
 

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  

p-ISSN: 2348-795X  

Volume 04 Issue14 

November 2017 

 

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e  | 4818 

 

 

A Review on Source Code Error Detection in High-Level 

Synthesis Functional Verification  

P.Usharani &Ms. Kapuluru Leelavathi 

1 PG Student, Dept. Of  VLSI and Embedded systems, SKR College Of Engineering & Technology, 

AP 

2 Asst. Professor, Dept. Of VLSI and Embedded systems, SKR College Of Engineering 

&Technology,AP. 

Abstract_A dynamic functional verification 

method thatcompares untimed simulations 

versus timed simulations for synthesizable 

[high-level synthesis (HLS)] behavioral 

descriptions (ANSI-C) is presented in this 

paper. This paper proposes a method that 

automatically inserts a set of probes into the 

untimed behavioral description. These probes 

record the status of internal signals of the 

behavioral description during an initial 

untimed simulation. These simulation results 

are subsequently used as golden outputs for the 

verification of the internal signals during a 

timed simulation once the behavioral 

description has been synthesized using HLS. 

Our proposed method reports any simulation 

mismatches and accurately pinpoints any 

discrepancies between the functional Software 

(SW) simulation and the timed simulation at the 

original behavioral description (source code). 

Our method does not only determine where to 

place the probes, but is also able to insert 

different type of probes based on the specified 

HLS synthesis options in order not to interfere 

with the HLS process, minimizing the total 

number of probes and the size of the data to be 

stored in the trace file in order to minimize the 

running time. Results show that our proposed 

method is very effective and extremely simple to 

use as it is fully automated. 

INDEX TERMS—Domain-specific design, 

field-programmablegate array (FPGA), high-

level synthesis (HLS), quality of results (QoR). 

I. INTRODUCTION 

 

High level synthesis (HLS) tools, which 

automate transla-tion of C/C++ algorithm 

implementations into register transfer level 

(RTL) descriptions, have seen significant 

improvements in recent years. HLS tools are 

large software systems, and thus verification 

and debugging of HLS tools is a significant 

portion of the design and development 

effort.Traditionally, large scale software 

development uses a va-riety of tools and 

techniques to support verification and 

debugging efforts, including debug tools (e.g. 

GDB), memory analysis tools (e.g. Valgrind), 

assertions and printing-based debugging, 

modularization of source code for unit-testing, 

and formal verification. However, although 

these techniques continue to play a role in 

debugging of HLS tools, they are not sufficient; 

these tools can help verify that an HLS tool 

executes without syntax errors and produces 

syntactically correct RTL, but final verification 

also requires that the produced RTL is 

functionally equivalent to the input C/C++ 

source. 

 

Functional verification of RTL is performed 

through sim-ulation and comparison of output 

values. When an output mismatch is identified, 

the user must trace backwards through the 

simulation to discover the earliest incorrect 

internal value; this earliest symptom can then 



 

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  

p-ISSN: 2348-795X  

Volume 04 Issue14 

November 2017 

 

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e  | 4819 

 

 

be used to diagnose the cause of the problem in 

the HLS tool. This process may require de-

tailed backtracing through hundreds of signals 

over the course of hundreds or thousands of 

cycles of simulated execution. Furthermore, 

HLS-produced RTL is typically not intended to 

be human-readable. This challenge of 

effectively verifying and debugging incorrect 

RTL can become a bottleneck in HLS tool 

development, hindering further improvement of 

the HLS tools. 

 

The HLS process performs many 

transformations to paral-lelize and optimize 

execution; thus, we cannot validate appli-cation 

correctness by comparing the exact order of 

operations. However, we can fundamentally 

characterize correct execution with a few 

properties: input data received, output data pro-

duced, conditional control transitions, correct 

propagation of data through data selection 

(PHI-node) operations, and forward progress in 

execution. 

 

In this paper, we present a framework that 

supports HLS tool debug: we use just-in-time 

compilation and trace-generation to generate 

the set of expected values for all operations that 

characterize an application and automatically 

insert RTL ver-ification code for each operation 

and value pair, together with information about 

the correspondence between the RTL and 

operation in LLVM-IR. Using this framework, 

we demonstrate that we can detect bugs in the 

HLS core. Furthermore, we demonstrate that 

our RTL verification code detects the earliest 

instance of execution mismatch with low-

latency; often zero cycles, and always 3 or 

fewer cycles of simulated execution. 

 

This paper contributes to debugging and 

verification of HLS tools with: 

 

A JIT based implementation that automatically 

gathers expected values for all characteristic 

operations.  

 

A trace-based approach to automatically insert 

RTL ver-ification code for all operations that 

characterize correct application execution. 

 

A demonstration that this technique detects 

mismatched execution with low-latency.  

 

II.PROPOSED WORK 
 

Our proposed method applies to the first 

category for HLS (presilicon), but uses 

concepts used in the second category 

(postsilicon). The notion of probes has been 

taken from typical VLSI postsilicon verification 

flows. For example, commercial Field 

Programmable Gate Array tool vendors provide 

on-chip support to allow the observability of 

internal signals (e.g., Chipscope in Xilinx [12] 

and SignalTap in Altera [13]). These tools 

insert probes to signals in the design to be 

tested and capture them using a sampling clock, 

while storing them in a buffer. The buffer 

content is transmitted to a PC and displayed 

graphically, once the buffer is full or certain 

number of samples taken. The designer can 

then manually verify the correctness of the 

design. ARM does also provide a similar 

technology to debug ARM-based systems-on-a-

chip with the Advanced High-performance Bus 

(AHB) trace macrocell, which gives visibility 

on Advanced Microcontroller Bus Architecture 

AHB busses, offering visibility of accesses to 

memory areas [14]. To be able to root-cause 

design bugs, postsilicon validation requires to 

have full controllability and observability of the 

circuit under debug’s (CUD) internal behavior. 

This can currently not be achieved due to the 

extremely larger number of signals that would 



 

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  

p-ISSN: 2348-795X  

Volume 04 Issue14 

November 2017 

 

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e  | 4820 

 

 

need to be traced. A more effective debug 

technique is to selectively monitor some of the 

internal signals. Designers typically select to 

tap a number of signals in the CUD, but only a 

subset of the tapped signals are traced 

concurrently during debug phase due to trace 

bandwidth limitation. This is achieved by 

inserting a mux tree that links the tapped 

signals to trace buffers or trace ports. These 

systems also include trigger units, which are 

used to determine when to start and stop signal 

tracing in order to further reduce trace 

bandwidth requirement [18]. The effectiveness 

of these trace-based debug systems, hence, rely 

considerably on the signals being traced. In 

current postsilicon validation flows designers 

usually manually select those signals that are 

important for analysis to trace, based on their 

own design experience. This ad hoc method, 

however, cannot guarantee the quality of debug 

process [17]. More importantly, bugs often 

occur in unexpected scenariosand it is very 

difficult, if not impossible, to predict which 

signals will be related to them during the design 

phase. Ko and Nicolici [19] first introduced an 

automated method identifying a small set of 

trace signals from which a large number of 

states can be restored using a compute-efficient 

algorithm. This enlarged set of data can then be 

used to aid the search of functional bugs in the 

fabricated circuit. Liu and Xu 
 
[21] expanded this paper conducting circuit-

level propagation of risibilities from traced 

signals to untraced ones achieving a more 

accurate visibility estimation. Although our 

work applies to a completely different VLSI 

design stage, its main objective is similar to the 

postsilicon validation techniques. This paper 

targets the verification at the synthesis level. A 

classification of synthesis verification is given 

in [25]. This paper classifies the synthesis 

verification into presynthesis verification of 

algorithm(s) to be synthesized typically using 

software verification 
 
methods, formal methods using theorem 

provers and postsynthesis verification, where 

the synthesized results are verified against the 

input behavioral descriptions. This last category 

is the most  
widely used today, to which this paper also 

belongs. This last category can be further 

classified into simulation based and formal 

based. Formal methods have been applied to 

verify the HLS process usng translation 

validation. For example, Ashar et al. [27] 

focused on the valid binding stage of HLS, 

while recently [26] focused on the scheduling 

and concurrent systems modeling 

communicating sequential processes. Formal 

methods have gained popularity because RTL 

simulations for larger designs, simulations are 

too slow and cannot detect corner cases. Other 

formal verification approaches include [30], 

where a fully automatic equivalence  
verification of a design before and after the 

scheduling step of HLS is presented. This paper 

was extended in [31] by mapping the designs 

into virtual controllers and virtual datapaths. A 

more recent work [32] uses a finite-state 

machine (FSM) with datapath models to 

represent both behaviors (untimed and timed). 

Our work is fundamentally different from this 

previous works as it is simulation based. An 

early work on simulation-based HLS 

verification is presented in [28]. The advantages 

ofsimulationbased methods are that simulations 

are always needed for overall functional 

verification. Moreover, we apply our method to 

compare pure software (untimed) simulations 

and use cycleaccurate model simulations as the 

timed model instead of the synthesizable RTL 

generated by HLS. Cycle-accurate models have 

been reported to be 10–100× faster than RTL 

simulations [3], making our method fast enough 



 

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  

p-ISSN: 2348-795X  

Volume 04 Issue14 

November 2017 

 

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e  | 4821 

 

 

to work for larger designs. We can define the 

problem to be solved as follows. Problem 

Definition: Find the signals to be traced and 

probe insertion points in a behavioral 

description for HLS in order to locate the 

operation in the source code where the error is 

first introduced, minimizing the simulation 

running time and trace file sizes, without 

distorting the intended HLS result. To the best 

of our knowledge, this is the first work 

investigating functional verification methods 

comparing untime versus timed simulations at 

the behavioral level. Section II-A describes a 

typical HLS verification flow, indicating where 

our proposed method fits in the overall VLSI 

verification flow, followed by a detailed 

description of our proposedmethod. 

 

A. High-Level Synthesis Verification Flow 
HLS takes as inputs a behavioral description, 
e.g., C, C++, or SystemC, and generates 
synthesizable RTL(Verilog or VHDL) by 
creating a control unit in the form of an FSM 
and a data path unit. The datapath unit mainly 
consists of a number of functional units (FUs) 
combined with registers and multiplexers. Most 
commercial HLS tools provide tools to verify 
and debug the design at the highest possible 
level of abstraction in order to facilitate the 
verification process. For this purpose, they 
normally include model generators that create 
different types of simulation models depending 
on the design stage  
 
 
 
 
 
 
 
 
 
 

 

When using HLS, he first step designers need to 

take is to manually refine the original SW 

description in order to make it synthesizable. 

Some of the typical constructs that are not 

supported in HLS are dynamic memory 

allocation and recursion. At this stage, the 

designer also refines the data types in order to 

obtain the smallest possible and most efficient 

HW design. For this purpose, most HLS 

vendors extend the C syntax providing their 

own data types (e.g., CatapultC uses ac_types 

[5] and CyberWorkBenchvar_types 
 
[6]). In the case of SystemC, the sc_types are 

used. For the verification at this state, some of 

the vendors include behavioral model 

generators. These model generators create a 

behavioral program that models the original 

behavioral description including its custom data 

types. After HLS, a cycle-accurate simulation 

can be performed for timing verification. These 

cycle-accurate models again generate a 

behavioral description in any high-level 

language, i.e., ANSI-C or C++/SystemC, and 

mimic the behavior of the RTL cycle 

accurately. The input to these cycle-accurate 

model generators are normally the result of the 

HLS scheduling phase (a byproduct of HLS). 

These models have been proven to be 

consistently faster than RTL by a factor of 100–

1000× for the behavioral model and 10–100× 

faster for the cycle-accurate model [3]. A 

testbench generator that allows the reuse of the 

untimed SW inputs and outputs is typically part 

of these model generators. 

 
 

 

  
 
 
 
 
 

 
 
 
 

 

 



 

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  

p-ISSN: 2348-795X  

Volume 04 Issue14 

November 2017 

 

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e  | 4822 

 

 

 

 

 

 

 

 

 

 

 

III.Simulation Results: 

 

 

 

 



 

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  

p-ISSN: 2348-795X  

Volume 04 Issue14 

November 2017 

 

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e  | 4823 

 

 

 

 

 

IV.Conclusion: 

In this paper, we have presented a complete 

automated verification flow for synthesizable 

behavioral descriptions in order to detect 

where in the source code mismatches between 

the original untimed simulation and the timed 

synthesized design occur. Our proposed 

verification flow leverages the latest 

verification features of commercial HLS tools, 

which allow the reuse of transaction level test 

vectors for timed simulations. By 

automatically inserting a set of internal probes 

our method can efficiently detect mismatches 

between the untimed behavioral simulation and 

the synthesized circuit and locates where the 

error is introduced directly at the source code 

based on the distances between probes. This 

paper introduces the term SCED to determine 

the quality of our verification environment. 

The proposed method inserts different types of 

probes based on the synthesis directives for 

arrays and loops and makes use of synthetic 

operators in probes for arrays to avoid the 

probes interfering with the HLS results. Three 

different probe insertions methods are 

presented each with unique tradeoffs (SCED 

versus simulation runtime versus VCD file 

size). A set of experiments were conducted and 



 

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  

p-ISSN: 2348-795X  

Volume 04 Issue14 

November 2017 

 

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e  | 4824 

 

 

an error was found in one of the designs that 

would have taken much longer time to find 

using a manual approach, further validating 

our verification methodology. The probe 

library is currently being extended to include 

probes, e.g., partial loop unrolling. 

References 
 
[1] J. Zhao, S. Nagarakatte, M. M. Martin, and S. 

Zdancewic, ―Formal verification of ssa-based 

optimizations for llvm,‖ in ACM SIGPLAN 

Notices, vol. 48, no. 6. ACM, 2013, pp. 175–

186.  

 

[2] A. Mathur, M. Fujita, E. Clarke, and P. Urard, 

―Functional equivalence verification tools in 

high-level synthesis flows,‖ Design Test of 

Comput-ers, IEEE, vol. 26, no. 4, pp. 88–95, 

July 2009.  

 

[3] X. Feng and A. Hu, ―Early outpoint insertion 

for high-level software vs. rtl formal 

combinational equivalence verification,‖ in 

DAC, 2006, pp. 1063–1068.  

 

[4] K. Hemmert, J. Tripp, B. Hutchings, and P. 

Jackson, ―Source level debugger for the sea 

cucumber synthesizing compiler,‖ in FCCM, 

April 2003, pp. 228–237.  

 

[5] J. A. N. Calagar, S. Brown, ―Source-level 

debugging for fpga high-level synthesis,‖ in 

FPL, September 2014.  

 

[6] J. Goeders and S. Wilton, ―Effective fpga debug 

for high-level synthesis generated circuits,‖ in 

FPL, Sept 2014, pp. 1–8.  

 

[7] G. Jeffrey and W. Steven, ―Using dynamic 

signal-tracing to debug compiler-optimized hls 

circuits on fpgas,‖ in FCCM, 2015.  

 

[8] K. A. Campbell, D. Lin, S. Mitra, and D. Chen, 

―Hybrid quick error detection (H-QED): 

Accelerator validation and debug using high-

level synthesis principles,‖ in DAC, 2015, pp. 

53:1–53:6.  

 

[9] H. Zheng, S. Gurumani, L. Yang, D. Chen, and 

K. Rupnow, ―High-level synthesis with 

behavioral level multi-cycle path analysis,‖ in 

FPL, 2013.  

[10] H. Zheng, S. Gurumani, L. Yang, D. Chen, and 

K. Rupnow, ―High-level synthesis with 

behavioral-level multicycle path analysis,‖ 

Computer-Aided Design of Integrated Circuits 

and Systems, IEEE Transactions on, vol. 33, no. 

12, pp. 1832–1845, Dec 2014.  

 

[11] Kaleidoscope: Adding JIT and Optimizer 

Support, 

http://llvm.org/docs/tutorial/LangImpl4.html.  

 

[12] Y. Hara, H. Tomiyama, S. Honda, H. Takada, 

and K. Ishii, ―Chstone: A benchmark program 

suite for practical c-based high-level synthesis,‖ 

in ISCAS, 2008, pp. 1192–1195.  

 

Author’s Profile 

P.Usharanireceived 

B.Tech in Electronics and 

Communication Engineering 

from SKR College of 

Engineering, Nellore  

affiliated to the Jawaharlal 

Nehru technological 

university Anatapur in 2011, 

and pursing M. Tech in VLSI and Embedded 

systems from SKR College of Engineering 

affiliated to the Jawaharlal Nehru technological 

university Anantapur in 2017, respectively. 

 

Ms. KAPULURU 

LEELAVATHI as Asst 

Professor Department of 

ECE.Qualification: M.Tech 

SKR College of Engineering & 

Technology 

Email ID: 
leelavathi256@gmail.com 

 

 

 

 

 

mailto:leelavathi256@gmail.com

