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Music is the pleasure the human soul experiences from counting without being aware that 

it is counting.  

-Gottfried Wilhelm von Leibniz, a German mathematician who co-discovered calculus.  

 

 

 

ABSTRACT: 

A history of mathematics includes early 

connections with music and the basic physics of 

sound. Mathematics is present in the natural 

occurrence of the ratios and intervals found in 

music and modern tuning systems. In this paper 

we will examine both the mathematics and music 

background for these ideas. We will examine the 

Fourier series representations of sound waves 

and see how they relate to harmonics and tonal 

colour of instruments. Some modern 

applications of the analysis will also be 

introduced. 

INTRODUCTION  
To those who have studied mathematics or 

music in any depth, it has certainly been 

mentioned that mathematics and music are 

deeply connected at the roots. This often seems 

to be taken as an unexplained given. If asked, 

however, to relate some specifics of the 

connection, most students of either principal 

may not have much to say. This paper is aimed 

at exploring the relation between mathematics 

and music, including a specific discipline of 

mathematics, Fourier analysis. Fourier analysis 

can be used to identify naturally occurring 

harmonics (which are, simply put, the basis of 

all musical composition), to model sound, and to 

break up sound into the pieces that define it.  

 

 

 

HISTORY OF FOURIER 

ANALYSIS AND MUSIC  
The connection between mathematics and music 

goes back at least as far as the sixth century B.C. 

with a Greek philosopher named Pythagoras. 

Most people will know him best for the 

Pythagorean Theorem in relation to geometry or 

trigonometry, but this is not his only claim to 

fame. He studied music as well, and understood 

the arithmetical relationships between pitches. It 

is said that he discovered the relationship 

between number and sound. He believed that 

numbers were the ruling principal of the 

universe. As the human ear is unable to 

numerically analyze sound, Pythagoras turned to 

the vibrating string, explored the ideas of the 

length of strings and pitches, and found simple 

ratios relating harmonizing tones [Forster]. A 

musical tuning system is based on his 

discoveries, and will be discussed below.  
These ratios and harmonizing tones come from 

the harmonic series, which will be discussed in 

detail later. The basic idea for now, is that 

harmonics are tones that have frequencies that 

are integer multiples of the original tone, the 

fundamental tone. The fundamental and its 

harmonics naturally sound good together. Each 

tone has a harmonic series, which can be used to 

fill in a scale of notes; western music is based on 

harmonics. When a note is played on an 

instrument, due to the physics of the sound 

waves, we don’t hear only that tone; we hear the 

played tone as the fundamental, as well as a 
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combination of its harmonics sounding at the 

same time.  

After Pythagoras discovered harmonics, many 

more explored the idea more thoroughly. At 

least two unassociated men took significant 

steps in defining harmonics. The first of these is 

Marin Mersenne (1588-1648), a French 

theologian, philosopher, mathematician, and 

music theorist. Some sources say he discovered 

harmonics, which he called sons extraordinaire, 

but in actuality, he defined the harmonics that 

Pythagoras had already found. 

He mathematically defined the first six 

harmonics as ratios of the fundamental 

frequency, 1/1, 2/1, 3/1, 4/1, 5/1, and 6/1, or the 

first six integer multiples of the original tone’s 

frequency [Forster]. Mersenne worked out 

tuning systems (this idea will be discussed 

below) based on harmonics. Also attributed with 

defining harmonics is Jean-Philippe Rameau 

(1683-1764), a French composer and music 

theorist. Rameau understood harmonics in 

relation to consonances and dissonances 

(intervals that sound good or clash) and 

harmonies. His paper, Treatise on Harmony, 

published in the 1720’s, was a theory of 

harmony based on the fact that he heard many 

harmonics sounding simultaneously when each 

note was played. Whether these two men’s work 

was related or not, Rameau’s Treatise on 

Harmony created a stir that initiated a revolution 

in music theory. Musicians began to notice other 

harmonics sounding in addition to the played, 

fundamental tone, notably the 12th and 17th, 

which are the 12th and 17th steps in the scale of 

a given note, respectively [Sawyer].  

In the 18th century, calculus became a tool, and 

was used in discussions on vibrating strings. 

Brook Taylor, who discovered the Taylor Series, 

found a differential equation representing the 

vibrations of a string based on initial conditions, 

and found a sine curve as a solution to this 

equation [Archibald].  

Daniel Bernoulli (1700-1782) and Leonhard 

Euler (1707-1783), Swiss mathematicians, and 

Jean-Baptiste Alembert (1717-1783), a French 

mathematician, physicist, philosopher, and 

music theorist, were all prominent in the ensuing 

mathematical music debate. In 1751, Bernoulli’s 

memoir of 1741-1743 took Rameau’s findings 

into account, and in 1752, Alembert published 

Elements of theoretical and practical music 

according to the principals of Monsieur Rameau, 

clarified, developed, and simplified. D’Alembert 

was also led to a differential equation from 

Taylor’s problem of the vibrating string, 22=2 

22  

Where the origin of the coordinates is at the end 

of the string, the x-axis is the direction of the 

string, y is the displacement at time t 

[Archibald]. This equation is basically the wave 

equation, which will be discussed later.  

Euler questioned the generality of this equation; 

while D’Alembert assumed one equation to 

represent the string, Euler said it could lie along 

any arbitrary curve initially, and therefore 

require multiple different expressions to model 

the curve. The idea was that a simply plucked 

string at starting position represents two lines, 

which cannot be represented in one equation 

 

.  

 

Bernoulli disagreed. After following Rameau’s 

hint, he made an arbitrary mix of harmonics to 

get   = ₁+  ₂      2        2  +  ₃      3        3  +⋯ 

[Sawyer]. His theory was that this equation 

could represent every possible vibration that 

could be made by a stretched string released 

from some position. Setting t = 0 should give the 

initial position of the string. Bernoulli said his 

solution was general, and therefore should 

include the solutions of Euler and D’Alembert. 

This led to the problem of expanding arbitrary 

functions with trigonometric series. This idea 

was received with much skepticism, and no 

mathematician would admit its possibility until 

it was thoroughly demonstrated by Fourier 

[Archibald].  

This leads us to our celebrity, Jean Baptiste 

Fourier, Baron de Fourier (1768-1830), a French 

mathematician. Fourier, the ninth child of a 

tailor, originally intended to become a priest, but 
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decided to study mathematics instead. He 

studied at the military school in Auxerre, and 

was a staff member at the École Norm ale, and 

then the École Polytechnique in Paris, and 

through a recommendation to the Bishop of 

Auxerre, he was educated by the Benvenistes, a 

wealthy, scholarly family. He succeeded 

Lagrange at the École Polytechnique and 

travelled to Egypt in 1798 with Napoleon, who 

made him governor of Lower Egypt. He 

returned to France in 1801 and published his 

paper On the Propagation of Heat in Solid 

Bodies in 1807 [Marks]. His theory about the 

solution to a heat wave equation, stating the 

wave equation could be solved with a sum of 

trigonometric functions, was criticized by 

scientists for fifteen years [Jordan]. What he 

came up with, effectively, was the Fourier 

series. In 1812, the memoir of his results was 

crowned by the French Academy [Archibald]. 

 

 

THE FOURIER SERIES  
The Fourier series is the key to the idea of the 

decomposition of a signal into sinusoidal 

components, and the utility of its descriptive 

power is impressive, second only to the 

differential equation in the modeling of physical 

phenomena, according to Robert Marks, author 

of The Handbook of Fourier Analysis and Its 

Applications. The basic Fourier series takes the 

form of 

 

 
 

 

 

The idea is that as   →∞, the Fourier series for 

f(x) will have enough terms that it will converge 

to the function. See the example below. 

 

 

 
Figure b. () =     1   ℎ     0<< 0 

1 ℎ    −  <<0 

Figure b shows a simple piecewise equation in red, and the partial sums in blue (summed to a given n) of 

the Fourier series of the function for n=1, 3, 5, 7, 11, 15. As n grows, the Fourier series gives a closer 

approximation of the actual function. 

 

The Fourier series is the sum of trigonometric 

functions with coefficients specific to the 

function modeled. It is a sum of continuous 

functions, which can converge point wise to a 
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discontinuous function, as seen above, where 

each partial sum will be a continuous function. It 

can be used to solve and model complicated 

functions, and is a solution to the wave equation, 

which is a differential equation. The series can 

model any periodic function, but can also be 

used with other functions. The concept of sums 

of trigonometric functions to model other 

functions was not a new one in Fourier’s time: 

Bernhard Riemann did some work with 

trigonometric functions to model other 

functions, as did Bernoulli. 

 

 

SOUND BASICS  
The Fourier Series has many applications in the 

physical world, including that of modeling 

sound. Pure tones have frequency and 

amplitude, which determine the pitch and the 

strength of the sound, respectively. These are 

waves, and can therefore be represented by 

sinusoidal equations. Sounds are made of pure 

tones, combined in linear combinations to create 

more complex sounds, such as chords.  

The vibrating strings and air columns on 

instruments obey the wave equation. The wave 

equation, as found by D’Alembert in equation 1, 

is a differential equation that examines the 

behavior of a piece of a string based on initial 

conditions, displacement, and release from rest. 

As hypothesized by Bernoulli, the Fourier series 

is a solution to the wave equation. This means 

that Fourier Series can be used to model the 

sound waves produced by vibrating strings and 

air columns.  

Now that we’ve established the basics of sound, 

let’s return to pure tones. Pure tones are, as 

implied by the name, pure and simple sound 

waves, which can be modeled by a single 

trigonometric function. For example, the pure 

tone of frequency 220 Hz, which would be an A 

in musical terms, has the following graph: 

  

 

 

Figure c. =asin(2   (      )  ) , a is the amplitude of the wave.  

The frequency of 220Hz would be an A in music.  

of frequency 220 It can be seen from the graphs and the equations that the two notes differ by frequency, 

and therefore have different periods, but are both simple sinusoidal functions. If we listen to these tones 

produced by a computer, they sound very simple, and almost empty. We can’t say which instrument 

would make these sounds, because an instrument cannot produce these pure tones, which we will discuss 

below. More complex tones, which sound less empty, are made by the addition of pure tones.  
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It can be seen from the graphs and the equations 

that the two notes differ by frequency, and 

therefore have different periods, but are both 

simple sinusoidal functions. If we listen to these 

tones produced by a computer, they sound very 

simple, and almost empty. We can’t say which 

instrument would make these sounds, because an 

instrument cannot produce these pure tones, 

which we will discuss below. More complex 

tones, which sound less empty, are made by the 

addition of pure tones. 

 

 

HARMONICS AND THE 

HARMONIC SERIES 
This leads us to the discussion of harmonics. As 

mentioned above, when an instrument plays a 

note, the wave produced is not just a pure tone; 

it is a complex tone based on the physics of the 

instrument. When the note is played, the 

fundamental frequency is heard, as well as 

overtones, or harmonics. This is what 

determines the timbre of the instrument, or the 

tonal color; timbre is why different instruments 

playing the same note do not all sound the same. 

The instrument’s timbre is what distinguishes its 

sound from that of a different instrument. The 

strength, or amplitude, of each harmonic is the 

difference we’re hearing, since each note played 

includes the fundamental tone and some 

harmonics. In the graphs below, we see the 

harmonics and sound waves from the same note 

on different instruments. The blue wave is the 

sound wave, and the red bars are the amplitudes 

of respective harmonics, 

 

 

Figure e. This is a graph of a pure tone at a frequency of 349 Hz. Note it is only a sine wave, and there are 

no harmonics sounding, just the fundamental tone. This does not sound like a note played on an 

instrument because it is purely the fundamental tone, with no harmonics to add tonal colour. 
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Figure f. This is a graph of an oboe playing the same tone. Note the differences in the wave. This is due to 

the     harmonics that are also heard, as seen below the graph. 

Figure g. This is a graph of a clarinet playing the same tone. The wave is similar to that of the oboe, but 

still notably different due to the different harmonics sounding with the fundamental. 

 

Figure g. This is a graph of a clarinet playing the 

same tone. The wave is similar to that of the 

oboe, but still notably different due to the 

different harmonics sounding with the 

fundamental.  

http://www.jhu.edu/signals/listen-new/listen-

newindex.htm 

Harmonics are integer multiples of the 

fundamental frequency, and are therefore from 

the harmonic series of that frequency, which is 

the series of harmonics of the given 

fundamental. The frequency of the Mth 

harmonic of a tone is (  +1)₀, where   ₀ is the 

fundamental frequency, which is defined as the 

lowest frequency allowed by the length of the air 

column or string. So to recap, the fundamental 

frequency is the pitch, or note, heard when the 

tone is played. The harmonics determine the 

timbre, or tonal color, of the sound. This is what 

differentiates the sounds of different instruments 

playing the same note.  

The tonal quality, or timbre, of the sound 

includes its richness or harshness. This is not 

necessarily a technical definition, but rather how 

the listener would describe the sound. These two 

qualities can be directly attributed to the upper 

or lower harmonics. Sounds that contain more 

upper harmonics tend to sound brighter, or 

sometimes harsh; sounds that contain lower 

harmonics sound richer or softer.  

The contributions of upper and lower harmonics 

can also be seen in the examination of white 

noise. White noise occurs when many or all 

equal-amplitude frequencies are sounded at the 
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same time. If one removes the lower-register 

frequencies, the sound suddenly becomes much 

harsher, and it seems somewhat more bearable if 

the higher-register frequencies are removed. To 

listen to all of the above sound graphs, as well as 

white noise, visit 

http://www.jhu.edu/signals/listen-new/listen-

newindex.htm.  

So we’ve determined the importance of 

harmonics in sound, but we haven’t yet 

discussed their origins in the harmonic series. 

The harmonic series is the series of tones created 

by multiplying a fundamental frequency by 

integers. This can be done based on any 

fundamental frequency, and each will result in a 

unique harmonic series. This is where pure 

intervals, intervals with frequencies related by 

small integer ratios, as found by Pythagoras 

when he cut strings in half, come from and 

where we get the ratios for them. The numerator 

of the ratios is the multiple of the fundamental 

frequency, and the denominator is the number of 

octaves between the two; we divide by this to 

put the tone in the same octave as the 

fundamental.  

As an example, let’s look at the harmonic series 

on C, where C is the fundamental note or 

frequency. The first harmonic plays a C an 

octave higher, which means that the frequency 

ratio between octaves is 2:1. The second 

harmonic is a fifth higher than that, with 

frequency three times the fundamental 

frequency. So by dividing by 2, we put the fifth 

in the same octave as the fundamental, since it is 

originally an octave too high, and thus to go up a 

perfect fifth, the ratio is 3/2. Similarly, the ratio 

for a perfect fourth in the same octave is 4:3. 

Going up the harmonic series will produce the 

notes of a major scale, where the first five tones 

are those of the C major triad, which is C, E, and 

G. A triad is a very strong musical feature in 

modern Western Music. So multiplying the 

fundamental by n, we go up the harmonics 

series. To go down the series, called the 

subharmonic series, we multiply by 1/n. If we 

continue the harmonic series up and down, we 

will have the major and minor scales of notes, so 

we can fill in all of the notes of the chromatic 

scale, which would be like playing every key on 

a piano. All notes except for one, called the 

tritone or diablus en musica, devil in music. The 

tritone is the one and only note between a 

perfect fourth and a perfect fifth, and by our 

Western standards, it sounds awful. This is F# 

for the C harmonic series. In order to finish the 

chromatic scale, we compile the major and 

minor scales from the harmonic and 

subharmonic series into one octave, and we fill 

in the one missing note. 

 

 

When Pythagoras was investigating strings, 

these small integer ratios (above) are the ones he 

found. To the left is an illustration of the ratios 

on a string. The first image is the full length of 

the string vibrating. The second is the string 

divided in two, which doubles the frequency and 

produces a tone an octave higher. The third is 

the string divided in three, which triples the 

frequency, and produces a tone another fifth 

higher. As these harmonics are naturally 

occurring based on the physics of sound, they 

sound naturally pleasing, particularly in the 

lower harmonics. The harmonic series is not just 

a convenient idea created by music theorists; it 

actually exists naturally, in the physics of sound, 

as Pythagoras discovered. 

http://www.jhu.edu/signals/listen-new/listen-newindex.htm
http://www.jhu.edu/signals/listen-new/listen-newindex.htm
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Figure i.  

If A is represented by =, where x is the 

frequency, then B would be represented by =      

2, and C would be represented by =      3.  

http://www.marco-

learningsystems.com/pages/sawyer/music.html 

The first image is the full length of the string 

vibrating. The second is the string divided in 

two, which doubles the frequency and produces 

a tone an octave higher. The third is the string 

divided in three, which triples the frequency, and 

produces a tone another fifth higher  

What can provide barriers with musical notation 

of the tones from the series, however, is that as 

we go up the harmonic series to higher 

harmonics, the step size decreases. This happens 

because we add the fundamental frequency to 

obtain each new harmonic. Adding x to 2x 

makes a much bigger difference than adding x to 

10x. So the step size is related to the ratio of 

frequency change each time the fundamental 

frequency is added. Since a whole and half step 

in music are set step sizes, we will eventually, as 

the intervals get smaller, have intervals from the 

harmonic series that are less than half steps. 

Music notation only allows for the fixed step 

size between adjacent notes, which are half 

steps. The awkward intervals of the upper 

harmonics, which are not whole or half steps, 

sound unfamiliar, and are often considered 

unpleasing. This is why we say the interval is 

pleasing if the frequencies are related by small 

integers; the requirement of small integers keeps 

us in the lower harmonics. 

 

 

Harmonic series are unique to the fundamental 

tone. A very strong pure interval is the perfect 

fifth, which can be made into a circle. By a 

circle, we mean that if we start on a note, and the 

next addition to the circle is a fifth above that, 

then a fifth above that, and continue in this 

manner, this includes all of the notes in the 

chromatic scale. This is how music theorists 

organize relating keys. Related keys have similar 

key signatures, which define the sharps and flats 

in that key, are close to each other in the circle 

of fifths, and therefore are related by closely by 

fifths. If followed around a circle it will lead 

back to the original note. What’s interesting is 

that the frequency found by following the circle 

of fifths around from one note will not be 

exactly the same as if followed around from 

another starting note. Look at the note D, a step 

above a C, for example. Based on the harmonic 

series of A, two steps below a C, it is a fourth 

above the fundamental, or a fourth above an A, 

so the frequency would be 43(220)Hz = 

293.3Hz. Based on the harmonic series of G 

three steps below a C, however, D is a fifth 

above the fundamental, a G, which means its 

frequency would be 32(200)Hz = 294Hz. This 

difference may be small, but the fundamentals 

differ by only one whole step. It would be more 

amplified if the fundamentals were farther apart. 

If the circle of fifths based on the fundamental of 

A at 220Hz is taken all the way around to 

another A, the frequency of the new A would be 

2203212=28544.2Hz, which should be a power-

of-2 multiple of 220Hz, but is not. As this new 

A is seven octaves higher, the frequency, based 

on perfect octaves having frequency ratios of 

2:1, should be 220(27) =28160    . Now the 

difference is more pronounced. This is called the 

Pythagorean Comma, and will lead us later to 

discussions of tuning systems. 

http://www.marco-learningsystems.com/pages/sawyer/music.html
http://www.marco-learningsystems.com/pages/sawyer/music.html
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Figure j. This is a diagram of the Circle of fifths 

Begin on any note, and the notes to either side 

are a fifth above or below that note 

 

TUNING SYSTEMS  
We’ve just discussed the ratios of the pure 

intervals that occur naturally in the harmonic 

series. But these exact ratios don’t always apply 

in modern music. The above-mentioned 

uniqueness of each harmonic series and circle of 

fifths to its fundamental tone is the reason for 

this. If the composer wants to change keys, in 

order to have pure intervals, different 

frequencies are needed based on ratios from the 

new key. In addition, some notes from the upper 

harmonics will sound particularly dissonant, not 

to mention that we have no way of notating 

ever-decreasing step sizes. To solve this 

problem, various tuning systems have been 

developed throughout history for instruments.  

The Pythagorean tuning system is based on the 

interval of a perfect fifth, and very closely on the 

harmonic series, using small integer ratios. This 

system fills in the chromatic scale with a series 

of fifths, as in the circle of fifths. In order to get 

to that final perfect octave, which is the seventh 

octave after the fundamental, eleven perfect 

fifths, and a significantly smaller fifth are 

needed. This sounds good when the not from 

smaller fifth is avoided, but doesn’t work well 

otherwise. This system is a theoretical system 

that hasn’t really been put into practice because 

of the problems of modulation and inconsistent 

fifths. Many historical systems have modified 

the Pythagorean system to keep some intervals 

pure, and some approximated, but many of these 

still had limits.  

The current dominant system is called equal 

temperament. This system approximates pure, 

Pythagorean ratios, but in a way that allows 

modulation and consistency. In an octave, there 

are twelve chromatic steps, which are half steps. 

Instead of having these steps vary slightly as 

they go up the harmonic series, equal 

temperament divides the octave into twelve 

equal steps. Since the frequency ratio for an 

octave is 2:1, this means that each half step has a 

frequency of  

= ₀2/12, 

 

Where₀ is the fundamental frequency and n is 

the number of half steps from the fundamental 

note. Conversely, the number of half steps n 

between two frequencies u₁ and u₂ is a 

logarithmic equation of base 21/12,  

=log (₁/ ₂).  
Since each half step is exactly the same size, a G 

in the key of D will be exactly the same 

frequency as a G in the key of A. This allows for 

modulation. Also, following the fifths up, after 

12 fifths, we will end up on a perfect octave, so 

we have consistency in frequencies.  

This system does still have a downside: because 

we use the number 21/12 for a half step, which 

is an irrational number, the intervals are not 

rationals, so they’re not pure to the harmonic 

series intervals. Since the intervals in equal 

temperament are not the pure rationals from the 

harmonic series, technically, they’re not quite in 

tune with each other. Key intervals in western 

music, such as the major third, the perfect 

fourth, and the perfect fifth, are very close, but 

some, such as the seventh, are noticeably off. 

This works out since the seventh is naturally 

dissonant sounding. To explain this, we divide 

each half step into 100 cents (yet another 

frequency measure). So the frequency of a given 
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tone based on the fundamental and the number 

of cents difference is  

Since n is now the number of cents, and there 

are 100 cents in a half step, the number of half 

steps has become 100n. This is just a way to 

more closely express interval sizes based on the 

frequency.  

An equal tempered fifth, which is seven half 

steps, should be exactly 700 cents. The perfect 

fifth with ratio of 3/2, however, is 702 cents, a 

very minimal difference. Another way to 

compare the frequencies would be to compute 

each pure ratio, and compare the decimal to the 

decimal irrational number from equal tempered 

system. Take the perfect fourth: 4/3=1.3333… 

from the Pythagorean ratio, and 25/12=1.3484… 

from equal temperament. 

We can see the difference in frequency ratios, 

but using cents gives a standardized comparison 

method. See the chart below for the comparison 

of all notes in the chromatic scale. 

 

Figure k. This chart shows the frequency ratios 

for the two 

Tuning systems in numbers, and in cents, based 

on the interval 

 

This leads to the question of Fourier series 

representations of the sounds produced by equal 

tempered instruments verses Pythagorean tuned 

instruments. If equally tempered instruments 

have slightly different intervals between steps, 

does that mean they have different harmonics? 

The equal temperament system is just a method 

to have consistent step sizes when the instrument 

changes notes. This can change the fundamental 

frequency of certain notes, but the physics of 

sound still apply, in that each tone still has 

harmonics that are integer multiples of the 

fundamental frequency. A Fourier series of a 

tone will still clearly represent the fundamental 

and the overtones in the same way, whether the 

tone is from an equally tempered or Pythagorean 

tune instrument. If the fundamentals of two 

tones are different, then the Fourier series will 

be different. This would be slight if the 

difference is only 2 cents, as in the case of 

perfect vs. tempered fifths. 

 

PRACTICAL APPLICATIONS 

AND THE FOURIER 

TRANSFORM  
While all this theory is interesting in itself, it 

does have some practical applications as well. 

Derived from the Fourier series, the Fourier 

Transform can be used to turn musical signals 

into frequencies and amplitudes, which is what 

we need to understand it in terms of harmonics 

and the series. A simple form of the Fourier 

Transform, [(  )] (  ), is given by 

 

This can be derived from the generalized form 

of the Fourier series and is the key to practically 

applying Fourier analysis to music in audio 

form. This idea transforms our equations in the 

time domain to the frequency domain, or vice 

versa.  
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Dr. Jason Brown, a mathematician at Dalhousie 

University in Canada, put this to use recently on 

a popular Beatles song, A Hard Day’s Night. To 

musicians, the opening chord (a distinct change) 

has long been a mystery. Many scores of the 

song have tried to reproduce it, but none have 

ever quite matched. Brown decided to run the 

Fourier Transform on a one second recording of 

the chord using computer technology, and got a 

list of frequencies out—over 29,000 of them. He 

took only the frequencies with the highest 

amplitudes, as these would most likely be the 

fundamental frequencies, and possibly some 

strong harmonics. He then compared these 

frequencies to an A of 220Hz, using the half step 

frequency change for equal tempered 

instruments as discussed above, and found how 

many half steps each was from the A. This was 

easily converted into a list of notes being played. 

Values of half steps that were not close to 

integers could be accounted for by out of tune 

instruments. Then, based on the instruments in 

the band and their physical capabilities, such as 

how many strings the piano and guitar 

instruments have for each note, he assigned each 

note to the instruments. The result was that he 

successfully recreated the chord as it was meant 

to sound, which others had only managed to 

approximate [Brown].  

Another possible use of Fourier analysis in 

music is in using it to compose the music. 

Computer generated ‘spectral’ music originated 

in Paris in the 1970’s, and emphasizes timbre, 

not pitch and rhythm as in traditionally 

composed music. It focuses on the internal 

frequency spectrum of the sound. Composers 

use Fourier analysis to see and change the 

timbre of the sounds they’re creating. This could 

allow composers to create entirely new sounds, 

and not be confined by the physical capabilities 

of musical instruments. 

 

CONCLUSIONS 

As we can see, mathematics in music runs deep. 

The naturally pleasing ratios used in music are 

so pleasing because of the mathematical 

principals behind them, and all western music is 

based on the harmonic series. Modern tuning 

systems can be used to solve problems of 

modulation and consistency caused by the pure 

ratio intervals that our ears want to hear. Fourier 

analysis is useful in modeling and breaking up 

sound, and the Fourier Transform opens up 

practical possibilities to model and define sound 

using Fourier analysis. 
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