

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 894

ID2S Password-Authenticated Key Exchange Protocols
P Priyanka &

Smitha Karpe

1
M. Tech Student, Department of CSE, MallaReddy Engineering College For Women’s,

Maisammaguda, Dhulapally, RangaReddy, Telangana, India.

2
Assistant Professor, Department of CSE, MallaReddy Engineering College For Women’s,

Maisammaguda, Dhulapally, RangaReddy, Telangana, India.

Abstract—In two-server password-authenticated key

exchange (PAKE) protocol, a client splits its password

and stores two shares of its password in the two servers,

respectively, and the two servers then cooperate to

authenticate the client without knowing the password of

the client. In case one server is compromised by an

adversary, the password of the client is required to

remain secure. In this paper, we present two compilers

that transform any two-party PAKE protocol to a two-

server PAKE protocol on the basis of the identity-based

cryptography, called ID2S PAKE protocol. By the

compilers, we can construct ID2S PAKE protocols which

achieve implicit authentication. As long as the underlying

two-party PAKE protocol and identity-based encryption

or signature scheme have provable security without

random oracles, the ID2S PAKE protocols constructed

by the compilers can be proven to be secure without

random oracles. Compared with the Katz et al.’s two-

server PAKE protocol with provable security without

random oracles, our ID2S PAKE protocol can save from

22% to 66% of computation in each server.

Index Terms—Password authenticated keyexchange,

identity-based encryption and signature, Diffie-Hellman

key exchange, decisional Diffie-Hellman problem

1 INTRODUCTION

To secure communications between two parties, an

authenticated encryption key is required to agree on in

advance. So far, two models have existed for

authenticated key exchange. One model assumes that

two parties already share some cryptographically-strong

information: either a secret key which can be used for

encryption/authentication of messages, or a public key

which can be used for encryption/signing of messages.

These keys are random and hard to remember. In

practice, a user often keeps his keys in a personal device

protected by a password/PIN. Another model assumes

that users, without help of personal devices, are only

capable of storing “human-memorable” passwords.

Bellovin and Merritt [4] were the first to introduce

password-based authenticated key exchange (PAKE),

where two parties, based only on their knowledge of a

password, establish a cryptographic key by exchange of

messages. A PAKE protocol has to be immune to on-line

and off-line dictionary attacks. In an off-line dictionary

attack, an adversary exhaustively tries all possible

passwords in a dictionary in order to determine the

password of the client on the basis of the exchanged

messages. In on-line dictionary attack, an adversary

simply attempts to login repeatedly, trying each possible

password. By cryptographic means only, none of PAKE

protocols can prevent on-line dictionary attacks. But on-

line attacks can be stopped simply by setting a threshold

to the number of login failures.

Since Bellovin and Merritt [4] introduced the idea of

PAKE, numerous PAKE protocols have been proposed.

In general, there exist two kinds of PAKE settings, one

assumes that the password of the client is stored in a

single server and another assumes that the password of

the client is distributed in multiple servers.

PAKE protocols in the single-server setting can be

classified into three categories as follows.

Password-only PAKE: Typical examples are the

“encrypted key exchange” (EKE) protocols given by

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 895

Bellovin and Merritt [4], where two parties, who share a

password, exchange messages encrypted by the

password, and establish a common secret key. The formal

model of security for PAKE was firstly given in [3], [8].

Based on the security model, PAKEprotocols [1], [2], [5],

[10], [11], [16], [20], [22] have been proposed and

proved to be secure.

PKI-based PAKE: PKI-based PAKE protocol was first

given by Gong et al. [17], where the client stores the

server’s public key in addition to share a password with

the server. Halevi and Krawczyk [18] were the first to

provide formal definitions and rigorous proofs of security

for PKI-based PAKE.

ID-based PAKE: ID-based PAKE protocols were

proposed by Yi et al. [32], [33], where the client needs to

remember a password in addition to the identity of the

server, whereas the server keeps the password in addition

to a private key related to its identity. ID-based PAKE

can be thought as a trade-off between password-only and

PKI-based PAKE.

In the single-server setting, all the passwords necessary

to authenticate clients are stored in a single server. If the

server is compromised, due to, for example, hacking or

even insider attacks, passwords stored in the server are all

disclosed. This is also true to Kerberos [12], where a user

authenticates against the authentication server with his

username and password and obtains a token to

authenticate against the service server.

To address this problem, the multi-server setting for

PAKE was first suggested in [15], [19], where the

password of the client is distributed in n servers. PAKE

protocols in the multi-server setting can be classified into

two categories as follows.

Threshold PAKE: The first PKI-based threshold PAKE

protocol was given by Ford and Kaliski [15], where n

severs, sharing the password of the client, cooperate to

authenticate the client and establish independent session

keys with the client. As long as n − 1 or fewer servers are

compromised, their protocol remains secure. Jablon [19]

gave a protocol with similar functionality in the

password-only setting. MacKenzie et al. proposed a PKI-

based threshold PAKE protocol which requires only t out

of n servers to cooperate in order to authenticate the

client. Their protocol remains secure as long as t − 1 or

fewer servers are compromised. Di Raimondo and

Gennaro [26] suggested a password-only threshold

PAKE protocol which requires fewer than 1/3 of the

servers to be compromised.

Two-server PAKE: Two-server PKI-based PAKE was

first given by Brainard [9], where two servers cooperate

to authenticate the client and the password remains

secure if one server is compromised. A variant of the

protocol was later proved to be secure in [27]. A two-

server password-only PAKE protocol was given by Katz

et al. [23], in which two servers symmetrically contribute

to the authentication of the client. The protocol in the

server side can run in parallel. Efficient protocols [21],

[29], [30], [31] were later proposed, where the front-end

server authenticates the client with the help of the back-

end server and only the front-end server establishes a

session key with the client. These protocols are

asymmetric in the server side and have to run in

sequence. Yi et al. gave a symmetric solution [34] which

is even more efficient than asymmetric protocols [21],

[29], [30], [31]. Recently, Yi et al. constructed an ID2S

PAKE protocol with the identity-based encryption

scheme (IBE) [35].

In this paper, we will consider the two-server setting for

PAKE only. In two-server PAKE, a client splits its

password and stores two shares of its password in the two

servers, respectively, and the two servers then cooperate

to authenticate the client without knowing the password

of the client. Even if one server is compromised, the

attacker is still unable to pretend any client to

authenticate against another server.

A typical example is the two-server PAKE protocol given

by Katz et al. [23], which is built upon the two-party

PAKE protocol (i.e., the KOY protocol [22]), where two

parties, who share a password, exchange messages to

establish a common secret key. Their basic two-server

protocol is secure against a passive (i.e., “honest-but-

curious”) adversary who has access to one of the servers

throughout the protocol execution, but cannot cause this

server to deviate from its prescribed behavior. In [23],

Katz et al. also showed how to modify their basic

protocol so as to achieve security against an active

adversary who may cause a corrupted server to deviate

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 896

arbitrarily from the protocol. The core of their protocol is

the KOY protocol. The client looks like running two

KOY protocols with two servers in parallel. However,

each server must perform a total of roughly 80

exponentiations (i.e., each server’s work is increased by a

factor of roughly 6 as compared to the basic protocol

[23]).

In [35], a security model for ID2S PAKE protocol was

given and a compiler that transforms any two-party

PAKE protocol to an ID2S PAKE protocol was proposed

on the basis of the Cramer-Shoup public key encryption

scheme [13] and any identity-based encryption scheme,

such as the Waters’ scheme [28].

Our Contribution. In this paper, we propose a new

compiler for ID2S PAKE protocol based on any identity-

based signature scheme (IBS), such as the Paterson et

al.’s scheme[25]. The basic idea is: The client splits its

password into two shares and each server keeps one share

of the password in addition to a private key related to its

identity for signing. In key exchange, each server sends

the client its public key for encryption with its identity-

based signature on it. The signature can be verified by the

client on the basis of the identity of the server. If the

signature is genuine, the client submits to the server one

share of the password encrypted with the public key of

the server. With the decryption keys, both servers can

derive the same one-time password, by which the two

servers can run a two-party PAKE protocol to

authenticate the client.

In addition, we generalize the compiler based on IBE in

[35] by replacing the Cramer-Shoup public key

encryption scheme with any public key encryption

scheme. Unlike the compiler based on IBS, the compiler

based on IBE assumes that each server has a private key

related to its identity for decryption. In key exchange, the

client sends to each server one share of the password

encrypted according to the identity of the server. In

addition, a one-time public key encryption scheme is

used to protect the messages (containing the password

information) from the servers to the client. The one-time

public key is generated by the client and sent to the

servers along with the password information in the first

phase.

In the identity-based cryptography, the decryption key or

the signing key of a server is usually generated by a

Private Key Generator (PKG). Therefore the PKG can

decrypt any messages encrypted with the identity of the

server or sign any document on behalf of the server. As

mentioned in [7], using standard techniques from

threshold cryptography, the PKG can be distributed so

that the master-key is never available in a single location.

Like [35], our strategy is to employ multiple PKGs which

cooperate to generate the decryption key or the signing

key for the server. As long as one of the PKGs is honest

to follow the protocol, the decryption key or the signing

key for the server is known only to the server. Since we

can assume that the two servers in two-server PAKE

never collude, we can also assume that at least one of the

PKGs do not collude with other PKGs.

Based on this assumption, we provide a rigorous proof of

security for our compilers. The two compilers do not rely

on the random oracle model as long as the underlying

primitives themselves do not rely on it. For example, by

using the KOY protocol [22] and the Paterson et al.’s IBS

scheme [25] and the Cramer-Shoup public key

encryption scheme [13], the compiler based on IBS can

construct an ID2S PAKE protocol with provable security

in the standard model. By using the KOY protocol [22]

and the Waters IBE scheme [28] and the Cramer-Shoup

public key encryption scheme [13], the compiler based

on IBE can construct an ID2S PAKE protocol with

provable security in the standard model.

We also compare our ID2S PAKE protocols with the

Katz et al.’s two-server PAKE protocol [23] with

provable security in the standard model. The Katz et al.’s

protocol is password-only, where the client needs to

remember the password only and refer to common public

parameters, and each server, having a public and private

key pair, and keeps a share of the password. Our

protocols are identity- based, where the client needs to

remember the password in addition to the meaningful

identities of the two servers, and refer to common public

parameters, including the master public key, and each

server, having a private key related to his identity, keeps

a share of the password.

In terms of the setting and the client performance, the

Katz et al.’s protocol is superior to our protocols.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 897

However, in the Katz et al.’s protocol, each server

performs approximately six times the amount of the work

as the KOY protocol, whereas in our protocols, each

server performs the same amount of work as the KOY

protocol in addition to one identity-based decryption (or

signature) and one public key encryption (or decryption).

We have implemented our ID2S PAKE protocols. Our

experiments show that our protocols save from 22% to

66% of computation in each server, compared with the

Katz et al.’s protocol. The server performance is critical

to the performance of the whole protocol when the

servers provide services to a great number of clients

concurrently. In addition, our experiments show that less

than one second is needed for the client to execute our

protocols.

Organization. In Section 2, we describe the security

model for ID2S PAKE protocol given in [35]. In Section

3, we present our new ID2S PAKE compilers. After that,

in Section 4, a rigorous proof of security for our

protocols is provided. In Section 5, we analyze the

performance of our protocols and compare them with the

Katz’s protocol by experiments. We conclude this paper

in Section 6.

2 DEFINITIONS

A formal model of security for two-server PAKE was

given by Katz et al. [23] (based on the MacKenzie et al.’s

model for PKI-based PAKE [24]). Boneh and Franklin

[7] defined chosen ciphertext security for IBE under

chosen identity attack. Combining the two models, a

model for ID2S PAKEprotocol was given in [35] and can

be described as follows.

Participants, Initialization and Passwords. An ID2S

PAKE protocol involves three kinds of protocol

participants: (1) A set of clients (denoted as Client), each

of which requests services from servers on the network;

(2) A set of servers (denoted as Server), each of which

provides services to clients on the network; (3) A group

of Private Key Generators (PKGs), which generate public

parameters and corresponding private keys for servers.

We assume that Client Server Triple is the set of triples

of the client and two servers, where the client is

authorized to use services provided by the two servers,

Client T Server = ∅, User = Client S Server, any PKG 6∈

User, and ClientServerTriple ⊆ Client × Server × Server.

Prior to any execution of the protocol, we assume that an

initialization phase occurs. During initialization, the

PKGs cooperate to generate public parameters for the

protocol, which are available to all participants, and

private keys for servers, which are given to the

appropriate servers. The user may keep the public

parameter in a personal device, such as a smart card or a

USB flash drive. When the PKGs generate the private

key for a server, each PKG generates and sends a private

key component to the server via a secure channel. The

server then derives its private key by combining all

private key components from all PKGs. We assume that

at least one of PKGs is honest to follow the protocol.

Therefore, the private key of the server is known to the

server only.

For any triple (C, A, B) ∈ ClientServerTriple, we assume

that the client C chooses its password pwC independently

and uniformly at random from a “dictionary”D = {pw1,

pw2, · · · , pwN } of size N, where D ⊂ Zq, N is a fixed

constant which is independent of any security parameter,

and q is a large prime. The password is then split into two

shares pwC,A and pwC,B and stored at the two servers A

and B, respectively, for authentication. We assume that

the two servers never collude to determine the password

of the client. The client C needs to remember pwC to log

into the servers A and B.

For simplicity, we assume that each client C shares its

password pwC with exactly two servers A and B. In this

case, we say that servers A and B are associated with C.

A server may be associated with multiple clients.

Execution of the Protocol. In the real world, a protocol

determines how users behave in response to input from

their environments. In the formal model, these inputs are

provided by the adversary. Each user is assumed to be

able to execute the protocol multiple times (possibly

concurrently) with different partners. This is modeled by

allowing each user to have unlimited number of instances

(please refer to [3]) with which to execute the protocol.

We denote instance i of user U as Ui. A given instance

may be used only once. The adversary is given oracle

access to these different instances. Furthermore, each

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 898

instance maintains (local) state which is updated during

the course of the experiment. In particular, each instance

Ui is associated with the following variables, initialized

as NULL or FALSE (as appropriate) during the

initialization phase.

— sidi U , pidi U and ski U are variables containing the

session identity, partner identity, and session key for an

instance Ui , respectively. Computation of the session

key is, of course, the ultimate goal of the protocol. The

session identity is simply a way to keep track of the

different executions of a particular user U. Without loss

of generality, we simply let this be the (ordered)

concatenation of all messages sent and received by

instance Ui. The partner identity denotes the identity of

the user with whom Ui believes it is interacting. For a

client C, ski C consists of a pair (ski

C,A,ski C,B), which are the two keys shared with servers

A and B, respectively.

— acci U and termi U are boolean variables denoting

whether a given instance Ui has been accepted or

terminated, respectively. Termination means that the

given instance has done receiving and sending messages,

acceptance indicates successful termination. In our case,

acceptance means that the instance is sure that it has

established a session key with its intended partner; thus,

when an instance Ui has been accepted.

3 ID2S PAKE PROTOCOLS

In this section, we present two compilers transforming

any two-party PAKE protocol P to an ID2S PAKE

protocol P0 with identity-based cryptography. The first

compiler is built on identity-based signature (IBS) and

the second compiler is based on identity-based

encryption (IBE).

3.1 ID2S PAKE Based on IBS

3.1.1 Protocol Description

We need an identity-based signature scheme (IBS) as our

cryptographic building block. A high-level description of

our compiler is given in Fig. 1, in which the client C and

two servers A and B establish two authenticated keys,

respectively. If we remove authentication elements from

our compiler, our key exchange protocol is essentially the

Diffie-Hellman key exchange protocol [14]. We present

the protocol by describing initialization and execution.

Initialization. Given a security parameter k ∈ N (the set

of all natural number), the initialization includes:

Parameter Generation: On input k, (1) m PKGs cooperate

to run SetupP of the two-party PAKE protocol P to

generate system parameters, denoted as paramsP. (2) m

PKGs cooperate to run SetupIBS of the IBS scheme to

generate public system parameters for the IBS scheme,

denoted as paramsIBS (including a subgroup G of the

additive group of points of an elliptic curve), and the

secret master-keyIBS. (3) m PKGs choose a public key

encryption scheme E, e.g., [13], whose plaintext group is

a large cyclic group G with a prime order q and a

generator g and select two

hash functions, H1 : {0, 1} ∗ → Z ∗ n, where n is the

order of G, and H2 : {0, 1} ∗ → Z∗q, from a collision-

resistanthash family. The public system parameters for

the protocol P0 is params = paramsP,IBS,E S{(G, q,

g),(H1, H2)} and the secret master-keyIBS is secretly

shared by the PKGs in a manner that any coalition of

PKGs cannot determine master-keyIBS as long as one of

the PKGs is honest to follow the protocol.

Remark. Taking the Paterson-Schuldt IBS scheme [25]

for example, m PKGs agree on randomly chosen G, G2 ∈

G and each PKG randomly chooses αi ∈ Zp and

broadcast Gαi with a zero-knowledge proof of knowing

αi and a signature. Then we can set G1 = GPi αi as the

public master key and the secret master-keyIBS = GPi

αi2. The secret master key is privately shared among m

PKGs and unknown to anyone even if m − 1 PKGs

maliciously collude.

Key Generation: On input the identity S of a server S ∈

Server, paramsIBS, and the secret sharing master-

keyIBS, PKGs cooperate to run ExtractIBS of the IBS

scheme and generate a private (signing) key for S,

denoted as dS, in a manner that any coalition of PKGs

cannot determine dS as long as one of the PKGs is honest

to follow the protocol. Remark. In the Paterson-Schuldt

IBS scheme with m PKGs ,each PKG computes one

component of the private key for a server S, i.e., (Gαi2

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 899

H(S) ri, Gri), where H is the Waters’ hash function, and

sends it to the server via a secure channel.

Combining all components, the server can construct its

private key dS = (GPi αi2 H(S)Piri GPiri), which is

knownto the server only even if m−1 PKGs maliciously

collude.

3.2 ID2S PAKE Based on IBE

3.2.1 Protocol Description

A high-level description of our compiler based on

identity based encryption (IBE) is given in Fig. 2. We

present the protocol by describing initialization and

execution.

Initialization. Given a security parameter k ∈ N, the

initialization includes:

Parameter Generation: On input k, (1) m PKGs cooperate

to run SetupP of the two-party PAKE protocol P to

generate system parameters, denoted as paramsP. (2) m

PKGs cooperate to run SetupIBE of the IBE scheme to

generate public system parameters for the IBE scheme,

denoted as params IBE, and the secret master-keyIBE.

Assume that G is a generator of IBE plaintext group G

with an order n. (3) m PKGs choose a public key

encryption scheme E, e.g., [13], whose plaintext group is

a large cyclic group G with a prime order q and a

generator g and select two hash functions, H1 : {0, 1} ∗

→Z∗n and H2 : {0, 1} ∗ → Z∗q, from a collision-

resistant hash family. The public system parameters for

the protocol P0 is params = paramsP,IBE,E S{(G, G,

n),(G, q, g),(H1, H2)} and the secret master-keyIBE is

secretly shared by the PKGs in a manner that any

coalition of PKGs cannot determine master-keyIBE as

long as one of the PKGs is honest to follow the protocol.

4 PROOF OF SECURITY

Based on the security model defined in Section 2, we

provide a rigorous proof of security for our compilers in

this section.

4.1 Security of ID2S PAKE Protocol Based on IBS

Theorem 1. Assuming that (1) the identity-based

signature (IBS) scheme is existentially unforgeable under

an adaptive chosen-message attack; (2) the public key

encryption scheme E is secure against the chosen-cipher

text attack; (3) the decisional Diffie-Hellman problem is

hard over (G, g, q); (4) the protocol P is a secure two-

party PAKE protocol with explicit authentication; (5) H1,

H2 are collision-resistant hash functions, then the

protocol P0 illustrated in Fig. 1 is a secure ID2S PAKE

protocol according to Definition 1.

Proof. Given an adversary A attacking the protocol, we

imagine a simulator S that runs the protocol for A. First

of all, the simulator S initializes the system by generating

params = paramsP,IBS,E S{(G, q, g),(H1, H2)} and the

secret master-keyIBS. Next, Client, Server, and Client

ServerTriple sets are determined. Passwords for clients

are chosen at random and split, and then stored at

corresponding servers. Private keys for servers are

computed using master-keyIBS.The public information is

provided to the adversary. Considering (C, A, B) ∈

ClinetServerTriple, we assume that the adversary A

chooses the server B to corrupt and the simulator S gives

the adversary A the information held by the corrupted

server B, including the private key of the server B, i.e.,

dB, and one share of the password of the client C, g

pwC,B . After computing the appropriate answer to any

oracle query, the simulator S provides the adversary A

with the internalstate of the corrupted server B involved

in the query.

We view the adversary’s queries to its Send oracles as

queries to five different oracles as follows:

— Send(C, i, A, B) represents a request for instance Ci of

client C to initiate the protocol. The output of this query

is msg = hC, Wci.

— Send(A, j, C, msg) represents sending message msg to

instance Aj of the server A from C. The output of this

query is msgA = hA, Wa, pka, Sai.

— Send(C, i, A, B, msgA|msgB) represents sending the

message msgA|msgB to instance Ci of the client C. The

output of this query is either msg1 = hC, Eai|msg2 = hC,

Ebi or ⊥.

— Send(A, j, C, msg1) represents sending message msg1

to instance Aj of the server A from C. The output of this

query is either accA = TRUE or ⊥.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 900

— SendP (A, j, B, M) represents sending message M to

instance Aj of the server A, supposedly by the server B,

in the two-party PAKE protocol P. The input and output

of this query depends on the protocol P.

4.2 Security of ID2S PAKE Protocol Based on IBE

Theorem 2. Assuming that (1) the identity-based

encryption (IBE) scheme is secure against the chosen-

ciphertext attack; (2) the public key encryption scheme E

is secure against the chosen-ciphertext attack; (3) the

decisional Diffie-Hellman problem is hard over (G, g, q);

(4) the protocol P is a secure two-party PAKE protocol

with explicit authentication; (5) H1, H2 are collision-

resistant hash functions, then the protocol P0 illustrated

in Fig. 2 is a secure ID2S PAKE protocol according to

Definition 1.

Proof. Given an adversary A attacking the protocol, a

simulator S runs the protocol for A. First of all, the

simulator S initializes the system by generating params =

paramsP,IBE,E S{(G, G, n),(G, q, g),(H1, H2)} and the

secret master-keyIBE. Next, Client, Server, and

ClientServerTriple sets are determined. Passwords for

clients are chosen at random and split, and then stored at

corresponding servers. Private keys for servers are

computed using master-keyIBE .

The public information is provided to the adversary.

Considering (C, A, B) ∈ ClinetServerTriple, we assume

that the adversary A chooses the server B to corrupt and

the simulator S gives the adversary A the information

held by the corrupted server B, including the private key

of the server B, i.e., dB, and one share of the password of

the client C, G pwC,B and gpw∗ C,B . After computing

the appropriate answer to any oracle query, the simulator

S provides the adversary A with the internal state of the

corrupted server B involved in the query.

We view the adversary’s queries to its Send oracles as

queries to four different oracles as follows:

— Send(C, i, A, B) represents a request for instance Ci of

client C to initiate the protocol. The output of this query

is msg1 = hC, Wc, pk, Eai and msg2 = hC, Wc, pk, Ebi.

— Send(A, j, C, msg1) represents sending message msg1

to instance Aj of the server A. The output of this query is

either msgA = hA, Wa, E1i or ⊥.

— Send(C, i, A, B, msgA|msgB) represents sending the

message msgA|msgB to instance Ci of the client C. The

output is either acci C = TRUE or ⊥.

— SendP (A, j, B, M) represents sending message M to

instance Aj of the server A, supposedly by the server B,

in the two-party PAKE protocol P. The input and output

of this query depends on the protocol P.

We refer to the real execution of the experiment, as

described above, as P0.

5 PERFORMANCE ANALYSIS

The efficiency of the compiled protocols using our

compilers depends on performance of the underlying

protocols. In our IBS-based protocol, if we use the KOY

two- party PAKE protocol [22], the Paterson et al.’s IBS

scheme [25] and the Cramer-Shoup public key

encryption scheme [13] as cryptographic building blocks,

the performance of our IBS-based protocol can be shown

in TABLE 1. In our IBE-based protocol, if we use the

KOY two-party PAKE protocol [22], the Waters IBE

scheme [28] and the Cramer Shoup public key encryption

scheme [13] as cryptographic building blocks, the

performance of our IBE-based protocol can also be

shown in TABLE 1. In addition, we compare our

protocols with the Katz et al. two-server PAKE protocol

[23] (secure against active adversary) .

In Exp.,exp. Sign. and Pair for computation represent the

computation complexities of a modular exponentiation

over an elliptic curve, a modular exponentiation over Zp,

a signature generation and a pairing, respectively, and

Exp., exp. and Sign. in communication denote the size of

the modulus and the size of the signature, and KOY

stands for the computation or communication complexity

of the KOY protocol.

In Different operations are computed in different

protocols. For example, some modular exponentiations in

our protocols are over an elliptic curve group, while the

modular exponentiations in the Katz et al.’s protocol are

over Zp only. Our protocols need to compute pairings

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 901

while the Katz et al.’s protocol does not. In order to

further compare their performance, we implement our

two protocols.

To realize the modular exponentiation Gx over an elliptic

curve group G and the pairing map e : G × G → GT in

our protocols, we build our implementation on top of the

PBC pairing-based cryptography library1, whereas the

multiplicative group over the prime integer p is based on

the GNU MP library2. Moreover, the elliptic curve we

use is the

A512 ECC in which the first two groups are the same,

i.e., a symmetric pairing. Another library mbed TLS3 is

adopted due to the invocations of AES and SHA-512 for

the one time signature in KOY. All the experiments were

conducted in Ubuntu 14.04 running on a computer

equipped with an Intel i7-4770HQ CPU and 16 GBytes

of memory. When implementing our protocols, we also

performed optimization when applicable. For example,

we compute the Waters’ hash function by parallel

computation.

The execution time of our two protocols compared with

the Katz et al.’s protocol. From we can see that the client

performance in Katz etal.’s protocol is better than our

protocols, but the execution times for client in the three

protocols are all less than 10 ms. The server performance

in our protocols is better than the Katz et al.’s protocol,

saving from 22% to 66% of computation. When the

servers provide services to a great number of clients

concurrently, the server performance is critical to the

performance of the whole protocol. For example, assume

that Servers A and B provide services to 100 clients

concurrently and there is no communication delay, the

longest waiting time with respect to a client for our IBE

based protocol is around 7.08+208+176=391.08 ms while

the Katz et al.’s protocol takes about

1.26+531+531=1,063.26 ms. The difference is 672.18

ms. In terms of communication complexity, the size of a

group element over elliptic curve (denoted as Exp.) in our

protocols can be 512 bits, while the size of a group

element over Zp in the Katz et al.’s protocol [23] has to

be 1024 bits. we can see that the communication

complexity of our protocols is about a half of the Katz et

al.’s protocol [23].

6 CONCLUSION

In this paper, we present two efficient compilers to

transform any two-party PAKE protocol to an ID2S

PAKE protocol with identity-based cryptography. In

addition, we have provided a rigorous proof of security

for our compilers without random oracle. Our compilers

are in particular suitable for the applications of password-

based authentication where an identity-based system has

already established. Our future work is to construct an

identity-based multiple server PAKE protocol with any

two-party PAKE protocol.

REFERENCES

[1] M. Abdalla, P. A. Fouque, and D. Pointcheval.

Password-based authenticated key exchange in the

three-party setting. In Proc. PKC’05, pages 65-84,

2005.

1. https://crypto.stanford.edu/pbc/download.html

2. https://gmplib.org/

3. https://tls.mbed.org/

[2]M. Abdalla and D. Pointcheval. Simple

password-based encrypted key exchange protocols.

In Proc. CT-RSA 2005, pages 191-208, 2005.

[3] M. Bellare, D. Pointcheval, and P. Rogaway.

Authenticated key exchange secure against

dictionary attacks. In Proc. Eurocrypt’00, pages

139-155, 2000.

[4] S. M. Bellovin and M. Merritt. Encrypted key

exchange: Password based protocol secure against

dictionary attack. In Proc. 1992 IEEE Symposium

on Research in Security and Privacy, pages 72-84,

1992.

[5] J. Bender, M. Fischlin, and D. Kugler. Security

analysis of the PACE key-agreement protocol. In

Proc. ISC’09, pages 33-48, 2009.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 902

[6] J. Bender, M. Fischlin, and D. Kugler. The

PACE|CA protocol for machine readable travel

documents. In INTRUST’13, pages 17-35, 2013.

[7] D. Boneh and M. Franklin. Identity based

encryption from the Weil pairing. In Proc.

Crypto’01, pages 213-229, 2001.

[8] V. Boyko, P. Mackenzie, and S. Patel. Provably

secure password authenticated key exchange using

Diffie-Hellman. In Proc. Euro- crypt’00, pages 156-

171, 2000.

[9] J. Brainard, A. Juels, B. Kaliski, and M. Szydlo.

Nightingale: A new two-server approach for

authentication with short secrets. In Proc.12th

USENIX Security Symp., pages 201-213, 2003.

[10] E. Bresson, O. Chevassut, and D. Pointcheval.

Security proofs for an efficient password-based key

exchange. In Proc. CCS’03, pages 241-250, 2003.

[11] E. Bresson, O. Chevassut, and D. Pointcheval.

New security results on encrypted key exchange. In

Proc. PKC’04, pages 145-158, 2004.

[12] B. Clifford Neuman and Theodore Ts’o.

Kerberos: An authentication service for computer

networks. IEEE Communications, 32 (9):33-38,

1994.

[13] R. Cramer and V. Shoup. A practical public

key cryptosystem provably secure against adaptive

chosen ciphertext attack. In Proc.Crypto’98, pages

13-25, 1998.

[14] W. Diffie and M. Hellman. New directions in

cryptography. IEEE Transactions on Information

Theory, 32(2): 644-654, 1976.

[15] W. Ford and B. S. Kaliski. Server-assisted

generation of a strong secret from a password. In

Proc. 5th IEEE Intl. Workshop on Enterprise

Security, 2000.

[16] O. Goldreich and Y. Lindell. Session-key

generation using human passwords only. In Proc.

Crypto’01, pages 408-432, 2001.

[17] L. Gong, T. M. A. Lomas, R. M. Needham, and

J. H. Saltzer. Protecting poorly-chosen secret from

guessing attacks. IEEE J. on Selected Areas in

Communications, 11(5):648-656, 1993.

[18] S. Halevi and H. Krawczyk. Public-key

cryptography and password protocols. ACM

Transactions on Information and System Security,

2(3):230-268, 1999.

[19] D. Jablon. Password authentication using

multiple servers. In Proc. CT-RSA’01, pages 344-

360, 2001.

[20] S. Jiang and G. Gong. Password based key

exchange with mutual authentication. In Proc.

SAC’04, pages 267-279, 2004.

[21] H. Jin, D. S. Wong, and Y. Xu. An efficient

password-only two-server authenticated key

exchange system. In Proc. ICICS’07, pages 44-

56,2007

[22] J. Katz, R. Ostrovsky, and M. Yung. Efficient

password authenticated key exchange using human-

memorable passwords. In Proc. Eurocrypt’01, pages

457-494, 2001.

[23] J. Katz, P. MacKenzie, G. Taban, and V.

Gligor. Two-server password-only authenticated

key exchange. In Proc. ACNS’05, pages 1-16, 2005.

[24] P. MacKenzie, T. Shrimpton, and M.

Jakobsson. Threshold password-authenticated key

exchange. J. Cryptology, 19(1): 27-66,2006.

[25] K. G. Paterson and J. C.N. Schuldt. Efficient

identity-based signatures secure in the standard

model. In ACISP’06, pages 207-222,2006.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 903

[26] M. Di Raimondo and R. Gennaro. Provably

Secure Threshold Password-Authenticated Key

Exchange. J. Computer and System Sciences, 72(6):

978-1001 (2006).

[27] M. Szydlo and B. Kaliski. Proofs for two-

server password authentication. In Proc. CT-

RSA’05, pages 227-244, 2005.

[28] B. Waters. Efficient identity-based encryption

without random oracles. In Proc. Eurocrypt’05,

pages 114-127, 2005.

[29] Y. Yang, F. Bao, R. H. Deng. A new

architecture for authentication and key exchange

using password for federated enterprise. In Proc.

SEC’05, pages 95-111, 2005.

[30] Y. Yang, R. H. Deng, and F. Bao. A practical

password-based two-server authentication and key

exchange system. IEEE Trans. Dependable and

Secure Computing, 3(2), 105-114, 2006.

[31] Y. Yang, R. H. Deng, and F. Bao. Fortifying

password authentication in integrated healthcare

delivery systems. In Proc. ASI-ACCS’06, pages

255-265,2006.

[32] X. Yi, R. Tso and E. Okamoto. ID-based group

password-authenticated key exchange. In Proc.

IWSEC’09, pages 192-211,2009.

[33] X. Yi, R. Tso and E. Okamoto. Identity-based

password authenticated key exchange for

client/server model. In SECRYPT’12, pages 45-54,

2012.

[34] X. Yi, S. Ling, and H. Wang. Efficient two-

server password-only authenticated key exchange.

IEEE Trans. Parallel Distrib. Syst. 24(9): 1773-

1782, 2013.

[35] W. Ford and B. S. Kaliski. Server-assisted

generation of a strong secret from a password. In

Proc. 5th IEEE Intl. Workshop on Enterprise

Security, 2000.

