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Abstract 

Following in the spirit of data structure and 

algorithm correctness checking, 

authenticated data structures provide 

cryptographic proofs that their answers are 

as accurate as the author intended, even if 

the data structure is being maintained by a 

remote host. We present techniques for 

authenticating data structures that represent 

graphs and collection of geometric objects. 

We use a model where a data structure 

maintained by a trusted source is mirrored 

at distributed directories, with the 

directories answering queries made by 

users. When a user queries a directory, it 

receives a cryptographic proof in addition to 

the answer, where the proof contains 

statements signed by the source. The user 

veri_es the proof trusting only the 

statements signed by the source. We show 

how to e_ciently authenticate data 

structures for fundamental problems on 

networks, such as path and connectivity 

queries, and on geometric objects, such as 

intersection and containment queries. Our 

work has applications to the authentication 

of network management systems and 

geographic information systems. 
 

Introduction:- 

Overview of the Functionality of a Database 

Management System:-Many of the previous 

chapters have shown that efficient strategies 

for complex data-structuring problems are 

ssential in the design of fast algorithms for a 

variety of applications, including 

combinatorial optimization, information 

retrieval and Web search, databases and data 

mining, and geometric applications. The 

goal of this chapter is to 

provide the reader with an overview of the 

important data structures that are used in the 

implementation of a modern, general-

purpose database management system 

(DBMS). In earlier chapters of the book the 

reader has already been exposed to many of 

the data structures employed in a DBMS 

context (e.g., B-trees, buffer trees, quad 

trees, R-trees, interval trees, hashing). 

Hence, we will focus mainly on their 

application but also introduce other 

important data structures to solve some of 

the fundamental data management problems 

such as query processing and optimization, 

efficient representation of data on disk, as 

well 

as the transfer of data from main memory to 

external storage. However, due to space 

con- 

straints, we cannot cover applications of 

data structures to solve more advanced 
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problems such as those related to the 

management of multi-dimensional data 

warehouses, spatial and temporal data, 

multimedia data, or XML. 

Before we begin our treatment of how data 

structures are used in a DBMS, we brie°y 

review the basic architecture, its 

components, and their functionality. Unless 

otherwise noted, our discussion applies to a 

class of DBMSs that are based on the 

relational data model. Relational database 

management systems make up the majority 

of systems in use today and are o®ered by 

all major vendors including IBM, Microsoft, 

Oracle, and Sybase. 

Most of the components described here can 

also be found in DBMSs based on other 

models such as the object-based model or 

XML. 

Figure 60.1 depicts a conceptual overview 

of the main components that make up a 

DBMS. 

Rectangles represent system components, 

the double-sided arrows represent input and 

out-

 
 

put, and the solid connectors indicate data as 

well as process °between two components. 

Please note that the inner workings of a 

DBMS are quite complex and we are not 

attempting to provide a detailed discussion 

of its implementation. For an in-depth 

treatment the reader should refer to one of 

the many excellent database books, e.g., [3, 

4, 9, 10]. 

Starting from the top, users interact with the 

DBMS via commands generated from a 

variety of user interfaces or application 

programs. These commands can either 

retrieve or update the data that is managed 

by the DBMS or create or update the 

underlying meta data that describes the 

schema of the data. The former are called 

queries, the latter are called data definition 

statements. Both types of commands are 

processed by the Query Evaluation Engine 

which contains sub-modules for parsing the 

input, producing an execution plan, and 

executing the plan against the underlying 

database. In the case of queries, the parsed 

command is presented to a query optimizer 

sub-module, which uses information about 

how the data is stored to produce an efficient 

execution plan from the possibly many 

alternatives. An execution plan is a set of 

instructions for evaluating an input 

command, usually represented as a tree of 

relational operators. We discuss data 
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structures that are used to represent parse 

trees, query evaluation plans, external 

sorting, and histograms in Section 60.2 

when we focus on the query evaluation 

engine. 

Since databases are normally too large to ft 

into the main memory of a computer, the 

data of a database resides in secondary 

memory, generally on one or more magnetic 

disks. 

However, to execute queries or mode 

captions  on data, that data must  be 

transferred to main memory for processing 

and then back to disk for persistent storage. 

It is the job of the Storage Subsystem to 

accomplish a sophisticated placement of 

data on disk, to assure an efficient 

localization of these persistent data, to 

enable their bidirectional transfer between 

disk and main memory, and to allow direct 

access to these data from higher DBMS 

architecture levels. It consists of two 

components: The Disk Space Manager is 

responsible for storing physical data items 

on disk, managing free regions of the disk 

space, hiding device properties from higher 

architecture levels, mapping physical blocks 

to tracks and sectors of a disc, and 

controlling the data transfer of physical data 

items between external and internal 

memory. The Buffer Manager organizes an 

assigned, limited main memory 

 

Data Structures for Query Processing 

 

Query evaluation is performed in several 

steps as outlined in Figure 60.2. Starting 

with the high-level input query expressed in 

a declarative language called SQL (see, for 

example, [2]) the Parser scans, parses, and 

validates the query. The goal is to check 

whether the query 

is formulated according to the syntax rules 

of the language supported in the DBMS. The 

parser also validates that all attribute and 

relation names are part of the database 

schema that is being queried. 

The parser produces a parse tree which 

serves as input to the Query Translation and 

Rewrite module shown underneath the 

parser. Here the query is translated into an 

internal representation, which is based on 

the relational algebra notation [1]. Besides 

its compact form, a major advantage of 

using relational algebra is that there exist 

transformations (re-write rules) between 

equivalent expressions to explore alternate, 

more efficient forms of the same query. 

Differental gebraic expressions for a query 

are called logical query plans and are 

represented as expression trees or operator 

trees. Using the re-write rules, the initial 

logical query plan is transformed into an 

equivalent plan that is expected to execute 

faster. Query re-writing is guided by a 

number of heuristics which help reduce the 

amount of intermediary work that must be 

performed in order to arrive at the same 

result. 

A particularly challenging problem is the 

selection of the best join ordering for queries 

involving the join of three or more relations. 

The reason is that the order in which the 

input relations are presented to a join 

operator (or any other binary operator for 

that matter) tends to have an important 

impact on the cost of the operation. 

Unfortunately, the number of candidate 

plans grows rapidly when the number of 

input relations grows1. 

 



  

 
 
 

International Journal of Research (IJR)   Vol-1, Issue-10 November 2014   ISSN 2348-6848 

Authenticated Data Structures for Graph and Geometric Searching Amit Saini & Akansha Marwah 
 

P a g e  | 1852 

 
 
 

The outcome of the query translation and 

rewrite module is a set of \improved" logical 

query plans representing different execution 

orders or combinations of operators of the 

original query. The Physical Plan Generator 

converts the logical query plans into 

physical query plans which contain 

information about the algorithms to be used 

in computing the relational operators 

represented in the plan. In addition, physical 

query plans also contain information about 

the access methods available for each 

relation. Access methods are ways of 

retrieving tuples from a table and consist of 

either a file scan (i.e., a complete retrieval 

of all tuples) or an index plus a matching 

selection condition. Given the many 

different options for implementing relational 

operators and for accessing the data, each 

logical plan may lead to a large number of 

possible physical plans. Among the many 

possible plans, the physical plan generator 

evaluates the cost for each and chooses the 

one with the lowest overall cost. 

Finally, the best physical plan is submitted 

to the Code Generator which produces the 

executable code that is either executed 

directly (interpreted mode) or is stored and 

executed later whenever needed (compiled 

mode). Query re-writing and physical plan 

generation are referred to as query 

optimization. However, the term is 

misleading since in most cases the chosen 

plan represents a reasonably 

efficientstrategy for executing a query. 

Query evaluation engines are very complex 

systems and a detailed description of the 

underlying techniques and algorithms 

exceeds the scope of this chapter. More 

details on this topic can be found in any of 

the database textbooks (e.g., [3, 4, 9 ]). For 

an advanced treatment of this subject, the 

reader is also referred to [8, 7] as well as to 

some of the excellent surveys that have been 

published (see, for example, [6, 5]). 

In the following paragraphs, we focus on 

several important data structures that are 

used during query evaluation, some of 

which have been mentioned above: The 

parse tree for storing the parsed and 

validated input query (Section 60.2.3), the 

expression tree for representing logical and 
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physical query plans (Section 60.2.4), and 

the histogram which is used to approximate 

the distribution of attribute values in the 

input relations (Section 60.2.5). 

                       

Index Structures An important part of the 

work of the physical plan generator is to 

choose an efficient presentation for each of 

the operators in the query. For each 

relational operator (e.g., selection, 

projection, join) there are several alternative 

algorithms available for implementation. 

The best choice usually depends on factors 

such as size of the relation, available 

memory in the buffer pool, sort order of the 

input data, and availability of index 

structures. 

In the following, we briefly highlight some 

of the important index structures that are 

used by a modern DBMS and how they can 

speed up relational operations. 

One-dimensional Indexes One-dimensional 

indexes contain a single search key, which 

may be composed of multiple attributes. The 

most frequently used data structures for one-

dimensional database indexes are dynamic 

tree-structured indexes such as B/B+-Trees 

and hash-based indexes using extendible 

and linear hashing. In general, hash-based 

indexes are especially good for equality 

searches. For example, in the case of an 

equality selection operation, one can use a 

one dimensional hash-based index structure 

to examine just the tuples that satisfy the 

given condition. Consider the selection of 

students having a certain grade point 

average (GPA). 

Assuming students are randomly distributed 

throughout the file, an index on the GPA 

value could lead us to only those records 

satisfying the selection condition and 

resulting in a lot fewer data transfers than a 

sequential scan of the file (if we assume the 

tuples satisfying the condition make up only 

a fraction of the entire relation). 

Given their superior performance for 

equality searches hash-based indexes prove 

to be particularly useful in implementing 

relational operations such as joins. For 

example, the index-nested-loop join 

algorithm generates many equality selection 

queries, making the difference in cost 

between a hash-based and the slightly more 

expensive tree-based implementation 

significant. 

B-Trees provide efficientsupport for range 

searches (all data items that fall within a 

range of values) and are almost as good as 

hash-based indexes for equality searches. 

Besides their excellent performance, B-

Trees are \self-tuning", meaning they 

maintain as many levels of the index as is 

appropriate for the size of the file being 

indexed. Unlike hash-based indexes, B-

Trees manage the space on the blocks they 

use and do not require any overflow blocks. 

Indexes are also used to answer certain types 

of queries without having to access the data 

file. For example, if we need only a few 

attribute values from each tuple and there is 

an index whose search key contains all these 

fields, we can chose an index scan instead of 

examining all data tuples. This is faster since 

index records are smaller (and hence ft into 

fewer buffer  pages). Note that an index scan 

does not make use of the search structure of 

the index: for example, in a B-Tree index 

one would examine all leaf pages in 

sequence. 

All commercial relational database 

management systems support B-Trees and at 

least one type of hash-based index structure. 

Multi-dimensional Indexes In addition to 

these one-dimensional index structures, 

many applications (e.g., geographic 

database, inventory and sales database for 

decision-support) also require data structures 

capable of indexing data existing in two or 

higher-dimensional spaces. In these 

domains, important database operations are 

selections involving partial matches (all 
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points within a range in each dimension), 

range queries (all points within a range in 

each dimension), nearest-neighbor queries 

(closest point to a given point), and so-called 

\where-am-I" queries (region(s) containing a 

point). 

Some of the most important data structures 

that support these types of operations are: 

Grid file.  A multidimensional extension of 

one-dimensional hash tables. Grid files 

support range queries, partial-match queries, 

and nearest-neighbor queries well, as long as 

data is uniformly distributed. 

Multiple-key index. The index on one 

attribute leads to indexes on another at- 

tribute for each value of the must. Multiple-

key indexes are useful for range and nearest-

neighbor queries. 

R-tree. A B-Tree generalization suitable for 

collections of regions. R-Trees are used to 

represent a collection of regions by grouping 

them into a hierarchy of larger regions. They 

are well suited to support \where-am-I" 

queries as well as the other types of queries 

mentioned above if the atomic regions are 

individual points. 

Quad tree. Recursively divide a multi-

dimensional data set into quadrants until 

each quadrant contains a minimal number of 

points (e.g., amount of data that can ft on a 

disk block). Quad trees support partial-

match, range, and nearest-neighbor queries 

well. 

Bitmap index. A collection of bit vectors 

which encode the location of records with a 

given value in a given field. Bitmap indexes 

support range, nearest-neighbor, and partial-

match queries and are often employed in 

data warehouses and decision support 

systems. Since bitmap indexes tend to get 

large when the underlying attributes have 

many values, they are often compressed 

using a run-length encoding. 

Given the importance of database support 

for non-standard applications, most 

commercial relational database management 

systems support one or more of these multi-

dimensional indexes, either directly as part 

of the core engine (e.g., bitmap indexes), or 

as part of an of object-relational extensions 

(e.g., R-trees in a spatial extender). 

60.2.2 Sorting Large Files The need to sort 

large data files arises frequently in data 

management. Besides outputting the result 

of a query in sorted order, sorting is useful 

for eliminating duplicate data items during 

the processing of queries. In addition, a 

widely used algorithm for performing a join 

operation (sort-merge join) requires a 

sorting step. Since the size of databases 

routinely exceeds the amount of available 

main memory, all DBMS vendors use an 

external sorting technique called merge sort 

(which is based on the main-memory 

version with the same name). The idea 

behind merge sort is that a file which does 

not ft into main memory can be sorted by 

breaking it into smaller pieces (sublists), 

sorting the smaller sublists individually, and 

then merging them to produce a file that 

contains the original data items in sorted 

order. 

The external merge sort is also a good 

example of how main memory versions of 

algorithms and data structures need to 

change in a computing environment where 

all data resides on secondary and perhaps 

even tertiary storage. We will point out more 

examples where the most appropriate data 

structure for data stored on disk is different 

from the data structures used for algorithms 

that run in memory in Section 60.4 when we 

describe the disk space manager. 

During the  phase, also called the run-

generation phase, merge-sort  the 

availablebuffer  pages in main memory with 

blocks containing the data records from the 

file on disk. 

Sorting is done using any of the main-

memory algorithms (e.g., Heapsort, 

Quicksort). The sorted records are written 

back to new blocks on disk, forming a sorted 
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sublist containing as many blacks as there 

are available buffer pages in main memory. 

This process is repeated until all records in 

the data file are in one of the sorted sublists. 

Run-generation is depicted in Figure 60.3. 

 
 

 
 
 
  Data  Structures for Buffer Management:- 

A bufferis partitioned into an array of frames 

each of which can keep a page. Usually a 

page of a buffer is mapped to a block2 of a 

file so that reading and writing of a page 

only require one disk access each. 

Application programs and queries make 

requests on the buffer manager when they 

need a block from disk, that contains a data 

item of interest. If the block is already in the 

buffer, the buffer manager conveys the 

address of the block in main memory to the 

requester. If the block is not in main 

memory, the buffer manager list allocates 

space in the buffer for the block, throwing 

out some other block if necessary, to make 

space for the new block. The displaced 

block is written back to disk if it was since 

the most recent time that it was written to 

the disk. Then, the buffer manager reads in 

the requested block from disk into the free 

frame of the buffer and passes the page 

address in main memory to the requester. A 

major goal of buffer management is to 

minimize the number of block transfers 

between the disk and the buffer. 

Besides pages, so-called segments are 

provided as a counterpart of files in main 

memory. 

This allows one to different segment types 

with additional attributes, which support 

varying requirements concerning data 

processing. A segment is organized as a 

contiguous subarea of the buffer in a virtual, 

linear address space with visible page 

borders. Thus, it consists of an ordered 

sequence of pages. Data items are managed 

so that page borders are respected. If a data 
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item is required, the address of the page in 

the buffer containing the item is returned. 

An important question now is how segments 

are mapped to files. An appropriate mapping 

enables the storage system to preserve the 

merits of the file concept. The distribution of 

a segment over several files turns out to be 

unfavorable in the same way as the 

representation of a data item over several 

pages. Hence, a segment Skis assigned to 

exactly one fileFj, and m segments can be 

stored in a file. Since block size and page 

size are the same, page Pki2 Skis assigned to 

a block Bjl2 Fj. We distinguish four 

methods of realizing this mapping. 

 

File Organization 

A file(segment) can be viewed as a sequence 

of blocks (pages). Four fundamentalfile 

organizations can be distinguished, 

namelyfiles of unordered records (heap 

files), files of  ordered records (sorted files), 

files with dispersed records (hash files), and 

tree-based files (index structures). 

Heap files are the simplest file organization. 

Records are inserted and stored in their un- 

ordered, chronological sequence. For each 

heap file we have to manage their assigned 

pages (blocks) to support scans as well as 

the pages containing free space to perform 

insertions Efficiently. Doubly-linked lists of 

pages or directories of pages using both 

page numbers for page addressing are 

possible alternatives. For the first 

alternative, the DBMS uses a header page 

which is the first page of a heap file, 

contains the address of the first data page, 

and information about available free space 

on the pages. For the second alternative, the 

DBMS must keep the first page of the heap 

file in mind. The directory itself represents a 

collection of pages and can be organized as 

a linked list. Each directory entry points to a 

page of the heap file. The free space on each 

page is recorded by a counter associated 

with each directory entry. If a record is to be 

inserted, its length can be compared to the 

number of free bytes on a page. 

Sorted files physically order their records 

based on the values of one (or several) of 

their fields, called the ordering field(s). If 

the ordering field is also a key field of the 

file, i.e., a field guaranteed to have a unique 

value in each record, then the field is called 

the ordering key for the file. If all records 

have the same fixed length, binary search on 

the ordering key can be employed resulting 

in faster access to records. 

Hash files are a file organization based on 

hashing and representing an important 

indexing technique. They provide very fast 

access to records on certain search 

conditions. Internal hashing techniques have 

been discussed in different chapters of this 

book; here we are dealing with their external 

variants and will only explain their essential 

features. The fundamental idea of hash files 

is the distribution of the records of a file into 

so-called buckets, which are organized as 

heaps. The distribution is performed 

depending on the value of the search key. 

The direct assignment of a record to a 

bucket is computed by a hash function. Each 

bucket consists of one or several pages of 

records. A bucket directory is used for the 

managemen of the buckets, which is an 

array of pointers. The entry for index i 

points to the first page of bucket i. All pages 

for bucket i are organized as a linked list. If 

a record has to be inserted into a bucket, this 

is usually done on its last page since only 

there space can be found. Hence, a pointer to 

the last page of a bucket is used to accelerate 

the access to this page and to avoid 

traversing all the pages of the bucket. If 

there is no space left on the last page, 

overflow pages are provided. This is called a 

static hash file. Unfortunately, this strategy 

can cause long chains of overflow pages. 

Dynamic hash files deal with this problem 

by allowing a variable number of buckets. 

Extensible hash files employ a directory 
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structure in order to support insertion and 

deletion efficiently without the employment 

of overflow pages. Linear hash files apply 

an intelligent strategy to create new buckets. 

Insertion and deletion are efficiently realized 

without using a directory structure. 

Index structures are a fundamental and 

predominantly tree-based file organization 

based on the search key property of values 

and aiming at speeding up the access to 

records. They have a paramount importance 

in query processing. Many examples of 

index structures are already described in 

detail in this book, e.g., B-trees and variants, 

quad-trees and cot trees, RR-trees and 

variants, and other multidimensional data 

structures. We will not discuss them further 

here. Instead, we mention some basic and 

general organization forms for index 

structures that can also be combined. An 

index structure is called a primary 

organization if it contains search key 

information together with an embedding of 

the respective records it is named a 

secondary organization if it includes besides 

search key information only TIDs or TID 

lists to records in separate file structures 

(e.g., heap files or sorted files). An index is 

called a dense index if it contains (at least) 

one index entry for each search key value 

which is part of a record of the indexed file; 

it is named a sparse index (Figure 60.17) if 

it only contains an entry for each page of 

records of the indexed file. An index is 

called a clustered index (Figure 60.17) if the 

logical order of records is equal or almost 

equal to their physical order, i.e., records 

belonging logically together are physically 

stored on neighbored pages. 

Otherwise, the index is named non-

clustered. An index is called a one-

dimensional index if a linear order is defined 

on the set of search key values used for 

organizing the index entries. 

Such an order cannot be imposed on a multi-

dimensional index where the organization of 

index entries is based on spatial 

relationships. An index is called a single-

level index if the index only consists of a 

single file; otherwise, if the index is 

composed of several files, it is named a 

multi-level index .

 
 

 
 

60.5 Conclusion 

A modern database management system is a 

complex software system that leverages 

many So phisticated algorithms, for 

example, to evaluate relational operations, to 

provide efficient access to data, to manage 

the buffer pool, and to move data between 

disk and main memory. 
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In this chapter, we have shown how many of 

the data structures that were introduced in 

earlier parts of this book (e.g., B-trees, 

buffer trees, quad trees, R-trees, interval 

trees, hashing) including a few new ones 

such as histograms, LOBs, and disk pages, 

are being used in a real-world application. 

However, as we have noted in the 

introduction, our coverage of the data 

structures that are part of a DBMS is not 

meant to be exhaustive since a complete 

treatment would have easily exceeded the 

scope of this chapter. Furthermore, as the 

functionality of a DBMS must continuously 

grow in order to support new applications 

(e.g., GIS, federated databases, data 

mining), so does the set of data structures 

that must be designed to efficiently manage 

the underlying data (e.g., s patio-temporal 

data, XML, bio-medical data). Many of 

these new data structure challenges are 

being actively studied in the database 

research communities today and are likely to 

form a basis for tomorrow's systems. 
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