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Abstract:- As the scale of integration keeps 

growing, more and more sophisticated signal 

processing systems are being implemented on a VLSI 

chip. These signal processing applications not only 

demand great computation capacity but also 

consume considerable amounts of energy. While 

performance and area remain to be two major 

design goals, power consumption has become a 

critical concern in today’s VLSI system design. 

Multiplication is a fundamental operation in most 

arithmetic computing systems. Multipliers have large 

area, long latency and consume considerable power. 

Multiplication is a basic arithmetic operation which 

is present in any part of the digital computer 

especially in signal processing systems. Different 

techniques are used for multiplication. Some of the 

techniques are CSA, CSD, Booth’s, Grid, Lattice, 

Combinational, Sequential, Array, Vedic, Wallace-

tree etc  
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I. INTRODUCTION 

 

Over the last two decades, adaptive signal 

processing has developed into a self-contained field 

that finds wide range of real-life applications such as 

adaptive equalization, noise and echo cancellation, 

linear predictive coding, and adaptive beam-forming. 

Adaptive signal processing algorithms are 

characterized by their recursive operations for 

realising algorithmic self-designing/adaptation. To 

realize high-throughput VLSI implementation of 

adaptive signal processing algorithms, architecture-

level technique pipelining is typically used. Pipelined 

adaptive signal processing systems are essentially 

subject to a trade-off between systems throughput 

and signal processing performance, i.e., deeper 

pipelined adaptation feedback loop can realise higher 

throughput, but the delayed feedback will incur 

larger performance degradation. It should be pointed 

out that, for other recursive algorithms such as 

infinite impulse response (IIR) filtering and Viterbi 

algorithm, direct pipelining may simply ruin their 

functionality and appropriate algorithm-level 

modification is required for the use of pipelining. A 

pipelined adaptive signal processing algorithm 

implemented using the conventional synchronous 

pipeline typically has a fixed pipeline depth that is 

determined in the design phase to accommodate the 

highest run-time throughput requirement. Although it 

is possible to on-the-fly configure the pipeline depth 

of synchronous pipeline by selectively bypassing 

certain levels of registers, this is very inflexible and 

cannot realize fine-grain graceful configuration on 

the throughput/performance trade-offs. For example, 

consider an 8-stage pipelined recursive adaptation 

loop in which the registers are almost evenly placed 

along the loop for maximizing the throughput. If we 

bypass one level of registers to realize a 7-stage 

pipeline, the delay of the critical path may double 

and the throughput will reduce almost by half. 

 

 Self-timed pipeline [4], [5] works in a 

different way from its synchronous counterpart. 

Without a common and discrete notion of time, self-

timed pipeline relies on the handshake between 

components to perform the synchronization and 

communication. Each distinct data propagating 

through a self timed pipeline is conventionally called 

a token. The pipeline depth of a self-timed pipeline 

simply equals the number of tokens present in the 

pipeline at the same time. Hence, we can 

dynamically configure the pipeline depth by 

controlling the number of tokens present in the 

pipeline. This property of self-timed pipeline has 

been exploited in the design of a mixed synchronous-

asynchronous FIR filter that can support variable 

latency (in terms of clock cycles) [6] and power 

management of an embedded, single-issue processor 

[7]. In pipelined adaptive signal processing systems, 

the pipeline depth of the adaptation feedback loops is 
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the key to tune the inherent tradeoff between 

throughput and signal processing performance. This 

directly motivates us to apply self-timed pipeline for 

the implementation of adaptive signal processing 

systems to realize gracefully configurable 

throughput/performance tradeoff. This can be 

leveraged to improve the overall system performance 

in many circumstances. For example, for adaptive 

signal processing systems with variable data rate, we 

can dynamically adjust the pipeline depth to the 

minimum allowable value according to the current 

data rate to realize the best signal processing 

performance. Although the basic idea of the above 

design approach is simple and intuitive, how to 

implement it in the real systems involves the 

following three critical design issues: 

1) What type of self-timed pipeline structure should 

be used? Clearly, to justify the practicality of this 

design approach, the employed self-timed pipeline 

must be able to support the same (or comparable) 

throughput as its synchronous counterpart when they 

have the same pipeline depth. This means that the 

recursive self-timed pipeline data-path should have 

the same (or comparable) propagation delay as its 

synchronous counterpart. This is a very strict 

requirement since most self-timed pipeline design 

schemes involve extra delay overhead for realizing 

self-timed handshake and have the longer latency 

than their synchronous counterparts, although they 

can support very fine-grain pipeline to realize high 

throughput. In this work, we propose to use the well-

known Ted William’s high-speed self-timed pipeline 

[4], [8] because of its zero delay-overhead feature 

(i.e., no extra handshake delay is incurred when data 

propagate through the pipeline). Hence the zero-

delay-overhead pipeline can achieve the same 

latency performance as its synchronous counterpart. 

2) How to realize the self-timed data flow 

synchronization in the recursive adaptation loop? In 

self-timed data path, synchronization of parallel 

computational threads relies on forks and joins, 

where fork refers to a stage with one input channel 

and multiple output channels and join refers to a 

stage with multiple input channels and a single 

output channel. The recursive adaptation loop of 

adaptive signal processing algorithms contains many 

forks and joins. However, like many other self-timed 

pipeline styles, the zero-delay-overhead self-timed 

pipeline was initially proposed for linear data-path 

(i.e., without forks and joins). Therefore, it must be 

appropriately modified to support forks and joins.  

3) How to realize run-time addition/removal of 

tokens in order to change the pipeline depth? In a 

feed forward only data--path, the pipeline depth can 

be readily changed by adjusting the input data rate. 

However, as we will show later, it is not trivial to 

change the pipeline depth in recursive adaptation 

loops. We have to design some special circuit 

elements that can be placed on the recursive 

adaptation loop to realize run-time addition/removal 

of tokens. 

 

II. Literature Survey 

Power is a problem primarily when cooling 

is a concern. The maximum power at any time, peak 

power, is often used for power and ground wiring 

design, signal noise margin and reliability analysis. 

Energy per operation or task  is  a  better  metric  of  

the  energy  efficiency  of  a  system,  especially  in  

the  domain  of  maximizing  battery lifetime. In 

digital CMOS design, the well-known power-delay 

product is commonly used to assess the merits of 

designs. Generally multiplication consists of three 

steps: generation of partial products or PPs (PPG), 

reduction of partial products (PPR), and final carry-

propagate addition (CPA). Different multiplication 

algorithms vary in the approaches of PPG, PPR, and 

CA. For PPG, radix-2 digit-vector multiplication is 

the simplest form because  the  digit-vector  

multiplication  is  produced  by  a  set  of  AND  

gates.  To reduce the number of PPs and 

consequently reduce the area/delay of PP reduction, 

one operand is usually recoded into high -radix digit 

sets. The most popular one is the radix-4 digit set 

{−2, −1, 0, 1, 2}. For PPR, two alternatives exist: 

reduction by rows,  performed  by  an  array  of  

adders,  and  reduction  by  columns,  performed  by  

an  array  of  counters.  In reduction by rows, there 

are two extreme classes: linear array and tree array. 

Linear array has the delay of O (n) while both tree 

array and column reduction have the delay of O (log 

n), where n is the number of PPs. The final CPA 

requires a fast adder scheme because it is on the 

critical path. Some low-level techniques that has 

been studied for multipliers include using voltage 

scaling, layout optimization, transistor reordering 

and sizing, using pass-transistor  logic  and  swing  

limited  logic,  signal  polarity  optimization,  delay  

balancing  and  input synchronization. However, 

these techniques have only achieved moderate 

improvement on power consumption in multipliers 

with much design effort or considerable area/delay 
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overhead.  The difficulty of low-power multiplier 

design lies in three aspects. Multiplication is 

basically a shift add operation. There are, however, 

many variations on how to do it. Some are  more 

suitable for  FPGA use than others; some of them 

may be efficient for a system like CPU. This section 

explores various verities and attracting features of 

multiplication hardware. The multiplier area is 

quadratically related to the operand precision.  

Second, parallel multipliers have many logic  levels  

that  introduce  spurious  transitions or glitches. 

Third, the structure of parallel multipliers could be 

very complex in order to achieve high speed, which 

deteriorates the efficiency of layout and circuit level 

optimization.   As a fundamental arithmetic 

operation, multiplication has many algorithm-level 

and bit-level computation features in which it differs 

from random logic. These features have not been 

considered well in low-level power optimization. It 

is also difficult to consider input data characteristics 

at low levels.  Therefore, it is desirable to develop 

algorithm and architecture level power optimization 

techniques.  

Array Multiplier 

Array multiplier is well known due to its 

regular structure. Multiplier circuit is based on add 

and shift algorithm.  Each partial product is 

generated by the multiplication of the multiplicand 

with one multiplier bit. The partial  

product are shifted according to their bit orders and 

then added.  The  addition  can  be  performed  with  

normal  carry  save  adder.   

Advantages 

First advantage of the array  multiplier is that 

it has a regular structure. Since it is regular, it is easy 

to  layout and has a small size. . A second advantage 

of the array multiplier is its ease of design for a 

pipelined  architecture. 

III. Design of PASTA 

In this section, the architecture and theory 

behind PASTA is presented. The adder first accepts 

two input operands to perform half additions for each 

bit. Subsequently, it iterates using earlier generated 

carry and sums to perform half-additions repeatedly 

until all carry bits are consumed and settled at zero 

level. 

A. Architecture of PASTA 

The general architecture of the adder is 

shown in Fig. 1. The selection input for two-input 

multiplexers corresponds to the Req handshake 

signal and will be a single 0 to 1 transition denoted 

by SEL. It will initially select the actual operands 

during SEL=0and will switch to feedback/carry paths 

for subsequent iterations using SEL=1. The feedback 

path from the HAs enables the multiple iterations to 

continue until the completion when all carry signals 

will assume zero values 

 

Fig. 2. General block diagram of PASTA 

B. State Diagrams 

In Fig. 3, two state diagrams are drawn for 

the initial phase and the iterative phase of the 

proposed architecture. Each state is represented by 

(Ci+1Si) pairwhereCi+1, Si represent carry out and 

sum values, respectively, from the ith bit adder 

block. During the initial phase, the circuit merely 

works as a combinational HA operating in 

fundamental mode. It is apparent that due to the use 

of HAs instead of FAs, state (11) cannot appear. 

During the iterative phase (SEL=1), the 

feedback path through multiplexer block is activated. 

The carry transitions (Ci) are allowed as many times 

as needed to complete the recursion. From the 

definition of fundamental mode circuits, the present 

design cannot be considered as a fundamental mode 

circuit as the input–outputs will go through several 

transitions before producing the final output. It is not 

a Muller circuit working outside the fundamental 

mode either as internally; several transitions will take 

place, as shown in the state diagram. This is 

analogous to cyclic sequential circuits where gate 

delays are utilized to separate individual states. 
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Fig. 3. State diagrams for PASTA. (a) Initial 

phase. (b) Iterative phase 

C. Recursive Formula for Binary Addition 

Let S ji and C j i+1 denote the sum and 

carry, respectively, for ith bit at the jth iteration. The 

initial condition (j =0) for addition is formulated as 

follows  

 

The jth iteration for the recursive addition is 

formulated by 

 

The recursion is terminated at kth iteration 

when the following condition is met: 

 

Now, the correctness of the recursive 

formulation is inductively proved as follows.  

Theorem 1:The recursive formulation of (1)–(4) will 

produce correct sum for any number of bits and will 

terminate within a finite time. 

Proof: We prove the correctness of the algorithm by 

induction on the required number of iterations for 

completing the addition (meeting the terminating 

condition). 

Basis: Consider the operand choices for which no 

carry propagation is required, i.e., C0
i = 0 for ∀i,i 

∈[0..n]. The proposed formulation will produce the 

correct result by a single-bit computation time and 

terminate instantly as (4) is met. 

Induction: Assume that Ck
i+1≠0 for some ith bit at kth 

iteration. Let l be such a bit for which Ck
l+1 =1. We 

show that it will be successfully transmitted to next 

higher bit in the (k+1)th iteration. As shown in the 

state diagram, the kth iteration of lth bit state 

(Ck
l+1,S

k
l) and (l +1)th bit state Ck

l+2,S
k
l+1) could be in 

any of (0,0), (0,1),or(1,0) states. As Ck
l+1 =1, it 

implies that Sk
l =0. hence, from (3),Ck+1

l+1 =0 for any 

input condition between 0to l bits. 

We now consider the (l +1)th bit state (Ck
l+2,S

k
l+1) for 

kth iteration. It could also be in any of (0,0), 

(0,1),or(1,0) states. In(k+1)th iteration, 

the(0,0)and(1,0)states from the kth iteration will 

correctly produce output of(0,1) following (2) and 

(3). For(0,1) state, the carry successfully propagates 

through this bit level following (3). 

Thus, all the single-bit adders will 

successfully kill or propagate the carries until all 

carries are zero fulfilling the terminating condition. 

The mathematical form presented above is valid 

under the condition that the iterations progress 

synchronously for all bit levels and the required 

input and outputs for a specific iteration will also be 

in synchrony with the progress of one iteration. In 

the next section, we present an implementation of the 

proposed architecture which is subsequently verified 

using simulations. 

IV Design of CSA Multiplier 

Generally multiplication consists of three 

steps: generation of partial products or PPs (PPG), 

reduction of partial products (PPR), and final carry-

propagate addition (CPA). Different multiplication 

algorithms vary in the approaches of PPG, PPR, and 

CA. 
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Fig 4.Basic arithmetic steps of multiplication and 

accumulation. 

 

Fig.5.Multiplier with Carry saves Adder Architecture 

  In the Carry Save Addition method, the first 

row will be either Half-Adders or Full-Adders. If the 

first row of the partial products is implemented with 

Full-Adders, Cin will be considered „0‟. Then the 

carries of each Full- Adder can be diagonally 

forwarded to the next row of the adder. The resulting 

multiplier is said to be Carry Save Multiplier, 

because the carry bits are not immediately added, but 

rather are saved for the next stage. In the design if 

the full adders have two input data the third input is 

considered as zero. In the final stage, carries and 

sums are merged in a fast carry-propagate (e.g. ripple 

carry or carry look ahead) adder stage 

V. SIMULATION RESULTs 

PASTA Multiplier: 

Simulation. 

 
RTL Schematic. 

 
Technology Schematic. 

 
 

Design Summary. 
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CSA Multiplier: 

Simulation 

 
RTL Schematic. 

 
Technology Schematic. 

 
Design Summary; 

 
 

VI. Conclusion 

 

These days speed of the multiplier has 

become an asset or constraint due to the importance 

of multiplier circuit in a wide variety of 

microelectronic systems. In this paper we analyzed 

different multiplier techniques taking  speed  as  the  

main  criteria.  Carry  save  adder  is  proved  to  be  

more  efficient  in  terms  of  speed  compared  to  

conventional multiplication techniques generated the 

output in 2.06 sec, whereas the booth multiplier 

generated  the  output  in  3.09sec  while  the  shift  

&add  multiplier  produce d  the  output  in  2.31  

sec.  However the array multiplier generated the 

output in 2.75sec and modified booth multiplier in 

around 3.08 sec.The carry save adder on the other 

hand consumes less hardware than other 

multiplication techniques.  

 

REFERENCES 

[1]  GarimaTiwari “Analysis, Verification and FPGA 

Implementation of Low Power Multiplier”. 

[2]  Kripa Mathew, S.AshaLatha, T.Ravi, 

E.Logashanmugam “design and analysis of an Array 

Multiplier using an Area Efficient full  

adder cell in 32 nm CMOS Technology”. 

[3]  ChakibAlaoui “Design and Simulation of a 

Modified Architecture of Carrysave Adder”. 

[4]Deepali Chandel,Gagan Kumawat,  Pranay 

Lahoty,  VidhiVartChandrodaya,  Shailendra  

Sharma.International  Journal  of  Emerging  

Technology and Advanced Engineering Volume 3, 

Issue 3, March 2013”Booth Multiplier: Ease of 

multiplication”. 

[5]  International  Journal  of  Engineering  Science  

InventionShaik.Kalisha  Baba,  D.Rajaramesh  

“Design  and  Implementation  of  

Advanced Modified Booth Encoding Multiplier”. 

[6]  G.W. Bewick, “Fast Multiplication: Algorithms 

and Implementation.“Ph.D. dissertation, Stanford 

University, Feb. 1994 

[7]  Shiann-RongKuang, Jiun-Ping Wang, and Cang-

Yuan Guo, “Modified Booth multipliers with a 

Regular Partial Product Array,”  

IEEE Transactions on circuits and systems-II, vol 56, 

No 5, May 2009. 

[8]  8.M. Zamin Ali Khan1, Hussain Saleem2, Shiraz 

Afzal3 and Jawed Naseem4, ― An Efficient 16-Bit 

Multiplier based on Booth  



 

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  
p-ISSN: 2348-795X  

Volume 04 Issue-17 
December 2017 

 

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e  | 481 
 

Algorithm, international Journal of Advancements in 

Research & Technology, Volume 1, Issue 6, 

November-2012 ISSN 2278-7763 

[9]  Dr.  Ravi  Shankar  Mishra,Prof.  

PuranGour,BrajBihariSoni,  ―Design  and  

Implements  of  Booth  and  Robertson„s  multipliers  

algorithm on FPGA.‖ International Journal of 

Engineering Research and Applications (IJERA) 

ISSN: 2248-9622. 

[10]  F.C Cheng, S. H. Unger, “Self-Timed Carry-

Look Ahead Adders”, IEEE Transactions on 

Computers, Vol. 49, No. 7, July 2000. 

 

BIOGRAPHIES. 

S. Ravindra is working as an Assistant Professor in 

St.Mary’s Women’s Engineering College, 

Budampadu, Guntur, Andhra Pradesh. 

 
 

 

 

 

 

 

 

 

 


