

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue-17

December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 77

An Efficient Code Compression Technique for Embedded

Systems
Ms. Konduru Gowthami & Vadite Nanuku Naik

1 PG Student, Dept. Of VLSI and Embedded systems, SKR College Of Engineering & Technology,

AP

2 Asst Professor, Dept. Of VLSI and Embedded systems, SKR College Of Engineering

&Technology,AP.

ABSTRACT: Memory plays a crucial role in

designing embedded systems. Embedded

systems are constrained by theavailable

memory. A larger memory can accommodate

more and large applications but increases cost,

area, as well as energy requirements. Code-

compression techniques address this issue by

reducing the code size of application programs.

It is a major challenge to develop an efficient

code-compression technique that can generate

substantial reduction in code size without

affecting the overall system performance. We

present an efficient code-compression

technique, which significantly improves the

compression ratio. Two previously proposed

algorithm are evaluated. The first algorithm is

dictionary-based method, provides a small

separated dictionary is proposed to restrict the

codeword length of high-frequency instructions,

and a novel dictionary selection algorithm is

proposed to achieve more satisfactory

instruction selection, which in turn may reduce

the average CR. The second algorithm is

mixed-bit saving dictionary selection (MBSDS)

the fully separated dictionary architecture is

proposed to improve the performance of the

dictionary-based decompression engine. This

architecture has a better chance to parallel

decompress instructions than existing single

dictionary decoders Additionally, this paper

offers a third algorithm namely, to combine the

two previously proposed schemes along with

run length encoding to compress the code.

KEYWORDS:Bitmasks, code compression,

decompression, embedded systems, memory,

compression ratio, codedensity, run length

encoding.

I.INTRODUCTION

MEMORY is one of the key driving

factors in embedded-system design because a

larger memory indicates an increased chip area,

more power dissipation, and higher cost. As a

result, memory imposes constraints on the size

of the application programs. Code-compression

techniques address the problem by reducing the

program size. Fig. 1 shows the traditional code-

compression and decompression flow where the

compression is done offline (prior to execution)

and the compressed program is loaded into the

memory. Compression ratio (CR), widely

accepted as a primary metric for measuring the

efficiency of code compression, is defined as

Dictionary-based code-compression techniques

are popular because they provide both good CR

and fast decompression mechanism. The basic

idea is to take advantage of commonly

occurring instruction sequences by using a

dictionary. Recently proposed techniques [3],

[4] improve the dictionary-based compression

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue-17

December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 78

by considering mismatches. The basic idea is to

create instruction matches by remembering a

few bit positions. The efficiencies of these

techniques are limited by the number of bit

changes used during compression. It is obvious

that if more bit changes are allowed, more

matching sequences will be generated.

However, the cost of storing the information for

more bit positions offsets the advantage of

generating more repeating instruction

sequences. Studies [4] have shown that it is not

profitable to consider more than three bit

changes when 32-b vectors are used for

compression. There are various complex

compression algorithms that can generate major

reduction in code size. However, such

compression scheme requires a complex

decompression mechanism and thereby reduces

overall system performance. It is a major

challenge to developan efficient code-

compression technique that can generate

Substantial code-size reduction without

introducing any decompression penalty (and

thereby reducing performance).

Fig. 1.Code-compression methodology.

Various challenges in bitmask-based

compression by developing efficient techniques

for application-specific bitmask selection and

bitmask-aware dictionary selection to further

improve the CR[3]. In dictionary-based

schemes, entire sequences of common

instructions are selected and replaced by a

single new codeword which is then used as an

index to a dictionary that contains the original

sequence of instructions. In both cases, lookup

tables (LUTs) are used to store the original

instructions. The encoded instructions serve as

indices to those tables. One of the major

problems is that the tables can become large in

size, thus diminishing the advantages that could

be obtained by compressing the code.

II.RELATED WORK

The first code-compression technique for

embedded processors was proposed by Wolfe

and Chanin [5]. Their technique uses Huffman

coding, and the compressed program is stored

in the main memory. The decompression unit is

placed between the main memory and the

instruction cache. They used a Line Address

Table (LAT) to map original code addresses to

compressed block addresses. Lekatsas and Wolf

[6] proposed a statistical method for code

compression using arithmetic coding and

Markov model. Lekatsaset al. [7] proposed a

dictionary-based decompression prototype that

is capable of decoding one instruction per

cycle. The idea of using dictionary to store the

frequently occurring instruction sequences has

been explored by various researchers [9], [10].

Fig. 2 shows an example of the standard

dictionary-based code compression.

The techniques discussed so far target

reduced instruction set computer (RISC)

processors. There has been a significant amount

of research in the area of code compression for

very long instruction word (VLIW) and

explicitly parallel instruction computing (EPIC)

processors. The technique proposed by Ishiura

and Yamaguchi [11] splits a VLIW instruction

into multiple fields, and each field is

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue-17

December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 79

compressed by using a dictionary-based

scheme. Nam et al.

[12] also use dictionary-based scheme to

compress fixed-format VLIW instructions.

Various researchers have developed code-

compression techniques for VLIW architectures

with flexible instruction formats [13], [11].

Larin and Conte [10] applied Huffman coding

for code compression. [11] usedTunstall coding

to perform variable-to-fixed compression. Lin

et al. [12] proposed a Lempel–Ziv–Welch

(LZW)-based code compression for VLIW

processors using a variable-sized-block method.

Ros and Sutton [11] have used a post

compilation register reassignment technique to

generate compression-friendly code. Das et al.

[13] applied code compression on variable-

length instruction-set processors.

3. CODE COMPRESSION USING

BITMASKS

The motivation of our work is based on

the analysis presented in Sec-tion 2. Our

approach tries to incorporate maximum bit

changes using mask patterns without adding

signicant cost (extra bits) so that the

compression ratio is improved. Our

compression technique also en-sures that the

decompression efciency remains the same

compared to the existing techniques. Our

scheme considers a 32-bit program code

(vector) and uses mask patterns. Figure 2 shows

the generic encoding scheme used by our

compression technique. A compressed code can

store information regarding multiple mask

patterns. For each pattern, the generic encoding

stores the mask type, (requires two bits to dis-

tinguish between 1-bit, 2-bit, 4-bit, or 8-bit), the

location where mask needs to be applied, and

the mask pattern.

Format for

Uncompressed

Code

Deci

sion

Uncompressed

Data

(1−

bit)

(32

bits)

Format for

Compressed

Code

Deci

sion

Dictiona

ry Index

Numb

er of

M

as

k

Loc

atio

n

Ma

sk

....

.

M

as

k

Loc

atio

n

Mas

k

 mask

pattern

s

(1−

bit)

ty

pe

patt

ern

ty

pe

patt

ern

 Extra bits for considering mismatches

Figure 2: Encoding Format for Our Compression

Technique

The number of bits needed to indicate a

location will depend on the mask type. A mask

of size s can be applied on (32 s) number of

places. For example, a 8-bit mask can be

applied only on four places (byte boundaries).

Similarly, a 4-bit mask can be applied on eight

places (byte and half-byte boundaries).

Consider a scenario where a 32-bit word is

compressed using one 4-bit mask at second

half-byte boundary, and one 8-bit mask at

fourth byte boundary, the compressed code will

appear as shown below.

Mask Types: 00: 1−bit, 01: 2−bit,

10: 4−bit, and 11: 8−bit

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue-17

December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 80

0

1

0

1

0

01

0

4−bi

t 1

1

1

1

8−bi

t Dictionar

y Index

mas

k

 mas

k

The generic encoding scheme can be

further optimized. For code compression, we

have found that using up to two bitmasks is

sufcient to achieve a good compression ratio.

We explored various customized version of our

encoding format to gure out which encoding

format works better across the target

architectures. Clearly, a 32-bit mask pat-tern is

not pro table. The 16-bit mask is also not useful

unless there are too many mismatches which a

4-bit or 8-bit (or combined 12 bit) mask cannot

capture. We explored all possible encoding

scenarios us-ing 4-bit and 8-bit masks and

observed that three customized encoding

formats shown in Figure 3 work very well

across applications and tar-get architectures.

The rst encoding (Encoding 1) uses a 8-bit

mask, the second encoding (Encoding 2) uses

up to two 4-bit masks, and the third encoding

(Encoding 3) uses up to two masks where rst

mask can be either 4-bit or 8-bit whereas the

second mask is always 4-bit.

Decisi

on

of

patter

ns?

Locati

on

Mask

Pattern Dictionary

Index Encoding 1

(1−bi

t)

(1−b

it)

(2−

bit)

(8−bit)

Encoding

2

Decisi

on

of

patter

ns?

Locati

on

Mask

Pattern

Locati

on

Mask

Patter

n

Dictiona

ry Index

(2−bi

t)

(3−

bit)

(4−

bit)

(3−bit

)

(4−b

it)

(1−bi

t)

Enco

ding

3

Decisi

on

of

patter

ns?

Typ

e

Locati

on

Mask

Pattern

Locat

ion

Mas

k

Patte

rn
Dictiona

ry Index

(1−bit) (2−bit)
(1−bit)

(2, 3 bits) (4, 8

bit) (3−bit)

(4−bit)

Figure 3: Three Customized Encoding Formats

We rst explain our code compression

algorithm. Next, we present our decompression

mechanism. In Section 4, we report

performance of these customized encoding

formats.

3.1 Compression Algorithm

Algorithm 1 shows the four basic steps of our

code compression al-gorithm. The algorithm

accepts the original code consisting of 32-bit

vectors. The rst step creates the frequency

distribution of the vectors. We consider two

types of information to compute the frequency:

re-peating sequences and possible matching

sequences by bitmasks. First, it nds the

repeating 32-bit sequences and the number of

repetition de-termines the frequency. This

frequency computation is similar to any

dictionary-based code compression scheme and

provides an initial idea of the dictionary size.

Next, all the high frequency vectors are

upgraded (or downgraded) based on how many

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue-17

December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 81

new repeating sequences they can create from

mismatches using bitmasks with cost

constraints. Table 1 provides the cost for the

choices. For example, it is costly to use two 4-

bit masks (cost: 15 bits) if an 8-bit mask (cost:

10 bits) can create the match. The second step

chooses the smallest possible dictionary size

without signicantly affecting the compression

ratio. It is useful to consider larger dictionary

sizes when the current dictionary size can-not

accommodate all the vectors with frequency

value above certain threshold. However, there

are certain disadvantages of increasing the

dictionary size. The cost of using a larger

dictionary is more since the dictionary index

becomes bigger. The cost increase is balanced

only if most of the dictionary is full with high

frequency vectors. Most impor-tantly, a bigger

dictionary increases the access time and thereby

reduces decompression efciency.

Algorithm 1:Code Compression using

Mask Patterns

Input: Original code (binary)

divided into 32-bit vectors Outputs:

Compressed code and dictionary

Begin

Step 1: Create the frequency

distribution of the vectors. Step 2:

Create the dictionary based on Step

1.

Step 3: Compress each 32-bit vector

using cost constraints. Step 4: Handle

and adjust branch targets.

returnCompressed code

and dictionaryEnd

The third step converts each 32-bit vector into

compressed code (when possible) using the

format shown in Figure 2. The compressed

code along with any uncompressed ones are

composed serially to generate the nal

compressed program code. The nal step of the

algorithm resolves the branch instruction

problem by adjusting branch targets. Wolfe and

Chanin [1] proposed the LAT, however, it

requires an ex-tra space and degrades overall

performance. Lefurgy [2] proposed a technique

which patches the original branch target

addresses to the new offsets in the compressed

program. This approach does not require any

additional space but it is not suitable for

handling indirect branches. Our technique

handles branch targets by:patching all the

possible branch targets into new offsets in the

compressed program, and padding extra bits at

the end of the code preceding branch targets to

align on a byte boundary, creating a minimal

mapping table to store the new addresses for the

ones that could not be patched.

This approach signicantly reduces the size of

the mapping table re-quired, allowing very fast

retrieval of a new target address. This tech-

nique is very useful since more than 75%

control ow instructions are conditional

branches (compare and branch) and they are

patchable. It leaves only 25% for a small

mapping table. Our experiments show that

more than 95% of the branches taken during

execution do not require the mapping table.

Therefore, the effect of branching is minimal in

executing our compressed code.

3.2 Decompression Mechanism

Decompression time is critical since

decompression is done at run-time. The

decompression unit must be able to provide an

instruction at the rate of the processor to avoid

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue-17

December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 82

any stalling. Our design of the decompression

engine is based on the one-cycle

decompression engine (DCE) presented by

Lekatsas et al. [4]. Figure 4 shows the design

of our bitmask-based decompression unit. To

expedite the decoding pro-cess, the DCE is

customized for efciency, depending on the

choice of bit-masks used. Using two 4-bit

masks (Encoding 2 in Section 3), the

compression algorithm generates 4 different

types of encodings: i) uncompressed

instruction, ii) compressed without bitmasks,

iii) com-pressed with one 4-bit mask, and iv)

compressed with two 4-bit masks. In the same

manner, using one bitmask creates only 3

different types of encodings. Decoding of

uncompressed or compressed code without

bitmasks remain virtually identical to the

previous approach.

For compressed encodings using bitmasks,

our decompression unit provides two

additional operations: generating an

instruction-length (32-bit) mask, and XORing

the mask and the dictionary entry. The creation

of an instruction-length mask is

straightforward as done by applying the

bitmask on the specied position in the

encoding. For example, a 4-bit mask can be

applied only on half-byte boundaries (8

locations). If two bitmasks were used, the two

intermediate instructionlength masks need to

be OR-ed to generate one single mask. The ad-

vantage of our design is that generating an

instruction length mask can be done in parallel

with accessing the dictionary, therefore

generating a 32-bit mask does not add any

additional penalty to the existing DCE.

The only additional time incurred in our

design, compared to the previous one-cycle

design, is in the last stage where the dictionary

en-try and the generated 32-bit mask are XOR-

ed. We have surveyed the commercially

manufactured XOR logic gates and found that

many of the manufactures produce XOR gates

with the propagation delay rang-ing from

0.09ns - 0.5ns, numerous under 0.25ns. The

critical path of decompression data stream in

[4] was 5.99ns (with the clock cycle of 8.5 ns).

Additional 0.25ns satises the 8.5ns clock cycle

constraint.

C
o
m

p
re

ss
ed

 C
o
d

e
F

ro
m

 C
a

ch
e

prev_comp prev_decomp

Decompression

M
U

X
 Dictionary Compressed

SRAM

w/o Bitmasks

Logic

U n c o m p r e s s e d C o d e
T

o
 P

ro
ce

ss
o

r

 Index

 Parallel with Dictionary Access

 Mask XOR Output Buffer

 Uncompressed Code

Figure 4: Decompression Engine for

Bitmask Encoding

Our DCE can decode multiple

instructions per cycle (with hardware support).

If the codeword (with the dictionary index) is

10 bits, the encoding of instructions

compressed only using the dictionary will be

12 bits or less. Instructions compressed with

one 4-bit mask has the cost of additional 7 bits

(total 18-19 bits). Therefore a 32-bit stream

with any combination with a 12-bit code

contains more than one instruction and can be

decoded simultaneously. The best case is when

a 32-bit stream contains two 12 bit encodings

and prev comp register holds 4 bits of the

compressed data from the previous cycle, the

DCE engine has three instructions in hand that

can be decoded concurrently.

4. EXPERIMENTS

We performed various code compression

experiments by varying both application

domains and target architectures. In this

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue-17

December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 83

section, we present experimental results using

nine embedded applications for three target

architectures. The nine benchmarks are

collected from Mediabench and MiBench

benchmark suites: adpcm en, adpcm de, cjpeg,

djpeg, gsm to,gsmun, mpeg2enc, mpeg2dec,

andpegwit. We compiled thebenchmarks for

three target architectures:TI TMS320C6x,

MIPS, and SPARC. We used TI Code

Composer Studio to generate binary for TI

TMS320C6x. We used gcc to generate binary

for MIPS and SPARC. We computed the

compression ratio using the Equation (1). Our

com-putation of a compressed program size

includes the size of the com-pressed code as

well as the dictionary and the small mapping

table.

4.1 Results

In Section 3, we presented our generic

encoding format as well as three customized

formats. Encoding 1 uses one 8-bit mask,

Encod-ing 2 uses up to two 4-bit masks, and

Encoding 3 uses 4-bit and 8-bit masks. Figure

5 shows the performance of each of these

encoding for-mats using adpcm en benchmark

for three target architectures. We used

dictionary with 2K entries for these

experiments. Clearly, the second encoding

format performs the best by generating a

compression ratio of 55-65%. Our experience

with other benchmarks also suggests the same

trend. We use the second encoding format

(Encoding 2) for all the results presented in the

remainder of this section.

Our technique performs well for different

dictionary sizes. Figure 6 shows the efciency of

our compression technique for all the nine

bench-marks compiled for SPARC using

dictionary sizes of 4K and 8K entries. As

expected, we can observe three scenarios. The

small benchmarks

Figure 5: Compression Ratio for adpcm

en Benchmark

such as adpcm en and adpcm de perform better

with a small dictio-nary since a majority of the

repeating patterns ts in the 4K dictio-nary. On

the other hand, the large benchmarks such as

cjpeg, djpeg, and mpeg2enc bene t most from

the larger dictionary. The medium

sizedbenchmarks such as mpeg2dec and pegwit

do not bene t much from the bigger dictionary

size. On an average, our technique generates

59% compression ratio.

Figure 6: Compression Ratio for Different

Benchmarks

Table 2 compares our approach with the

existing code compression techniques. Our

technique improves the code compression

efciency by 15% compared to the existing

dictionary based techniques [8, 9]. The

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue-17

December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 84

compression efciency of our technique is

comparable to the state-of-the-art compression

techniques (IBM CodePack[7] and SAMC[6]).

However, due to the encoding complexity, the

decompression band-width of those techniques

are only 6-8 bits. As a result, they can not

support one instruction per cycle

decompression and it is not possible to place

the DCE between the cache and the processor

to take advan-tage of the post-cache design.

Our decompression mechanism supports one

instruction per cycle delivery as well as parallel

decompression.

Table 2: Comparison with Various

Compression Schemes

Compression Target Compression Decomp Parallel

Method Architecture Ratio Bandwidth Decomp

Wolfe [1] MIPS 73% 8 bits No

IBM [7] PowerPC 60% 8 bits No

CodePack

SAMC [6] MIPS 57% 6-8 bits No

V2F [14] TMS320C6x 70-82% 4.9-13 bits No

MCSSC [3] TMS320C6x 75% 14.5-64 bits Yes

Prakash [8] TMS320C6x 76-80% N/A Yes

Ros [9] Itanium 72-80% N/A Yes

 TMS320C6x

Our MIPS, SPARC 55-65% 32-64 bits Yes

Approach TMS320C6x

Smaller compression ratio implies better

compression technique.

5.CONCLUSION

An improved BCC algorithm is proposed in

this paper. The encoding format was modified

to enable the decompression engine to support

multi-LUT access and use variable mask

numbers to operate with the referenced

instructions. Although the tag overhead to

identify the codeword type is increased by 1 bit,

the proposed method improves CR by over

7.5% with a slight hardware overhead. A new

dictionary selection algorithm was also

proposed to improve the CR. The fully

separated dictionary architecture was used to

improve the performance of the decoder, and

this architecture is better suitable to decompress

instruction in parallel to increase the

decompression bandwidth per cycle.

Multicore architecture has been a trend in

modern embedded products. However,

multicore systems require higher

communication bandwidths either between the

processors and the cache or between the cache

and the memory, than singlecore systems. The

design of a decompression engine is a new

challenge for multicore systems. In the future

studies, the design and implementation of a

general multilevel separated dictionary

decompression engine [23] with fu3

lly separated LUTs method and a parallel

decompression engine will be investigated, for

applying code compression to architectures

with high bandwidth requirements, such as

multicore architectures. Not only the CR, but

also performance, power consumption, and

communication bandwidth between the

memory and the caches should be analyzed.

REFERENCES

1. Wei Jhih Wang and Chang Hong Lin

,Code Compression for Embedded Systems

Using Separated Dictionaries”, in IEEE

Transactions on very large scale integration

(VLSI) systems 1063-8210 © 2015 IEEE

2. C. Lefurgy, P. Bird, I.-C. Chen, and T.

Mudge, “Improving code density using

compression techniques,” in Proc. 30th Annu.

ACM/IEEE Int.Symp. MICRO, Dec. 1997, pp.

194–203.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue-17

December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 85

3. S.-W. Seong and P. Mishra, “A bitmask-

based code compression technique for

embedded systems,” in Proc. IEEE/ACM

ICCAD, Nov. 2006, pp. 251–254.

4. S.-W. Seong and P. Mishra, “An efficient

code compression technique using application-

aware bitmask and dictionary selection

methods,” in Proc. DATE, 2007, pp. 1–6.

5. M. Thuresson and P. Stenstrom,

“Evaluation of extended dictionarybased static

code compression schemes,” in Proc. 2nd

Conf.Comput.Frontiers, 2005, pp. 77–86.

6. H. Lekatsas and W. Wolf, “SAMC: A

code compression algorithm for embedded

processors,” IEEE Trans. Computer-Aided

Design Integr.Circuits Syst., vol. 18, no. 12, pp.

1689–1701, Dec. 1999.

7. S. Y. Larin and T. M. Conte, “Compiler-

driven cached code compression schemes for

embedded ILP processors,” in Proc. 32nd

Annu. Int.Symp. Microarchitecture, Nov. 1999,

pp. 82–91.

8. C. H. Lin, Y. Xie, and W. Wolf, “Code

compression for VLIWembedded systems

using a self-generating table,” IEEE Trans.

Very Large ScaleIntegr. (VLSI) Syst., vol. 15,

no. 10, pp. 1160–1171, Oct. 2007.

9. C.-W. Lin, C. H. Lin, and W. J. Wang,

“A Power-aware codecompression design for

RISC/VLIW architecture,” J. Zhejiang Univ.-

Sci. C(Comput. Electron.), vol. 12, no. 8, pp.

629–637, Aug. 2011.

10. T. Bonny and J. Henkel, “FBT: Filled

buffer technique to reduce code size for VLIW

processors,” in Proc. IEEE/ACM Int. Conf.

CAD(ICCAD), Nov. 2008, pp. 549–554.

11. M. Ros and P. Sutton, “A hamming

distance based VLIW/EPIC code compression

technique,” in Proc. Compilers, Arch., Synth.

Embed.Syst., 2004, pp. 132–139.

12. J. Ranjith, N. J. R. Muniraj, and G.

Renganayahi, “VLSI implementation of single

bit control system processor with efficient code

density,” in Proc. IEEE Int. Conf. Commun.

Control Comput. Technol. (ICCCCT), Oct.

2010, pp. 103–108.

Author’s Profile:

Ms.KONDURU.GOWT

HAMIreceived B.Tech in

Electronics and

Communication Engineering

from AUDISANKARA

Engineering College for

woman, Nellore affiliated to

the Jawaharlal Nehru technological university

Anantapur in 2015, and pursing M. Tech in

VLSI and Embedded systems from SKR

College of Engineering affiliated to the

Jawaharlal Nehru technological university

Anantapur in 2015, respectively.

VADITE NANUKU NAIK

as Asst Professor

Department of ECE.

Qualification: M.Tech

Specialization: VLSI System

DesignSKR College of

Engineering & Technology

Email ID: 422nanu@gmail.com

