [8, 7] as well as to

some of the excellent surveys that have been

published (see, for example, [6, 5]).

In the following paragraphs, we focus on

several important data structures that are

used during query evaluation, some of

which have been mentioned above: The

parse tree for storing the parsed and

validated input query (Section 60.2.3), the

expression tree for representing logical and

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

Authenticated Data Structures for Graph and Geometric Searching Amit Saini & Akansha Marwah

P a g e | 1853

physical query plans (Section 60.2.4), and

the histogram which is used to approximate

the distribution of attribute values in the

input relations (Section 60.2.5).

Index Structures An important part of the

work of the physical plan generator is to

choose an efficient presentation for each of

the operators in the query. For each

relational operator (e.g., selection,

projection, join) there are several alternative

algorithms available for implementation.

The best choice usually depends on factors

such as size of the relation, available

memory in the buffer pool, sort order of the

input data, and availability of index

structures.

In the following, we briefly highlight some

of the important index structures that are

used by a modern DBMS and how they can

speed up relational operations.

One-dimensional Indexes One-dimensional

indexes contain a single search key, which

may be composed of multiple attributes. The

most frequently used data structures for one-

dimensional database indexes are dynamic

tree-structured indexes such as B/B+-Trees

and hash-based indexes using extendible

and linear hashing. In general, hash-based

indexes are especially good for equality

searches. For example, in the case of an

equality selection operation, one can use a

one dimensional hash-based index structure

to examine just the tuples that satisfy the

given condition. Consider the selection of

students having a certain grade point

average (GPA).

Assuming students are randomly distributed

throughout the file, an index on the GPA

value could lead us to only those records

satisfying the selection condition and

resulting in a lot fewer data transfers than a

sequential scan of the file (if we assume the

tuples satisfying the condition make up only

a fraction of the entire relation).

Given their superior performance for

equality searches hash-based indexes prove

to be particularly useful in implementing

relational operations such as joins. For

example, the index-nested-loop join

algorithm generates many equality selection

queries, making the difference in cost

between a hash-based and the slightly more

expensive tree-based implementation

significant.

B-Trees provide efficientsupport for range

searches (all data items that fall within a

range of values) and are almost as good as

hash-based indexes for equality searches.

Besides their excellent performance, B-

Trees are \self-tuning", meaning they

maintain as many levels of the index as is

appropriate for the size of the file being

indexed. Unlike hash-based indexes, B-

Trees manage the space on the blocks they

use and do not require any overflow blocks.

Indexes are also used to answer certain types

of queries without having to access the data

file. For example, if we need only a few

attribute values from each tuple and there is

an index whose search key contains all these

fields, we can chose an index scan instead of

examining all data tuples. This is faster since

index records are smaller (and hence ft into

fewer buffer pages). Note that an index scan

does not make use of the search structure of

the index: for example, in a B-Tree index

one would examine all leaf pages in

sequence.

All commercial relational database

management systems support B-Trees and at

least one type of hash-based index structure.

Multi-dimensional Indexes In addition to

these one-dimensional index structures,

many applications (e.g., geographic

database, inventory and sales database for

decision-support) also require data structures

capable of indexing data existing in two or

higher-dimensional spaces. In these

domains, important database operations are

selections involving partial matches (all

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

Authenticated Data Structures for Graph and Geometric Searching Amit Saini & Akansha Marwah

P a g e | 1854

points within a range in each dimension),

range queries (all points within a range in

each dimension), nearest-neighbor queries

(closest point to a given point), and so-called

\where-am-I" queries (region(s) containing a

point).

Some of the most important data structures

that support these types of operations are:

Grid file. A multidimensional extension of

one-dimensional hash tables. Grid files

support range queries, partial-match queries,

and nearest-neighbor queries well, as long as

data is uniformly distributed.

Multiple-key index. The index on one

attribute leads to indexes on another at-

tribute for each value of the must. Multiple-

key indexes are useful for range and nearest-

neighbor queries.

R-tree. A B-Tree generalization suitable for

collections of regions. R-Trees are used to

represent a collection of regions by grouping

them into a hierarchy of larger regions. They

are well suited to support \where-am-I"

queries as well as the other types of queries

mentioned above if the atomic regions are

individual points.

Quad tree. Recursively divide a multi-

dimensional data set into quadrants until

each quadrant contains a minimal number of

points (e.g., amount of data that can ft on a

disk block). Quad trees support partial-

match, range, and nearest-neighbor queries

well.

Bitmap index. A collection of bit vectors

which encode the location of records with a

given value in a given field. Bitmap indexes

support range, nearest-neighbor, and partial-

match queries and are often employed in

data warehouses and decision support

systems. Since bitmap indexes tend to get

large when the underlying attributes have

many values, they are often compressed

using a run-length encoding.

Given the importance of database support

for non-standard applications, most

commercial relational database management

systems support one or more of these multi-

dimensional indexes, either directly as part

of the core engine (e.g., bitmap indexes), or

as part of an of object-relational extensions

(e.g., R-trees in a spatial extender).

60.2.2 Sorting Large Files The need to sort

large data files arises frequently in data

management. Besides outputting the result

of a query in sorted order, sorting is useful

for eliminating duplicate data items during

the processing of queries. In addition, a

widely used algorithm for performing a join

operation (sort-merge join) requires a

sorting step. Since the size of databases

routinely exceeds the amount of available

main memory, all DBMS vendors use an

external sorting technique called merge sort

(which is based on the main-memory

version with the same name). The idea

behind merge sort is that a file which does

not ft into main memory can be sorted by

breaking it into smaller pieces (sublists),

sorting the smaller sublists individually, and

then merging them to produce a file that

contains the original data items in sorted

order.

The external merge sort is also a good

example of how main memory versions of

algorithms and data structures need to

change in a computing environment where

all data resides on secondary and perhaps

even tertiary storage. We will point out more

examples where the most appropriate data

structure for data stored on disk is different

from the data structures used for algorithms

that run in memory in Section 60.4 when we

describe the disk space manager.

During the phase, also called the run-

generation phase, merge-sort the

availablebuffer pages in main memory with

blocks containing the data records from the

file on disk.

Sorting is done using any of the main-

memory algorithms (e.g., Heapsort,

Quicksort). The sorted records are written

back to new blocks on disk, forming a sorted

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

Authenticated Data Structures for Graph and Geometric Searching Amit Saini & Akansha Marwah

P a g e | 1855

sublist containing as many blacks as there

are available buffer pages in main memory.

This process is repeated until all records in

the data file are in one of the sorted sublists.

Run-generation is depicted in Figure 60.3.

 Data Structures for Buffer Management:-

A bufferis partitioned into an array of frames

each of which can keep a page. Usually a

page of a buffer is mapped to a block2 of a

file so that reading and writing of a page

only require one disk access each.

Application programs and queries make

requests on the buffer manager when they

need a block from disk, that contains a data

item of interest. If the block is already in the

buffer, the buffer manager conveys the

address of the block in main memory to the

requester. If the block is not in main

memory, the buffer manager list allocates

space in the buffer for the block, throwing

out some other block if necessary, to make

space for the new block. The displaced

block is written back to disk if it was since

the most recent time that it was written to

the disk. Then, the buffer manager reads in

the requested block from disk into the free

frame of the buffer and passes the page

address in main memory to the requester. A

major goal of buffer management is to

minimize the number of block transfers

between the disk and the buffer.

Besides pages, so-called segments are

provided as a counterpart of files in main

memory.

This allows one to different segment types

with additional attributes, which support

varying requirements concerning data

processing. A segment is organized as a

contiguous subarea of the buffer in a virtual,

linear address space with visible page

borders. Thus, it consists of an ordered

sequence of pages. Data items are managed

so that page borders are respected. If a data

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

Authenticated Data Structures for Graph and Geometric Searching Amit Saini & Akansha Marwah

P a g e | 1856

item is required, the address of the page in

the buffer containing the item is returned.

An important question now is how segments

are mapped to files. An appropriate mapping

enables the storage system to preserve the

merits of the file concept. The distribution of

a segment over several files turns out to be

unfavorable in the same way as the

representation of a data item over several

pages. Hence, a segment Skis assigned to

exactly one fileFj, and m segments can be

stored in a file. Since block size and page

size are the same, page Pki2 Skis assigned to

a block Bjl2 Fj. We distinguish four

methods of realizing this mapping.

File Organization

A file(segment) can be viewed as a sequence

of blocks (pages). Four fundamentalfile

organizations can be distinguished,

namelyfiles of unordered records (heap

files), files of ordered records (sorted files),

files with dispersed records (hash files), and

tree-based files (index structures).

Heap files are the simplest file organization.

Records are inserted and stored in their un-

ordered, chronological sequence. For each

heap file we have to manage their assigned

pages (blocks) to support scans as well as

the pages containing free space to perform

insertions Efficiently. Doubly-linked lists of

pages or directories of pages using both

page numbers for page addressing are

possible alternatives. For the first

alternative, the DBMS uses a header page

which is the first page of a heap file,

contains the address of the first data page,

and information about available free space

on the pages. For the second alternative, the

DBMS must keep the first page of the heap

file in mind. The directory itself represents a

collection of pages and can be organized as

a linked list. Each directory entry points to a

page of the heap file. The free space on each

page is recorded by a counter associated

with each directory entry. If a record is to be

inserted, its length can be compared to the

number of free bytes on a page.

Sorted files physically order their records

based on the values of one (or several) of

their fields, called the ordering field(s). If

the ordering field is also a key field of the

file, i.e., a field guaranteed to have a unique

value in each record, then the field is called

the ordering key for the file. If all records

have the same fixed length, binary search on

the ordering key can be employed resulting

in faster access to records.

Hash files are a file organization based on

hashing and representing an important

indexing technique. They provide very fast

access to records on certain search

conditions. Internal hashing techniques have

been discussed in different chapters of this

book; here we are dealing with their external

variants and will only explain their essential

features. The fundamental idea of hash files

is the distribution of the records of a file into

so-called buckets, which are organized as

heaps. The distribution is performed

depending on the value of the search key.

The direct assignment of a record to a

bucket is computed by a hash function. Each

bucket consists of one or several pages of

records. A bucket directory is used for the

managemen of the buckets, which is an

array of pointers. The entry for index i

points to the first page of bucket i. All pages

for bucket i are organized as a linked list. If

a record has to be inserted into a bucket, this

is usually done on its last page since only

there space can be found. Hence, a pointer to

the last page of a bucket is used to accelerate

the access to this page and to avoid

traversing all the pages of the bucket. If

there is no space left on the last page,

overflow pages are provided. This is called a

static hash file. Unfortunately, this strategy

can cause long chains of overflow pages.

Dynamic hash files deal with this problem

by allowing a variable number of buckets.

Extensible hash files employ a directory

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

Authenticated Data Structures for Graph and Geometric Searching Amit Saini & Akansha Marwah

P a g e | 1857

structure in order to support insertion and

deletion efficiently without the employment

of overflow pages. Linear hash files apply

an intelligent strategy to create new buckets.

Insertion and deletion are efficiently realized

without using a directory structure.

Index structures are a fundamental and

predominantly tree-based file organization

based on the search key property of values

and aiming at speeding up the access to

records. They have a paramount importance

in query processing. Many examples of

index structures are already described in

detail in this book, e.g., B-trees and variants,

quad-trees and cot trees, RR-trees and

variants, and other multidimensional data

structures. We will not discuss them further

here. Instead, we mention some basic and

general organization forms for index

structures that can also be combined. An

index structure is called a primary

organization if it contains search key

information together with an embedding of

the respective records it is named a

secondary organization if it includes besides

search key information only TIDs or TID

lists to records in separate file structures

(e.g., heap files or sorted files). An index is

called a dense index if it contains (at least)

one index entry for each search key value

which is part of a record of the indexed file;

it is named a sparse index (Figure 60.17) if

it only contains an entry for each page of

records of the indexed file. An index is

called a clustered index (Figure 60.17) if the

logical order of records is equal or almost

equal to their physical order, i.e., records

belonging logically together are physically

stored on neighbored pages.

Otherwise, the index is named non-

clustered. An index is called a one-

dimensional index if a linear order is defined

on the set of search key values used for

organizing the index entries.

Such an order cannot be imposed on a multi-

dimensional index where the organization of

index entries is based on spatial

relationships. An index is called a single-

level index if the index only consists of a

single file; otherwise, if the index is

composed of several files, it is named a

multi-level index .

60.5 Conclusion

A modern database management system is a

complex software system that leverages

many So phisticated algorithms, for

example, to evaluate relational operations, to

provide efficient access to data, to manage

the buffer pool, and to move data between

disk and main memory.

International Journal of Research (IJR) Vol-1, Issue-10 November 2014 ISSN 2348-6848

Authenticated Data Structures for Graph and Geometric Searching Amit Saini & Akansha Marwah

P a g e | 1858

In this chapter, we have shown how many of

the data structures that were introduced in

earlier parts of this book (e.g., B-trees,

buffer trees, quad trees, R-trees, interval

trees, hashing) including a few new ones

such as histograms, LOBs, and disk pages,

are being used in a real-world application.

However, as we have noted in the

introduction, our coverage of the data

structures that are part of a DBMS is not

meant to be exhaustive since a complete

treatment would have easily exceeded the

scope of this chapter. Furthermore, as the

functionality of a DBMS must continuously

grow in order to support new applications

(e.g., GIS, federated databases, data

mining), so does the set of data structures

that must be designed to efficiently manage

the underlying data (e.g., s patio-temporal

data, XML, bio-medical data). Many of

these new data structure challenges are

being actively studied in the database

research communities today and are likely to

form a basis for tomorrow's systems.

References

[1] E. Codd. A relational model of data for

large shared data banks. Communications

of the ACM, 13(6):377{387, 1970.

[2] Chris J. Date and Hugh Darwen. A Guide

to The SQL Standard. Addison-Wesley

Publishing Company, Inc., third edition,

1997.

[3] Ramez Elmasri and Shamkant B.

Navathe. Fundamentals of Database

Systems. Addison-Wesley, fourth edition,

2003.

[4] Hector Garcia-Molina, Je®rey D.

Ullman, and Jennifer Widom. Database

Systems - The Complete Book. Prentice Hall,

Upper Saddle River, New Jersey, frst

edition,

[5] Raghu Ramakrishnan and Johannes

Gehrke. Database Management Systems.

McGraw-Hill, third edition, 2003.

[6] Abraham Silberschatz, Henry F. Korth,

and S. Sudharshan. Database System Con-

cepts. McGraw-Hill, fourth edition, 2002

