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ABSTRACT: Memory plays a crucial role in 

designing embedded systems. Embedded 

systems are constrained by theavailable 

memory. A larger memory can accommodate 

more and large applications but increases cost, 

area, as well as energy requirements. Code-

compression techniques address this issue by 

reducing the code size of application programs. 

It is a major challenge to develop an efficient 

code-compression technique that can generate 

substantial reduction in code size without 

affecting the overall system performance. We 

present an efficient code-compression 

technique, which significantly improves the 

compression ratio. Two previously proposed 

algorithm are evaluated. The first algorithm is 

dictionary-based method, provides a small 

separated dictionary is proposed to restrict the 

codeword length of high-frequency instructions, 

and a novel dictionary selection algorithm is 

proposed to achieve more satisfactory 

instruction selection, which in turn may reduce 

the average CR. The second algorithm is 

mixed-bit saving dictionary selection (MBSDS) 

the fully separated dictionary architecture is 

proposed to improve the performance of the 

dictionary-based decompression engine. This 

architecture has a better chance to parallel 

decompress instructions than existing single 

dictionary decoders Additionally, this paper 

offers a third algorithm namely, to combine the 

two previously proposed schemes along with 

run length encoding to compress the code. 

 

 

KEYWORDS:Bitmasks, code compression, 

decompression, embedded systems, memory, 

compression ratio, codedensity, run length 

encoding. 

 

I.INTRODUCTION 

 

MEMORY is one of the key driving 

factors in embedded-system design because a 

larger memory indicates an increased chip area, 

more power dissipation, and higher cost. As a 

result, memory imposes constraints on the size 

of the application programs. Code-compression 

techniques address the problem by reducing the 

program size. Fig. 1 shows the traditional code-

compression and decompression flow where the 

compression is done offline (prior to execution) 

and the compressed program is loaded into the 

memory. Compression ratio (CR), widely 

accepted as a primary metric for measuring the 

efficiency of code compression, is defined as 

 

 

 

 

 

Dictionary-based code-compression techniques 

are popular because they provide both good CR 

and fast decompression mechanism. The basic 

idea is to take advantage of commonly 

occurring instruction sequences by using a 

dictionary. Recently proposed techniques [3], 

[4] improve the dictionary-based compression 
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by considering mismatches. The basic idea is to 

create instruction matches by remembering a 

few bit positions. The efficiencies of these 

techniques are limited by the number of bit 

changes used during compression. It is obvious 

that if more bit changes are allowed, more 

matching sequences will be generated. 

However, the cost of storing the information for 

more bit positions offsets the advantage of 

generating more repeating instruction 

sequences. Studies [4] have shown that it is not 

profitable to consider more than three bit 

changes when 32-b vectors are used for 

compression. There are various complex 

compression algorithms that can generate major 

reduction in code size. However, such 

compression scheme requires a complex 

decompression mechanism and thereby reduces 

overall system performance. It is a major 

challenge to developan efficient code-

compression technique that can generate 

Substantial code-size reduction without 

introducing any decompression penalty (and 

thereby reducing performance). 

 

 

 

 

 

 

 

 

 

 

Fig. 1.Code-compression methodology. 

Various challenges in bitmask-based 

compression by developing efficient techniques 

for application-specific bitmask selection and 

bitmask-aware dictionary selection to further 

improve the CR[3]. In dictionary-based 

schemes, entire sequences of common 

instructions are selected and replaced by a 

single new codeword which is then used as an 

index to a dictionary that contains the original 

sequence of instructions. In both cases, lookup 

tables (LUTs) are used to store the original 

instructions. The encoded instructions serve as 

indices to those tables. One of the major 

problems is that the tables can become large in 

size, thus diminishing the advantages that could 

be obtained by compressing the code. 

 

 

II.RELATED WORK 

 

The first code-compression technique for 

embedded processors was proposed by Wolfe 

and Chanin [5]. Their technique uses Huffman 

coding, and the compressed program is stored 

in the main memory. The decompression unit is 

placed between the main memory and the 

instruction cache. They used a Line Address 

Table (LAT) to map original code addresses to 

compressed block addresses. Lekatsas and Wolf 

[6] proposed a statistical method for code 

compression using arithmetic coding and 

Markov model. Lekatsaset al. [7] proposed a 

dictionary-based decompression prototype that 

is capable of decoding one instruction per 

cycle. The idea of using dictionary to store the 

frequently occurring instruction sequences has 

been explored by various researchers [9], [10]. 

Fig. 2 shows an example of the standard 

dictionary-based code compression. 

 

The techniques discussed so far target 

reduced instruction set computer (RISC) 

processors. There has been a significant amount 

of research in the area of code compression for 

very long instruction word (VLIW) and 

explicitly parallel instruction computing (EPIC) 

processors. The technique proposed by Ishiura 

and Yamaguchi [11] splits a VLIW instruction 

into multiple fields, and each field is 
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compressed by using a dictionary-based 

scheme. Nam et al. 

 

[12] also use dictionary-based scheme to 

compress fixed-format VLIW instructions. 

Various researchers have developed code-

compression techniques for VLIW architectures 

with flexible instruction formats [13], [11]. 

Larin and Conte [10] applied Huffman coding 

for code compression. [11] usedTunstall coding 

to perform variable-to-fixed compression. Lin 

et al. [12] proposed a Lempel–Ziv–Welch 

(LZW)-based code compression for VLIW 

processors using a variable-sized-block method. 

Ros and Sutton [11] have used a post 

compilation register reassignment technique to 

generate compression-friendly code. Das et al. 

[13] applied code compression on variable-

length instruction-set processors. 

 

3. CODE COMPRESSION USING 

BITMASKS  

 

The motivation of our work is based on 

the analysis presented in Sec-tion 2. Our 

approach tries to incorporate maximum bit 

changes using mask patterns without adding 

signicant cost (extra bits) so that the 

compression ratio is improved. Our 

compression technique also en-sures that the 

decompression efciency remains the same 

compared to the existing techniques. Our 

scheme considers a 32-bit program code 

(vector) and uses mask patterns. Figure 2 shows 

the generic encoding scheme used by our 

compression technique. A compressed code can 

store information regarding multiple mask 

patterns. For each pattern, the generic encoding 

stores the mask type, (requires two bits to dis-

tinguish between 1-bit, 2-bit, 4-bit, or 8-bit), the 

location where mask needs to be applied, and 

the mask pattern. 
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Figure 2: Encoding Format for Our Compression 

Technique 

 

The number of bits needed to indicate a 

location will depend on the mask type. A mask 

of size s can be applied on (32 s) number of 

places. For example, a 8-bit mask can be 

applied only on four places (byte boundaries). 

Similarly, a 4-bit mask can be applied on eight 

places (byte and half-byte boundaries). 

Consider a scenario where a 32-bit word is 

compressed using one 4-bit mask at second 

half-byte boundary, and one 8-bit mask at 

fourth byte boundary, the compressed code will 

appear as shown below. 

 

Mask Types: 00: 1−bit, 01: 2−bit, 

10: 4−bit, and 11: 8−bit 
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The generic encoding scheme can be 

further optimized. For code compression, we 

have found that using up to two bitmasks is 

sufcient to achieve a good compression ratio. 

We explored various customized version of our 

encoding format to gure out which encoding 

format works better across the target 

architectures. Clearly, a 32-bit mask pat-tern is 

not pro table. The 16-bit mask is also not useful 

unless there are too many mismatches which a 

4-bit or 8-bit (or combined 12 bit) mask cannot 

capture. We explored all possible encoding 

scenarios us-ing 4-bit and 8-bit masks and 

observed that three customized encoding 

formats shown in Figure 3 work very well 

across applications and tar-get architectures. 

The rst encoding (Encoding 1) uses a 8-bit 

mask, the second encoding (Encoding 2) uses 

up to two 4-bit masks, and the third encoding 

(Encoding 3) uses up to two masks where rst 

mask can be either 4-bit or 8-bit whereas the 

second mask is always 4-bit. 
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Figure 3: Three Customized Encoding Formats 

 

We rst explain our code compression 

algorithm. Next, we present our decompression 

mechanism. In Section 4, we report 

performance of these customized encoding 

formats. 

 

3.1 Compression Algorithm  

 

Algorithm 1 shows the four basic steps of our 

code compression al-gorithm. The algorithm 

accepts the original code consisting of 32-bit 

vectors. The rst step creates the frequency 

distribution of the vectors. We consider two 

types of information to compute the frequency: 

re-peating sequences and possible matching 

sequences by bitmasks. First, it nds the 

repeating 32-bit sequences and the number of 

repetition de-termines the frequency. This 

frequency computation is similar to any 

dictionary-based code compression scheme and 

provides an initial idea of the dictionary size. 

Next, all the high frequency vectors are 

upgraded (or downgraded) based on how many 
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new repeating sequences they can create from 

mismatches using bitmasks with cost 

constraints. Table 1 provides the cost for the 

choices. For example, it is costly to use two 4-

bit masks (cost: 15 bits) if an 8-bit mask (cost: 

10 bits) can create the match. The second step 

chooses the smallest possible dictionary size 

without signicantly affecting the compression 

ratio. It is useful to consider larger dictionary 

sizes when the current dictionary size can-not 

accommodate all the vectors with frequency 

value above certain threshold. However, there 

are certain disadvantages of increasing the 

dictionary size. The cost of using a larger 

dictionary is more since the dictionary index 

becomes bigger. The cost increase is balanced 

only if most of the dictionary is full with high 

frequency vectors. Most impor-tantly, a bigger 

dictionary increases the access time and thereby 

reduces decompression efciency. 

 

Algorithm 1:Code Compression using 

Mask Patterns 

 

Input: Original code (binary) 

divided into 32-bit vectors Outputs: 

Compressed code and dictionary 

Begin 

 

Step 1: Create the frequency 

distribution of the vectors. Step 2: 

Create the dictionary based on Step 

1. 

 

Step 3: Compress each 32-bit vector 

using cost constraints. Step 4: Handle 

and adjust branch targets. 

 

returnCompressed code 

and dictionaryEnd 

 

The third step converts each 32-bit vector into 

compressed code (when possible) using the 

format shown in Figure 2. The compressed 

code along with any uncompressed ones are 

composed serially to generate the nal 

compressed program code. The nal step of the 

algorithm resolves the branch instruction 

problem by adjusting branch targets. Wolfe and 

Chanin [1] proposed the LAT, however, it 

requires an ex-tra space and degrades overall 

performance. Lefurgy [2] proposed a technique 

which patches the original branch target 

addresses to the new offsets in the compressed 

program. This approach does not require any 

additional space but it is not suitable for 

handling indirect branches. Our technique 

handles branch targets by:patching all the 

possible branch targets into new offsets in the 

compressed program, and padding extra bits at 

the end of the code preceding branch targets to 

align on a byte boundary, creating a minimal 

mapping table to store the new addresses for the 

ones that could not be patched.  

 

This approach signicantly reduces the size of 

the mapping table re-quired, allowing very fast 

retrieval of a new target address. This tech-

nique is very useful since more than 75% 

control ow instructions are conditional 

branches (compare and branch) and they are 

patchable. It leaves only 25% for a small 

mapping table. Our experiments show that 

more than 95% of the branches taken during 

execution do not require the mapping table. 

Therefore, the effect of branching is minimal in 

executing our compressed code. 

 

3.2 Decompression Mechanism  

 

Decompression time is critical since 

decompression is done at run-time. The 

decompression unit must be able to provide an 

instruction at the rate of the processor to avoid 
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any stalling. Our design of the decompression 

engine is based on the one-cycle 

decompression engine (DCE) presented by 

Lekatsas et al. [4]. Figure 4 shows the design 

of our bitmask-based decompression unit. To 

expedite the decoding pro-cess, the DCE is 

customized for efciency, depending on the 

choice of bit-masks used. Using two 4-bit 

masks (Encoding 2 in Section 3), the 

compression algorithm generates 4 different 

types of encodings: i) uncompressed 

instruction, ii) compressed without bitmasks, 

iii) com-pressed with one 4-bit mask, and iv) 

compressed with two 4-bit masks. In the same 

manner, using one bitmask creates only 3 

different types of encodings. Decoding of 

uncompressed or compressed code without 

bitmasks remain virtually identical to the 

previous approach. 

 

For compressed encodings using bitmasks, 

our decompression unit provides two 

additional operations: generating an 

instruction-length (32-bit) mask, and XORing 

the mask and the dictionary entry. The creation 

of an instruction-length mask is 

straightforward as done by applying the 

bitmask on the specied position in the 

encoding. For example, a 4-bit mask can be 

applied only on half-byte boundaries (8 

locations). If two bitmasks were used, the two 

intermediate instructionlength masks need to 

be OR-ed to generate one single mask. The ad-

vantage of our design is that generating an 

instruction length mask can be done in parallel 

with accessing the dictionary, therefore 

generating a 32-bit mask does not add any 

additional penalty to the existing DCE. 

The only additional time incurred in our 

design, compared to the previous one-cycle 

design, is in the last stage where the dictionary 

en-try and the generated 32-bit mask are XOR-

ed. We have surveyed the commercially 

manufactured XOR logic gates and found that 

many of the manufactures produce XOR gates 

with the propagation delay rang-ing from 

0.09ns - 0.5ns, numerous under 0.25ns. The 

critical path of decompression data stream in 

[4] was 5.99ns (with the clock cycle of 8.5 ns). 

Additional 0.25ns satises the 8.5ns clock cycle 

constraint. 
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Figure 4: Decompression Engine for 

Bitmask Encoding 

 

Our DCE can decode multiple 

instructions per cycle (with hardware support). 

If the codeword (with the dictionary index) is 

10 bits, the encoding of instructions 

compressed only using the dictionary will be 

12 bits or less. Instructions compressed with 

one 4-bit mask has the cost of additional 7 bits 

(total 18-19 bits). Therefore a 32-bit stream 

with any combination with a 12-bit code 

contains more than one instruction and can be 

decoded simultaneously. The best case is when 

a 32-bit stream contains two 12 bit encodings 

and prev comp register holds 4 bits of the 

compressed data from the previous cycle, the 

DCE engine has three instructions in hand that 

can be decoded concurrently. 

4. EXPERIMENTS  

 

We performed various code compression 

experiments by varying both application 

domains and target architectures. In this 
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section, we present experimental results using 

nine embedded applications for three target 

architectures. The nine benchmarks are 

collected from Mediabench and MiBench 

benchmark suites: adpcm en, adpcm de, cjpeg, 

djpeg, gsm to,gsmun, mpeg2enc, mpeg2dec, 

andpegwit. We compiled thebenchmarks for 

three target architectures:TI TMS320C6x, 

MIPS, and SPARC. We used TI Code 

Composer Studio to generate binary for TI 

TMS320C6x. We used gcc to generate binary 

for MIPS and SPARC. We computed the 

compression ratio using the Equation (1). Our 

com-putation of a compressed program size 

includes the size of the com-pressed code as 

well as the dictionary and the small mapping 

table. 

 

4.1 Results  

 

In Section 3, we presented our generic 

encoding format as well as three customized 

formats. Encoding 1 uses one 8-bit mask, 

Encod-ing 2 uses up to two 4-bit masks, and 

Encoding 3 uses 4-bit and 8-bit masks. Figure 

5 shows the performance of each of these 

encoding for-mats using adpcm en benchmark 

for three target architectures. We used 

dictionary with 2K entries for these 

experiments. Clearly, the second encoding 

format performs the best by generating a 

compression ratio of 55-65%. Our experience 

with other benchmarks also suggests the same 

trend. We use the second encoding format 

(Encoding 2) for all the results presented in the 

remainder of this section. 

 

Our technique performs well for different 

dictionary sizes. Figure 6 shows the efciency of 

our compression technique for all the nine 

bench-marks compiled for SPARC using 

dictionary sizes of 4K and 8K entries. As 

expected, we can observe three scenarios. The 

small benchmarks 

 

 

 

 

 

 

 

 

 

Figure 5: Compression Ratio for adpcm 

en Benchmark 

 

such as adpcm en and adpcm de perform better 

with a small dictio-nary since a majority of the 

repeating patterns ts in the 4K dictio-nary. On 

the other hand, the large benchmarks such as 

cjpeg, djpeg, and mpeg2enc bene t most from 

the larger dictionary. The medium 

sizedbenchmarks such as mpeg2dec and pegwit 

do not bene t much from the bigger dictionary 

size. On an average, our technique generates 

59% compression ratio. 

 

 

 

 

 

 

 

 

 

 

Figure 6: Compression Ratio for Different 

Benchmarks 

 

Table 2 compares our approach with the 

existing code compression techniques. Our 

technique improves the code compression 

efciency by 15% compared to the existing 

dictionary based techniques [8, 9]. The 
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compression efciency of our technique is 

comparable to the state-of-the-art compression 

techniques (IBM CodePack[7] and SAMC[6]). 

However, due to the encoding complexity, the 

decompression band-width of those techniques 

are only 6-8 bits. As a result, they can not 

support one instruction per cycle 

decompression and it is not possible to place 

the DCE between the cache and the processor 

to take advan-tage of the post-cache design. 

Our decompression mechanism supports one 

instruction per cycle delivery as well as parallel 

decompression. 

 

Table 2: Comparison with Various 

Compression Schemes 

 
Compression Target Compression Decomp Parallel 

 

Method Architecture Ratio Bandwidth Decomp 
 

 

      

Wolfe [1] MIPS 73% 8 bits No 
 

IBM [7] PowerPC 60% 8 bits No 
 

CodePack 
     

    
 

SAMC [6] MIPS 57% 6-8 bits No 
 

V2F [14] TMS320C6x 70-82% 4.9-13 bits No 
 

MCSSC [3] TMS320C6x 75% 14.5-64 bits Yes 
 

Prakash [8] TMS320C6x 76-80% N/A Yes 
 

Ros [9] Itanium 72-80% N/A Yes 
 

 TMS320C6x    
 

Our MIPS, SPARC 55-65% 32-64 bits Yes 
 

Approach TMS320C6x    
 

Smaller compression ratio implies better 

compression technique. 

 

 

5.CONCLUSION 

 

An improved BCC algorithm is proposed in 

this paper. The encoding format was modified 

to enable the decompression engine to support 

multi-LUT access and use variable mask 

numbers to operate with the referenced 

instructions. Although the tag overhead to 

identify the codeword type is increased by 1 bit, 

the proposed method improves CR by over 

7.5% with a slight hardware overhead. A new 

dictionary selection algorithm was also 

proposed to improve the CR. The fully 

separated dictionary architecture was used to 

improve the performance of the decoder, and 

this architecture is better suitable to decompress 

instruction in parallel to increase the 

decompression bandwidth per cycle. 

 

Multicore architecture has been a trend in 

modern embedded products. However, 

multicore systems require higher 

communication bandwidths either between the 

processors and the cache or between the cache 

and the memory, than singlecore systems. The 

design of a decompression engine is a new 

challenge for multicore systems. In the future 

studies, the design and implementation of a 

general multilevel separated dictionary 

decompression engine [23] with fu3 

 

lly separated LUTs method and a parallel 

decompression engine will be investigated, for 

applying code compression to architectures 

with high bandwidth requirements, such as 

multicore architectures. Not only the CR, but 

also performance, power consumption, and 

communication bandwidth between the 

memory and the caches should be analyzed. 
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