

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 475

VLSI Design and Comparison of PASTA Multiplier with

Carry save Multiplier
M. Sai Lakshmi

& S.Ravindra

mandharapu.1993@gmail.com1, ravindrasada@gmail.com2

1PG Scholar, Dept of ECE, St.Mary’s Women’s Engineering College, Budampadu, Guntur, Andhra Pradesh.
2Assistant Professor, Dept of ECE, St.Mary’s Women’s Engineering College, Budampadu, Guntur, Andhra

Pradesh.

Abstract:- As the scale of integration keeps

growing, more and more sophisticated signal

processing systems are being implemented on a VLSI

chip. These signal processing applications not only

demand great computation capacity but also

consume considerable amounts of energy. While

performance and area remain to be two major

design goals, power consumption has become a

critical concern in today’s VLSI system design.

Multiplication is a fundamental operation in most

arithmetic computing systems. Multipliers have large

area, long latency and consume considerable power.

Multiplication is a basic arithmetic operation which

is present in any part of the digital computer

especially in signal processing systems. Different

techniques are used for multiplication. Some of the

techniques are CSA, CSD, Booth’s, Grid, Lattice,

Combinational, Sequential, Array, Vedic, Wallace-

tree etc

Keywords: Multiplier, VHDL, FPGA.

I. INTRODUCTION

Over the last two decades, adaptive signal

processing has developed into a self-contained field

that finds wide range of real-life applications such as

adaptive equalization, noise and echo cancellation,

linear predictive coding, and adaptive beam-forming.

Adaptive signal processing algorithms are

characterized by their recursive operations for

realising algorithmic self-designing/adaptation. To

realize high-throughput VLSI implementation of

adaptive signal processing algorithms, architecture-

level technique pipelining is typically used. Pipelined

adaptive signal processing systems are essentially

subject to a trade-off between systems throughput

and signal processing performance, i.e., deeper

pipelined adaptation feedback loop can realise higher

throughput, but the delayed feedback will incur

larger performance degradation. It should be pointed

out that, for other recursive algorithms such as

infinite impulse response (IIR) filtering and Viterbi

algorithm, direct pipelining may simply ruin their

functionality and appropriate algorithm-level

modification is required for the use of pipelining. A

pipelined adaptive signal processing algorithm

implemented using the conventional synchronous

pipeline typically has a fixed pipeline depth that is

determined in the design phase to accommodate the

highest run-time throughput requirement. Although it

is possible to on-the-fly configure the pipeline depth

of synchronous pipeline by selectively bypassing

certain levels of registers, this is very inflexible and

cannot realize fine-grain graceful configuration on

the throughput/performance trade-offs. For example,

consider an 8-stage pipelined recursive adaptation

loop in which the registers are almost evenly placed

along the loop for maximizing the throughput. If we

bypass one level of registers to realize a 7-stage

pipeline, the delay of the critical path may double

and the throughput will reduce almost by half.

 Self-timed pipeline [4], [5] works in a

different way from its synchronous counterpart.

Without a common and discrete notion of time, self-

timed pipeline relies on the handshake between

components to perform the synchronization and

communication. Each distinct data propagating

through a self timed pipeline is conventionally called

a token. The pipeline depth of a self-timed pipeline

simply equals the number of tokens present in the

pipeline at the same time. Hence, we can

dynamically configure the pipeline depth by

controlling the number of tokens present in the

pipeline. This property of self-timed pipeline has

been exploited in the design of a mixed synchronous-

asynchronous FIR filter that can support variable

latency (in terms of clock cycles) [6] and power

management of an embedded, single-issue processor

[7]. In pipelined adaptive signal processing systems,

the pipeline depth of the adaptation feedback loops is

mailto:mandharapu1993@gmail.com1
mailto:ravindrasada@gmail.com2

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 476

the key to tune the inherent tradeoff between

throughput and signal processing performance. This

directly motivates us to apply self-timed pipeline for

the implementation of adaptive signal processing

systems to realize gracefully configurable

throughput/performance tradeoff. This can be

leveraged to improve the overall system performance

in many circumstances. For example, for adaptive

signal processing systems with variable data rate, we

can dynamically adjust the pipeline depth to the

minimum allowable value according to the current

data rate to realize the best signal processing

performance. Although the basic idea of the above

design approach is simple and intuitive, how to

implement it in the real systems involves the

following three critical design issues:

1) What type of self-timed pipeline structure should

be used? Clearly, to justify the practicality of this

design approach, the employed self-timed pipeline

must be able to support the same (or comparable)

throughput as its synchronous counterpart when they

have the same pipeline depth. This means that the

recursive self-timed pipeline data-path should have

the same (or comparable) propagation delay as its

synchronous counterpart. This is a very strict

requirement since most self-timed pipeline design

schemes involve extra delay overhead for realizing

self-timed handshake and have the longer latency

than their synchronous counterparts, although they

can support very fine-grain pipeline to realize high

throughput. In this work, we propose to use the well-

known Ted William’s high-speed self-timed pipeline

[4], [8] because of its zero delay-overhead feature

(i.e., no extra handshake delay is incurred when data

propagate through the pipeline). Hence the zero-

delay-overhead pipeline can achieve the same

latency performance as its synchronous counterpart.

2) How to realize the self-timed data flow

synchronization in the recursive adaptation loop? In

self-timed data path, synchronization of parallel

computational threads relies on forks and joins,

where fork refers to a stage with one input channel

and multiple output channels and join refers to a

stage with multiple input channels and a single

output channel. The recursive adaptation loop of

adaptive signal processing algorithms contains many

forks and joins. However, like many other self-timed

pipeline styles, the zero-delay-overhead self-timed

pipeline was initially proposed for linear data-path

(i.e., without forks and joins). Therefore, it must be

appropriately modified to support forks and joins.

3) How to realize run-time addition/removal of

tokens in order to change the pipeline depth? In a

feed forward only data--path, the pipeline depth can

be readily changed by adjusting the input data rate.

However, as we will show later, it is not trivial to

change the pipeline depth in recursive adaptation

loops. We have to design some special circuit

elements that can be placed on the recursive

adaptation loop to realize run-time addition/removal

of tokens.

II. Literature Survey

Power is a problem primarily when cooling

is a concern. The maximum power at any time, peak

power, is often used for power and ground wiring

design, signal noise margin and reliability analysis.

Energy per operation or task is a better metric of

the energy efficiency of a system, especially in

the domain of maximizing battery lifetime. In

digital CMOS design, the well-known power-delay

product is commonly used to assess the merits of

designs. Generally multiplication consists of three

steps: generation of partial products or PPs (PPG),

reduction of partial products (PPR), and final carry-

propagate addition (CPA). Different multiplication

algorithms vary in the approaches of PPG, PPR, and

CA. For PPG, radix-2 digit-vector multiplication is

the simplest form because the digit-vector

multiplication is produced by a set of AND

gates. To reduce the number of PPs and

consequently reduce the area/delay of PP reduction,

one operand is usually recoded into high -radix digit

sets. The most popular one is the radix-4 digit set

{−2, −1, 0, 1, 2}. For PPR, two alternatives exist:

reduction by rows, performed by an array of

adders, and reduction by columns, performed by

an array of counters. In reduction by rows, there

are two extreme classes: linear array and tree array.

Linear array has the delay of O (n) while both tree

array and column reduction have the delay of O (log

n), where n is the number of PPs. The final CPA

requires a fast adder scheme because it is on the

critical path. Some low-level techniques that has

been studied for multipliers include using voltage

scaling, layout optimization, transistor reordering

and sizing, using pass-transistor logic and swing

limited logic, signal polarity optimization, delay

balancing and input synchronization. However,

these techniques have only achieved moderate

improvement on power consumption in multipliers

with much design effort or considerable area/delay

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 477

overhead. The difficulty of low-power multiplier

design lies in three aspects. Multiplication is

basically a shift add operation. There are, however,

many variations on how to do it. Some are more

suitable for FPGA use than others; some of them

may be efficient for a system like CPU. This section

explores various verities and attracting features of

multiplication hardware. The multiplier area is

quadratically related to the operand precision.

Second, parallel multipliers have many logic levels

that introduce spurious transitions or glitches.

Third, the structure of parallel multipliers could be

very complex in order to achieve high speed, which

deteriorates the efficiency of layout and circuit level

optimization. As a fundamental arithmetic

operation, multiplication has many algorithm-level

and bit-level computation features in which it differs

from random logic. These features have not been

considered well in low-level power optimization. It

is also difficult to consider input data characteristics

at low levels. Therefore, it is desirable to develop

algorithm and architecture level power optimization

techniques.

Array Multiplier

Array multiplier is well known due to its

regular structure. Multiplier circuit is based on add

and shift algorithm. Each partial product is

generated by the multiplication of the multiplicand

with one multiplier bit. The partial

product are shifted according to their bit orders and

then added. The addition can be performed with

normal carry save adder.

Advantages

First advantage of the array multiplier is that

it has a regular structure. Since it is regular, it is easy

to layout and has a small size. . A second advantage

of the array multiplier is its ease of design for a

pipelined architecture.

III. Design of PASTA

In this section, the architecture and theory

behind PASTA is presented. The adder first accepts

two input operands to perform half additions for each

bit. Subsequently, it iterates using earlier generated

carry and sums to perform half-additions repeatedly

until all carry bits are consumed and settled at zero

level.

A. Architecture of PASTA

The general architecture of the adder is

shown in Fig. 1. The selection input for two-input

multiplexers corresponds to the Req handshake

signal and will be a single 0 to 1 transition denoted

by SEL. It will initially select the actual operands

during SEL=0and will switch to feedback/carry paths

for subsequent iterations using SEL=1. The feedback

path from the HAs enables the multiple iterations to

continue until the completion when all carry signals

will assume zero values

Fig. 2. General block diagram of PASTA

B. State Diagrams

In Fig. 3, two state diagrams are drawn for

the initial phase and the iterative phase of the

proposed architecture. Each state is represented by

(Ci+1Si) pairwhereCi+1, Si represent carry out and

sum values, respectively, from the ith bit adder

block. During the initial phase, the circuit merely

works as a combinational HA operating in

fundamental mode. It is apparent that due to the use

of HAs instead of FAs, state (11) cannot appear.

During the iterative phase (SEL=1), the

feedback path through multiplexer block is activated.

The carry transitions (Ci) are allowed as many times

as needed to complete the recursion. From the

definition of fundamental mode circuits, the present

design cannot be considered as a fundamental mode

circuit as the input–outputs will go through several

transitions before producing the final output. It is not

a Muller circuit working outside the fundamental

mode either as internally; several transitions will take

place, as shown in the state diagram. This is

analogous to cyclic sequential circuits where gate

delays are utilized to separate individual states.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 478

Fig. 3. State diagrams for PASTA. (a) Initial

phase. (b) Iterative phase

C. Recursive Formula for Binary Addition

Let S ji and C j i+1 denote the sum and

carry, respectively, for ith bit at the jth iteration. The

initial condition (j =0) for addition is formulated as

follows

The jth iteration for the recursive addition is

formulated by

The recursion is terminated at kth iteration

when the following condition is met:

Now, the correctness of the recursive

formulation is inductively proved as follows.

Theorem 1:The recursive formulation of (1)–(4) will

produce correct sum for any number of bits and will

terminate within a finite time.

Proof: We prove the correctness of the algorithm by

induction on the required number of iterations for

completing the addition (meeting the terminating

condition).

Basis: Consider the operand choices for which no

carry propagation is required, i.e., C0
i = 0 for ∀i,i

∈[0..n]. The proposed formulation will produce the

correct result by a single-bit computation time and

terminate instantly as (4) is met.

Induction: Assume that Ck
i+1≠0 for some ith bit at kth

iteration. Let l be such a bit for which Ck
l+1 =1. We

show that it will be successfully transmitted to next

higher bit in the (k+1)th iteration. As shown in the

state diagram, the kth iteration of lth bit state

(Ck
l+1,S

k
l) and (l +1)th bit state Ck

l+2,S
k
l+1) could be in

any of (0,0), (0,1),or(1,0) states. As Ck
l+1 =1, it

implies that Sk
l =0. hence, from (3),Ck+1

l+1 =0 for any

input condition between 0to l bits.

We now consider the (l +1)th bit state (Ck
l+2,S

k
l+1) for

kth iteration. It could also be in any of (0,0),

(0,1),or(1,0) states. In(k+1)th iteration,

the(0,0)and(1,0)states from the kth iteration will

correctly produce output of(0,1) following (2) and

(3). For(0,1) state, the carry successfully propagates

through this bit level following (3).

Thus, all the single-bit adders will

successfully kill or propagate the carries until all

carries are zero fulfilling the terminating condition.

The mathematical form presented above is valid

under the condition that the iterations progress

synchronously for all bit levels and the required

input and outputs for a specific iteration will also be

in synchrony with the progress of one iteration. In

the next section, we present an implementation of the

proposed architecture which is subsequently verified

using simulations.

IV Design of CSA Multiplier

Generally multiplication consists of three

steps: generation of partial products or PPs (PPG),

reduction of partial products (PPR), and final carry-

propagate addition (CPA). Different multiplication

algorithms vary in the approaches of PPG, PPR, and

CA.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 479

Fig 4.Basic arithmetic steps of multiplication and

accumulation.

Fig.5.Multiplier with Carry saves Adder Architecture

 In the Carry Save Addition method, the first

row will be either Half-Adders or Full-Adders. If the

first row of the partial products is implemented with

Full-Adders, Cin will be considered „0‟. Then the

carries of each Full- Adder can be diagonally

forwarded to the next row of the adder. The resulting

multiplier is said to be Carry Save Multiplier,

because the carry bits are not immediately added, but

rather are saved for the next stage. In the design if

the full adders have two input data the third input is

considered as zero. In the final stage, carries and

sums are merged in a fast carry-propagate (e.g. ripple

carry or carry look ahead) adder stage

V. SIMULATION RESULTs

PASTA Multiplier:

Simulation.

RTL Schematic.

Technology Schematic.

Design Summary.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 480

CSA Multiplier:

Simulation

RTL Schematic.

Technology Schematic.

Design Summary;

VI. Conclusion

These days speed of the multiplier has

become an asset or constraint due to the importance

of multiplier circuit in a wide variety of

microelectronic systems. In this paper we analyzed

different multiplier techniques taking speed as the

main criteria. Carry save adder is proved to be

more efficient in terms of speed compared to

conventional multiplication techniques generated the

output in 2.06 sec, whereas the booth multiplier

generated the output in 3.09sec while the shift

&add multiplier produce d the output in 2.31

sec. However the array multiplier generated the

output in 2.75sec and modified booth multiplier in

around 3.08 sec.The carry save adder on the other

hand consumes less hardware than other

multiplication techniques.

REFERENCES

[1] GarimaTiwari “Analysis, Verification and FPGA

Implementation of Low Power Multiplier”.

[2] Kripa Mathew, S.AshaLatha, T.Ravi,

E.Logashanmugam “design and analysis of an Array

Multiplier using an Area Efficient full

adder cell in 32 nm CMOS Technology”.

[3] ChakibAlaoui “Design and Simulation of a

Modified Architecture of Carrysave Adder”.

[4]Deepali Chandel,Gagan Kumawat, Pranay

Lahoty, VidhiVartChandrodaya, Shailendra

Sharma.International Journal of Emerging

Technology and Advanced Engineering Volume 3,

Issue 3, March 2013”Booth Multiplier: Ease of

multiplication”.

[5] International Journal of Engineering Science

InventionShaik.Kalisha Baba, D.Rajaramesh

“Design and Implementation of

Advanced Modified Booth Encoding Multiplier”.

[6] G.W. Bewick, “Fast Multiplication: Algorithms

and Implementation.“Ph.D. dissertation, Stanford

University, Feb. 1994

[7] Shiann-RongKuang, Jiun-Ping Wang, and Cang-

Yuan Guo, “Modified Booth multipliers with a

Regular Partial Product Array,”

IEEE Transactions on circuits and systems-II, vol 56,

No 5, May 2009.

[8] 8.M. Zamin Ali Khan1, Hussain Saleem2, Shiraz

Afzal3 and Jawed Naseem4, ― An Efficient 16-Bit

Multiplier based on Booth

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 481

Algorithm, international Journal of Advancements in

Research & Technology, Volume 1, Issue 6,

November-2012 ISSN 2278-7763

[9] Dr. Ravi Shankar Mishra,Prof.

PuranGour,BrajBihariSoni, ―Design and

Implements of Booth and Robertson„s multipliers

algorithm on FPGA.‖ International Journal of

Engineering Research and Applications (IJERA)

ISSN: 2248-9622.

[10] F.C Cheng, S. H. Unger, “Self-Timed Carry-

Look Ahead Adders”, IEEE Transactions on

Computers, Vol. 49, No. 7, July 2000.

BIOGRAPHIES.

S. Ravindra is working as an Assistant Professor in

St.Mary’s Women’s Engineering College,

Budampadu, Guntur, Andhra Pradesh.

