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Abstract—In two-server password-authenticated key 

exchange (PAKE) protocol, a client splits its password 

and stores two shares of its password in the two servers, 

respectively, and the two servers then cooperate to 

authenticate the client without knowing the password of 

the client. In case one server is compromised by an 

adversary, the password of the client is required to 

remain secure. In this paper, we present two compilers 

that transform any two-party PAKE protocol to a two-

server PAKE protocol on the basis of the identity-based 

cryptography, called ID2S PAKE protocol. By the 

compilers, we can construct ID2S PAKE protocols which 

achieve implicit authentication. As long as the underlying 

two-party PAKE protocol and identity-based encryption 

or signature scheme have provable security without 

random oracles, the ID2S PAKE protocols constructed 

by the compilers can be proven to be secure  without 

random oracles. Compared with the Katz et al.’s two-

server PAKE protocol with provable security without 

random oracles, our ID2S PAKE protocol can save from 

22% to 66% of computation in each server.  

Index Terms—Password authenticated keyexchange, 

identity-based encryption and signature, Diffie-Hellman 

key exchange, decisional Diffie-Hellman problem 

1 INTRODUCTION 

To secure communications between two parties, an 

authenticated encryption key is required to agree on in 

advance. So far, two models have existed for 

authenticated key exchange. One model assumes that  

 

 

 

two parties already share some cryptographically-strong 

information: either a secret key which can be used for 

encryption/authentication of messages, or a public key 

which can be used for encryption/signing of messages. 

These keys are random and hard to remember. In 

practice, a user often keeps his keys in a personal device 

protected by a password/PIN. Another model assumes 

that users, without help of personal devices, are only 

capable of storing “human-memorable” passwords. 

Bellovin and Merritt [4] were the first to introduce 

password-based authenticated key exchange (PAKE), 

where two parties, based only on their knowledge of a 

password, establish a cryptographic key by exchange of 

messages. A PAKE protocol has to be immune to on-line 

and off-line dictionary attacks. In an off-line dictionary 

attack, an adversary exhaustively tries all possible 

passwords in a dictionary in order to determine the 

password of the client on the basis of the exchanged 

messages. In on-line dictionary attack, an adversary 

simply attempts to login repeatedly, trying each possible 

password. By cryptographic means only, none of PAKE 

protocols can prevent on-line dictionary attacks. But on-

line attacks can be stopped simply by setting a threshold 

to the number of login failures. 

Since Bellovin and Merritt [4] introduced the idea of 

PAKE, numerous PAKE protocols have been proposed. 

In general, there exist two kinds of PAKE settings, one 

assumes that the password of the client is stored in a 

single server and another assumes that the password of 

the client is distributed in multiple servers. 

PAKE protocols in the single-server setting can be 

classified into three categories as follows. 

Password-only PAKE: Typical examples are the 

“encrypted key exchange” (EKE) protocols given by 
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Bellovin and Merritt [4], where two parties, who share a 

password, exchange messages encrypted by the 

password, and establish a common secret key. The formal 

model of security for PAKE was firstly given in [3], [8]. 

Based on the security model, PAKEprotocols [1], [2], [5], 

[10], [11], [16], [20], [22] have been proposed and 

proved to be secure. 

PKI-based PAKE: PKI-based PAKE protocol was first 

given by Gong et al. [17], where the client stores the 

server’s public key in addition to share a password with 

the server. Halevi and Krawczyk [18] were the first to 

provide formal definitions and rigorous proofs of security 

for PKI-based PAKE. 

ID-based PAKE: ID-based PAKE protocols were 

proposed by Yi et al. [32], [33], where the client needs to 

remember a password in addition to the identity of the 

server, whereas the server keeps the password in addition 

to a private key related to its identity. ID-based PAKE 

can be thought as a trade-off between password-only and 

PKI-based PAKE. 

In the single-server setting, all the passwords necessary 

to authenticate clients are stored in a single server. If the 

server is compromised, due to, for example, hacking or 

even insider attacks, passwords stored in the server are all 

disclosed. This is also true to Kerberos [12], where a user 

authenticates against the authentication server with his 

username and password and obtains a token to 

authenticate against the service server.  

To address this problem, the multi-server setting for 

PAKE was first suggested in [15], [19], where the 

password of the client is distributed in n servers. PAKE 

protocols in the multi-server setting can be classified into 

two categories as follows. 

Threshold PAKE: The first PKI-based threshold PAKE 

protocol was given by Ford and Kaliski [15], where n 

severs, sharing the password of the client, cooperate to 

authenticate the client and establish independent session 

keys with the client. As long as n − 1 or fewer servers are 

compromised, their protocol remains secure. Jablon [19] 

gave a protocol with similar functionality in the 

password-only setting. MacKenzie et al. proposed a PKI-

based threshold PAKE protocol which requires only t out 

of n servers to cooperate in order to authenticate the 

client. Their protocol remains secure as long as t − 1 or 

fewer servers are compromised. Di Raimondo and 

Gennaro [26] suggested a password-only threshold 

PAKE protocol which requires fewer than 1/3 of the 

servers to be compromised. 

Two-server PAKE: Two-server PKI-based PAKE was 

first given by Brainard [9], where two servers cooperate 

to authenticate the client and the password remains 

secure if one server is compromised. A variant of the 

protocol was later proved to be secure in [27]. A two-

server password-only PAKE protocol was given by Katz 

et al. [23], in which two servers symmetrically contribute 

to the authentication of the client. The protocol in the 

server side can run in parallel. Efficient protocols [21], 

[29], [30], [31] were later proposed, where the front-end 

server authenticates the client with the help of the back-

end server and only the front-end server establishes a 

session key with the client. These protocols are 

asymmetric in the server side and have to run in 

sequence. Yi et al. gave a symmetric solution [34] which 

is even more efficient than asymmetric protocols [21], 

[29], [30], [31]. Recently, Yi et al. constructed an ID2S 

PAKE protocol with the identity-based encryption 

scheme (IBE) [35]. 

In this paper, we will consider the two-server setting for 

PAKE only. In two-server PAKE, a client splits its 

password and stores two shares of its password in the two 

servers, respectively, and the two servers then cooperate 

to authenticate the client without knowing the password 

of the client. Even if one server is compromised, the 

attacker is still unable to pretend any client to 

authenticate against another server. 

A typical example is the two-server PAKE protocol given 

by Katz et al. [23], which is built upon the two-party 

PAKE protocol (i.e., the KOY protocol [22]), where two 

parties, who share a password, exchange messages to 

establish a common secret key. Their basic two-server 

protocol is secure against a passive (i.e., “honest-but-

curious”) adversary who has access to one of the servers 

throughout the protocol execution, but cannot cause this 

server to deviate from its prescribed behavior. In [23], 

Katz et al. also showed how to modify their basic 

protocol so as to achieve security against an active 

adversary who may cause a corrupted server to deviate 
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arbitrarily from the protocol. The core of their protocol is 

the KOY protocol. The client looks like running two 

KOY protocols with two servers in parallel. However, 

each server must perform a total of roughly 80 

exponentiations (i.e., each server’s work is increased by a 

factor of roughly 6 as compared to the basic protocol 

[23]). 

In [35], a security model for ID2S PAKE protocol was 

given and a compiler that transforms any two-party 

PAKE protocol to an ID2S PAKE protocol was proposed 

on the basis of the Cramer-Shoup public key encryption 

scheme [13] and any identity-based encryption scheme, 

such as the Waters’ scheme [28]. 

Our Contribution. In this paper, we propose a new 

compiler for ID2S PAKE protocol based on any identity-

based signature scheme (IBS), such as the Paterson et 

al.’s scheme[25]. The basic idea is: The client splits its 

password into two shares and each server keeps one share 

of the password in addition to a private key related to its 

identity for signing. In key exchange, each server sends 

the client its public key for encryption with its identity-

based signature on it. The signature can be verified by the 

client on the basis of the identity of the server. If the 

signature is genuine, the client submits to the server one 

share of the password encrypted with the public key of 

the server. With the decryption keys, both servers can 

derive the same one-time password, by which the two 

servers can run a two-party PAKE protocol to 

authenticate the client. 

In addition, we generalize the compiler based on IBE in 

[35] by replacing the Cramer-Shoup public key 

encryption scheme with any public key encryption 

scheme. Unlike the compiler based on IBS, the compiler 

based on IBE assumes that each server has a private key 

related to its identity for decryption. In key exchange, the 

client sends to each server one share of the password 

encrypted according to the identity of the server. In 

addition, a one-time public key encryption scheme is 

used to protect the messages (containing the password 

information) from the servers to the client. The one-time 

public key is generated by the client and sent to the 

servers along with the password information in the first 

phase. 

In the identity-based cryptography, the decryption key or 

the signing key of a server is usually generated by a 

Private Key Generator (PKG). Therefore the PKG can 

decrypt any messages encrypted with the identity of the 

server or sign any document on behalf of the server. As 

mentioned in [7], using standard techniques from 

threshold cryptography, the PKG can be distributed so 

that the master-key is never available in a single location. 

Like [35], our strategy is to employ multiple PKGs which 

cooperate to generate the decryption key or the signing 

key for the server. As long as one of the PKGs is honest 

to follow the protocol, the decryption key or the signing 

key for the server is known only to the server. Since we 

can assume that the two servers in two-server PAKE 

never collude, we can also assume that at least one of the 

PKGs do not collude with other PKGs. 

Based on this assumption, we provide a rigorous proof of 

security for our compilers. The two compilers do not rely 

on the random oracle model as long as the underlying 

primitives themselves do not rely on it. For example, by 

using the KOY protocol [22] and the Paterson et al.’s IBS 

scheme [25] and the Cramer-Shoup public key 

encryption scheme [13], the compiler based on IBS can 

construct an ID2S PAKE protocol with provable security 

in the standard model. By using the KOY protocol [22] 

and the Waters IBE scheme [28] and the Cramer-Shoup 

public key encryption scheme [13], the compiler based 

on IBE can construct an ID2S PAKE protocol with 

provable security in the standard model. 

We also compare our ID2S PAKE protocols with the 

Katz et al.’s two-server PAKE protocol [23] with 

provable security in the standard model. The Katz et al.’s 

protocol is password-only, where the client needs to 

remember the password only and refer to common public 

parameters, and each server, having a public and private 

key pair, and  keeps a share of the password. Our 

protocols are identity- based, where the client needs to 

remember the password in addition to the meaningful 

identities of the two servers, and refer to common public 

parameters, including the master public key, and each 

server, having a private key related to his identity, keeps 

a share of the password. 

In terms of the setting and the client performance, the 

Katz et al.’s protocol is superior to our protocols. 
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However, in the Katz et al.’s protocol, each server 

performs approximately six times the amount of the work 

as the KOY protocol, whereas in our protocols, each 

server performs the same amount of work as the KOY 

protocol in addition to one identity-based decryption (or 

signature) and one public key encryption (or decryption). 

We have implemented our ID2S PAKE protocols. Our 

experiments show that our protocols save from 22% to 

66% of computation in each server, compared with the 

Katz et al.’s protocol. The server performance is critical 

to the performance of the whole protocol when the 

servers provide services to a great number of clients 

concurrently. In addition, our experiments show that less 

than one second is needed for the client to execute our 

protocols.  

Organization. In Section 2, we describe the security 

model for ID2S PAKE protocol given in [35]. In Section 

3, we present our new ID2S PAKE compilers. After that, 

in Section 4, a rigorous proof of security for our 

protocols is provided. In Section 5, we analyze the 

performance of our protocols and compare them with the 

Katz’s protocol by experiments. We conclude this paper 

in Section 6. 

2 DEFINITIONS 

A formal model of security for two-server PAKE was 

given by Katz et al. [23] (based on the MacKenzie et al.’s 

model for PKI-based PAKE [24]). Boneh and Franklin 

[7] defined chosen ciphertext security for IBE under 

chosen identity attack. Combining the two models, a 

model for ID2S PAKEprotocol was given in [35] and can 

be described as follows. 

Participants, Initialization and Passwords. An ID2S 

PAKE protocol involves three kinds of protocol 

participants: (1) A set of clients (denoted as Client), each 

of which requests services from servers on the network; 

(2) A set of servers (denoted as Server), each of which 

provides services to clients on the network; (3) A group 

of Private Key Generators (PKGs), which generate public 

parameters and corresponding private keys for servers. 

We assume that Client Server Triple is the set of triples 

of the client and two servers, where the client is 

authorized to use services provided by the two servers, 

Client T Server = ∅, User = Client S Server, any PKG 6∈ 

User, and ClientServerTriple ⊆ Client × Server × Server.  

Prior to any execution of the protocol, we assume that an 

initialization phase occurs. During initialization, the 

PKGs cooperate to generate public parameters for the 

protocol, which are available to all participants, and 

private keys for servers, which are given to the 

appropriate servers. The user may keep the public 

parameter in a personal device, such as a smart card or a 

USB flash drive. When the PKGs generate the private 

key for a server, each PKG generates and sends a private 

key component to the server via a secure channel. The 

server then derives its private key by combining all 

private key components from all PKGs. We assume that 

at least one of PKGs is honest to follow the protocol. 

Therefore, the private key of the server is known to the 

server only. 

For any triple (C, A, B) ∈ ClientServerTriple, we assume 

that the client C chooses its password pwC independently 

and uniformly at random from a “dictionary”D = {pw1, 

pw2, · · · , pwN } of size N, where D ⊂ Zq, N is a fixed 

constant which is independent of any security parameter, 

and q is a large prime. The password is then split into two 

shares pwC,A and pwC,B and stored at the two servers A 

and B, respectively, for authentication. We assume that 

the two servers never collude to determine the password 

of the client. The client C needs to remember pwC to log 

into the servers A and B. 

For simplicity, we assume that each client C shares its 

password pwC with exactly two servers A and B. In this 

case, we say that servers A and B are associated with C. 

A server may be associated with multiple clients.  

Execution of the Protocol. In the real world, a protocol 

determines how users behave in response to input from 

their environments. In the formal model, these inputs are 

provided by the adversary. Each user is assumed to be 

able to execute the protocol multiple times (possibly 

concurrently) with different partners. This is modeled by 

allowing each user to have unlimited number of instances 

(please refer to [3]) with which to execute the protocol. 

We denote instance i of user U as Ui. A given instance 

may be used only once. The adversary is given oracle 

access to these different instances. Furthermore, each 
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instance maintains (local) state which is updated during 

the course of the experiment. In particular, each instance 

Ui is associated with the following variables, initialized 

as NULL or FALSE (as appropriate) during the 

initialization phase. 

— sidi U , pidi U and ski U are variables containing the 

session identity, partner identity, and session key for an 

instance Ui , respectively. Computation of the session 

key is, of course, the ultimate goal of the protocol. The 

session identity is simply a way to keep track of the 

different executions of a particular user U. Without loss 

of generality, we simply let this be the (ordered) 

concatenation of all messages sent and received by 

instance Ui. The partner identity denotes the identity of 

the user with whom Ui believes it is interacting. For a 

client C, ski C consists of a pair (ski 

C,A,ski C,B), which are the two keys shared with servers 

A and B, respectively. 

— acci U and termi U are boolean variables denoting 

whether a given instance Ui has been accepted or 

terminated, respectively. Termination means that the 

given instance has done receiving and sending messages, 

acceptance indicates successful termination. In our case, 

acceptance means that the instance is sure that it has 

established a session key with its intended partner; thus, 

when an instance Ui has been accepted. 

3 ID2S PAKE PROTOCOLS 

In this section, we present two compilers transforming 

any two-party PAKE protocol P to an ID2S PAKE 

protocol P0 with identity-based cryptography. The first 

compiler is built on identity-based signature (IBS) and 

the second compiler is based on identity-based 

encryption (IBE). 

3.1 ID2S PAKE Based on IBS 

3.1.1 Protocol Description 

We need an identity-based signature scheme (IBS) as our 

cryptographic building block. A high-level description of 

our compiler is given in Fig. 1, in which the client C and 

two servers A and B establish two authenticated keys, 

respectively. If we remove authentication elements from 

our compiler, our key exchange protocol is essentially the 

Diffie-Hellman key exchange protocol [14]. We present 

the protocol by describing initialization and execution. 

Initialization. Given a security parameter k ∈ N (the set 

of all natural number), the initialization includes:  

Parameter Generation: On input k, (1) m PKGs cooperate 

to run SetupP of the two-party PAKE protocol P to 

generate system parameters, denoted as paramsP. (2) m 

PKGs cooperate to run SetupIBS of the IBS scheme to 

generate public system parameters for the IBS scheme, 

denoted as paramsIBS (including a subgroup G of the 

additive group of points of an elliptic curve), and the 

secret master-keyIBS. (3) m PKGs choose a public key 

encryption scheme E, e.g., [13], whose plaintext group is 

a large cyclic group G with a prime order q and a 

generator g and select two 

hash functions, H1 : {0, 1} ∗ → Z ∗ n, where n is the 

order of G, and H2 : {0, 1} ∗ → Z∗q, from a collision-

resistanthash family. The public system parameters for 

the protocol P0 is params = paramsP,IBS,E S{(G, q, 

g),(H1, H2)} and the secret master-keyIBS is secretly 

shared by the PKGs in a manner that any coalition of 

PKGs cannot determine master-keyIBS as long as one of 

the PKGs is honest to follow the protocol. 

Remark. Taking the Paterson-Schuldt IBS scheme [25] 

for example, m PKGs agree on randomly chosen G, G2 ∈ 

G and each PKG randomly chooses αi ∈ Zp and 

broadcast Gαi with a zero-knowledge proof of knowing 

αi and a signature. Then we can set G1 = GPi αi as the 

public master key and the secret master-keyIBS = GPi 

αi2. The secret master key is privately shared among m 

PKGs and unknown to anyone even if m − 1 PKGs 

maliciously collude. 

Key Generation: On input the identity S of a server S ∈ 

Server, paramsIBS, and the secret sharing master-

keyIBS, PKGs cooperate to run ExtractIBS of the IBS 

scheme and generate a private (signing) key for S, 

denoted as dS, in a manner that any coalition of PKGs 

cannot determine dS as long as one of the PKGs is honest 

to follow the protocol. Remark. In the Paterson-Schuldt 

IBS scheme with m PKGs ,each PKG computes one 

component of the private key for a server S, i.e., (Gαi2 
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H(S) ri, Gri ), where H is the Waters’ hash function, and 

sends it to the server via a secure channel. 

Combining all components, the server can construct its 

private key dS = (GPi αi2 H(S)Piri GPiri ), which is 

knownto the server only even if m−1 PKGs maliciously 

collude. 

3.2 ID2S PAKE Based on IBE 

3.2.1 Protocol Description 

A high-level description of our compiler based on 

identity based encryption (IBE) is given in Fig. 2. We 

present the protocol by describing initialization and 

execution.  

Initialization. Given a security parameter k ∈ N, the 

initialization includes:  

Parameter Generation: On input k, (1) m PKGs cooperate 

to run SetupP of the two-party PAKE protocol P to 

generate system parameters, denoted as paramsP. (2) m 

PKGs cooperate to run SetupIBE of the IBE scheme to 

generate public system parameters for the IBE scheme, 

denoted as params IBE, and the secret master-keyIBE. 

Assume that G is a generator of IBE plaintext group G 

with an order n. (3) m PKGs choose a public key 

encryption scheme E, e.g., [13], whose plaintext group is 

a large cyclic group G with a prime order q and a 

generator g and select two hash functions, H1 : {0, 1} ∗ 

→Z∗n and H2 : {0, 1} ∗ → Z∗q, from a collision-

resistant hash family. The public system parameters for 

the protocol P0 is params = paramsP,IBE,E S{(G, G, 

n),(G, q, g),(H1, H2)} and the secret master-keyIBE is 

secretly shared by the PKGs in a manner that any 

coalition of PKGs cannot determine master-keyIBE as 

long as one of the PKGs is honest to follow the protocol. 

4 PROOF OF SECURITY 

Based on the security model defined in Section 2, we 

provide a rigorous proof of security for our compilers in 

this section. 

4.1 Security of ID2S PAKE Protocol Based on IBS 

Theorem 1. Assuming that (1) the identity-based 

signature (IBS) scheme is existentially unforgeable under 

an adaptive chosen-message attack; (2) the public key 

encryption scheme E is secure against the chosen-cipher 

text attack; (3) the decisional Diffie-Hellman problem is 

hard over (G, g, q); (4) the protocol P is a secure two-

party PAKE protocol with explicit authentication; (5) H1, 

H2 are collision-resistant hash functions, then the 

protocol P0 illustrated in Fig. 1 is a secure ID2S PAKE 

protocol according to Definition 1. 

Proof. Given an adversary A attacking the protocol, we 

imagine a simulator S that runs the protocol for A. First 

of all, the simulator S initializes the system by generating 

params = paramsP,IBS,E S{(G, q, g),(H1, H2)} and the 

secret master-keyIBS. Next, Client, Server, and Client 

ServerTriple sets are determined. Passwords for clients 

are chosen at random and split, and then stored at 

corresponding servers. Private keys for servers are 

computed using master-keyIBS.The public information is 

provided to the adversary. Considering (C, A, B) ∈ 

ClinetServerTriple, we assume that the adversary A 

chooses the server B to corrupt and the simulator S gives 

the adversary A the information held by the corrupted 

server B, including the private key of the server B, i.e., 

dB, and one share of the password of the client C, g 

pwC,B . After computing the appropriate answer to any 

oracle query, the simulator S provides the adversary A 

with the internalstate of the corrupted server B involved 

in the query. 

We view the adversary’s queries to its Send oracles as 

queries to five different oracles as follows: 

— Send(C, i, A, B) represents a request for instance Ci of 

client C to initiate the protocol. The output of this query 

is msg = hC, Wci. 

— Send(A, j, C, msg) represents sending message msg to 

instance Aj of the server A from C. The output of this 

query is msgA = hA, Wa, pka, Sai. 

— Send(C, i, A, B, msgA|msgB) represents sending the 

message msgA|msgB to instance Ci of the client C. The 

output of this query is either msg1 = hC, Eai|msg2 = hC, 

Ebi or ⊥. 

— Send(A, j, C, msg1) represents sending message msg1 

to instance Aj of the server A from C. The output of this 

query is either accA = TRUE or ⊥. 
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— SendP (A, j, B, M) represents sending message M to 

instance Aj of the server A, supposedly by the server B, 

in the two-party PAKE protocol P. The input and output 

of this query depends on the protocol P. 

4.2 Security of ID2S PAKE Protocol Based on IBE 

Theorem 2. Assuming that (1) the identity-based 

encryption (IBE) scheme is secure against the chosen-

ciphertext attack; (2) the public key encryption scheme E 

is secure against the chosen-ciphertext attack; (3) the 

decisional Diffie-Hellman problem is hard over (G, g, q); 

(4) the protocol P is a secure two-party PAKE protocol 

with explicit authentication; (5) H1, H2 are collision-

resistant hash functions, then the protocol P0 illustrated 

in Fig. 2 is a secure ID2S PAKE protocol according to 

Definition 1. 

Proof. Given an adversary A attacking the protocol, a 

simulator S runs the protocol for A. First of all, the 

simulator S initializes the system by generating params = 

paramsP,IBE,E S{(G, G, n),(G, q, g),(H1, H2)} and the 

secret master-keyIBE. Next, Client, Server, and 

ClientServerTriple sets are determined. Passwords for 

clients are chosen at random and split, and then stored at 

corresponding servers. Private keys for servers are 

computed using master-keyIBE . 

The public information is provided to the adversary. 

Considering (C, A, B) ∈ ClinetServerTriple, we assume 

that the adversary A chooses the server B to corrupt and 

the simulator S gives the adversary A the information 

held by the corrupted server B, including the private key 

of the server B, i.e., dB, and one share of the password of 

the client C, G pwC,B and gpw∗ C,B . After computing 

the appropriate answer to any oracle query, the simulator 

S provides the adversary A with the internal state of the 

corrupted server B involved in the query. 

We view the adversary’s queries to its Send oracles as 

queries to four different oracles as follows: 

— Send(C, i, A, B) represents a request for instance Ci of 

client C to initiate the protocol. The output of this query 

is msg1 = hC, Wc, pk, Eai and msg2 = hC, Wc, pk, Ebi. 

— Send(A, j, C, msg1) represents sending message msg1 

to instance Aj of the server A. The output of this query is 

either msgA = hA, Wa, E1i or ⊥. 

— Send(C, i, A, B, msgA|msgB) represents sending the 

message msgA|msgB to instance Ci of the client C. The 

output is either acci C = TRUE or ⊥. 

— SendP (A, j, B, M) represents sending message M to 

instance Aj of the server A, supposedly by the server B, 

in the two-party PAKE protocol P. The input and output 

of this query depends on the protocol P.  

We refer to the real execution of the experiment, as 

described above, as P0. 

5 PERFORMANCE ANALYSIS 

The efficiency of the compiled protocols using our 

compilers depends on performance of the underlying 

protocols. In our IBS-based protocol, if we use the KOY 

two- party PAKE protocol [22], the Paterson et al.’s IBS 

scheme [25] and the Cramer-Shoup public key 

encryption scheme [13] as cryptographic building blocks, 

the performance of our IBS-based protocol can be shown 

in TABLE 1. In our IBE-based protocol, if we use the 

KOY two-party PAKE protocol [22], the Waters IBE 

scheme [28] and the Cramer Shoup public key encryption 

scheme [13] as cryptographic building blocks, the 

performance of our IBE-based protocol can also be 

shown in TABLE 1. In addition, we compare our 

protocols with the Katz et al. two-server PAKE protocol 

[23] (secure against active adversary) . 

In Exp.,exp. Sign. and Pair for computation represent the 

computation complexities of a modular exponentiation 

over an elliptic curve, a modular exponentiation over Zp, 

a signature generation and a pairing, respectively, and 

Exp., exp. and Sign. in communication denote the size of 

the modulus and the size of the signature, and KOY 

stands for the computation or communication complexity 

of the KOY protocol. 

In Different operations are computed in different 

protocols. For example, some modular exponentiations in 

our protocols are over an elliptic curve group, while the 

modular exponentiations in the Katz et al.’s protocol are 

over Zp only. Our protocols need to compute pairings 
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while the Katz et al.’s protocol does not. In order to 

further compare their performance, we implement our 

two protocols. 

To realize the modular exponentiation Gx over an elliptic 

curve group G and the pairing map e : G × G → GT in 

our protocols, we build our implementation on top of the 

PBC pairing-based cryptography library1, whereas the 

multiplicative group over the prime integer p is based on 

the GNU MP library2. Moreover, the elliptic curve we 

use is the 

A512 ECC in which the first two groups are the same, 

i.e., a symmetric pairing. Another library mbed TLS3 is 

adopted due to the invocations of AES and SHA-512 for 

the one time signature in KOY. All the experiments were 

conducted in Ubuntu 14.04 running on a computer 

equipped with an Intel i7-4770HQ CPU and 16 GBytes 

of memory. When implementing our protocols, we also 

performed optimization when applicable. For example, 

we compute the Waters’ hash function by parallel 

computation. 

The execution time of our two protocols compared with 

the Katz et al.’s protocol. From we can see that the client 

performance in Katz etal.’s protocol is better than our 

protocols, but the execution times for client in the three 

protocols are all less than 10 ms. The server performance 

in our protocols is better than the Katz et al.’s protocol, 

saving from 22% to 66% of computation. When the 

servers provide services to a great number of clients 

concurrently, the server performance is critical to the 

performance of the whole protocol. For example, assume 

that Servers A and B provide services to 100 clients 

concurrently and there is no communication delay, the 

longest waiting time with respect to a client for our IBE 

based protocol is around 7.08+208+176=391.08 ms while 

the Katz et al.’s protocol takes about 

1.26+531+531=1,063.26 ms. The difference is 672.18 

ms. In terms of communication complexity, the size of a 

group element over elliptic curve (denoted as Exp.) in our 

protocols can be 512 bits, while the size of a group 

element over Zp in the Katz et al.’s protocol [23] has to 

be 1024 bits. we can see that the communication 

complexity of our protocols is about a half of the Katz et 

al.’s protocol [23]. 

6 CONCLUSION 

In this paper, we present two efficient compilers to 

transform any two-party PAKE protocol to an ID2S 

PAKE protocol with identity-based cryptography. In 

addition, we have provided a rigorous proof of security 

for our compilers without random oracle. Our compilers 

are in particular suitable for the applications of password-

based authentication where an identity-based system has 

already established. Our future work is to construct an 

identity-based multiple server PAKE protocol with any 

two-party PAKE protocol. 
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