

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

P a g e | 104

Programming Paradigms In C++
Subhash khalkho & Sunny kumar

Department of IT, 3
rd

sem, DCE, Gurgaon , Haryana
subhash.16938@ggnindia.dronachary.info ; sunny.16941@ggnindia.dronacharya.info

ABSTRACT
This paper discuss about the generation of

programming types evolved in C++.The

major reason behind the popularity and

success of C++ is that it supports the

object oriented technology which is among

best in software development and it seems

real to the existing world, C++ supports

various types of programming paradigms

i.e, procedural programming style, object

based programming styles, object oriented

programming styles. This paper discusses

all the key featuresof all given

programming styles and their

implementations along with their merits

and disadvantages.

INTRODUCTION
 A programming paradigm defines the

method of designing and implementing

programs using a key feature of a

programming language. A programming

paradigm provides an idea that how

problems are generally understood and

then solved using a particular

programming language.

PROCEDURAL PROGRAMMING
Procedural programming gives stress on

procedure rather than on data. Procedural

programming is derived from structured

programming, which is based upon the

concept of theprocedure call. Procedures,

also known as routines, methods, or

functions simply contain a series of

computational steps to be carried out. Any

given procedure might be called at any

instance during a program's execution,

included by other procedures. Procedural

programming is a list of instructions

telling a computer what to do step by step

and how to perform from the one code to

the other code.

Procedural programming languages

include:

C, Go, Fortran, Pascal, and BASIC.

As we know C++ is subset of C, which

uses procedural programming style,

therefore C++ can also be used as

procedural programming language but

with some inherited features like default

arguments, type checking, inline functions

etc.

Procedural programming paradigm

completely separates the functions in

program from the data manipulated by

those programs, and this where it gets

complicated and give rise to various issues

in order to extend the features of the

software and to maintain it.

In procedural program if type of data is

changed then the function using this data

must also be changed for proper flow of

program.

For Example:
Struct student

{ introllno;

 Char name[30];

 intclas;

};

Void readstudent(student s1)

{ cout<<”Enter rollno of student”;

 cin>>s1.rollno;

 cout<<”Enter name of student”;

 gets(name);

 cout<<”Enter class of student”;

 cin>>clas;

}

Now suppose user want to upgrade this

program by making this program to hold

marks and grade of student by modifying

the structure student. So now,

Struct student

mailto:subhash.16938@ggnindia.dronachary.info
mailto:sunny.16941@ggnindia.dronacharya.info

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

P a g e | 105

{ introllno;

 char name[25];

 intclas;

 float marks;

 char grade;

};

Now the functions using structure student

must also be updated to keep up with the

changes made in structure student, thus the

function readstudent() needs to be

rewritten again. Similarly if we had ten

more functions that were using ‘student’

then they must also be updated or

modified.

DISADVANTAGES
i. Procedural programming is prone

to design changes and

modifications.

ii. Procedural programming leads to

increased time and high cost

during design change and

modification.

OBJECT BASED PROGRAMMING

Object based programming is a new

programming paradigm that implements

few features of object oriented

programming but not all of it. In object

based programming data and its functions

are enclosed within one single packet

called class. A class provides data hiding

and data abstraction and thus separate

implementation details (how process

actually happening) and only concern with

the interface (how the user uses it).For

example imagine a car, you know how to

increase speed of car i.e just putting

pressure on transmission pedal but here

you are not concerned with the actual

process taking place inside the engine to

result for transmission, that means the

transmission pedal is an interface between

the driver an the transmission in engine. In

other words the user is allowed to access

the interface (transmission pedal) but he

cannot access the actual implementation

details inside the engine for transmission.

Example of object-oriented languages

include:

Simula, Smalltalk, C++(whose object

model was based on Simula's), Objective-

C (whose object model was based on

Smalltalk's), Eiffel, Python, Ruby, Java,

C#.

In object based programming paradigm

whenever there is a change in type of the

definition users interface remains

unaffected.

For Example:

Class student

{ introllno;

 char name[25];

 intcls;

 float marks;

 public:

 voidreadstudent();

 voiddispstudent();

};

Now suppose you want to add some data

members to class like grade and fathers

name then also the users interface would

remain same as earlier.

Class student

{ introllno;

 char name[25];

 intcls;

 float marks;

 float grade;

 charfname[25];

 public:

 voidreadstudent();

 voiddispstudent();

};

Hence there would be no change in users

interface and user would never know that a

new data member has been added as the

interface remains same for him, but there

would be certain changes in the member

functions by programmer in readstudent()

and dispstudent(). But here is one

difference, the user cannot have a direct

access to the data members of class student

which was possible in procedural

programming paradigm.

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

P a g e | 106

ADVANTAGES:
Object based programming is subset of

object oriented programming and hence it

has some similar properties like it:

i. It overcomes most of the

shortcomings that were present

in procedural programming.

ii. It modifies and hides process

implementation details from

user.

iii. It supports user defined types of

program.

iv. It provides data abstraction.

Having all these advantages object based

programming suffers from one major

drawback and that is the inability to relate

real world relationship that exists among

objects around us. For example chair and

sofa both are furniture but this relationship

cannot be represented in object based

programming as it does not support

inheritance.

OBJECT ORIENTED

PROGRAMMING (OOPS)
Object oriented programming paradigm

combines both the features of procedural

and object based programming styles. It

uses all features of object based

programming and overcomes its

limitations by applying inheritance so it

can easily relate to the real world and

among its objects. Object Oriented

Programming paradigm mainly uses class

and objects. In which object may be

represented as a run time entity that may

be any name, person, place or anything

and class represents a collection of data or

objects that share common property.

Examples of object oriented

programming:

 C++, Objective-C, Smalltalk, Delphi,

Java, Javascript, C#, Perl, Python, Ruby

and PHP.

For example we have a car then its

characteristic is wheel, brake, motor, seats

etc, and their behaviour is mobility and

comfort. Therefore a class is a derived

class of base class automobiles which is

further a derived class from base class

vehicles.

Basic concepts of OOPS:

i. DATA ABSTRACTION: It is an

act of displaying essential

features without including

background details.

ii. DATA ENCAPSULATION: It can

be explained as an act of

wrapping up of data within a

single unit.

iii. MODULARITY: It is an act of

dividing a program into

individual components.

iv. INHERITANCE: It is the process

by which one class acquires the

property of another class.

v. POLYMORPHISM: It means one

name and many forms, it is the

ability to take more than one

form and operation may exhibit

different behaviour in different

instances.

ADVANTAGES
i. RE-USABILITY OF CODE:

Linking of code to object and

relation between objects allows

related objects to share code

and Encapsulation allows class

definition be re-used in other

application.

ii. EASE IN COMPREHENSIN:

OOPs code is more close to

existing real world than other

programming paradigms code.

iii. EASY TO DESIGN: The concepts

like data abstraction and

encapsulation provides a way

for clean designing of program.

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

P a g e | 107

iv. EASY TO EXTEND: Facilities

like modularity, inheritance,

polymorphism, data

encapsulation and abstraction

provides an easy way for

program extension and

modification.

CONCLUSION
All four of the main programming

paradigms are useful in their own way,

but pure programming languages of

only one paradigm are known to be

slightly more limiting but Object-

oriented design is currently the most

versatile and widely used

programming paradigm.

REFFERENCE

1. Stroustrup, B. (1995). The C++

programming language. Pearson

Education India.

2. Chandy, K. M., & Kesselman, C.

(1993). Compositional C++:

Compositional parallel

programming (pp. 124-144).

Springer Berlin Heidelberg.

3. Coplien, J. (1997, November).

Advanced C++ programming

tylesand idioms. In Technology of

Object-Oriented Languages,

International Conference on (pp.

352-352). IEEE Computer Society.

4. Watson, M. (1994). C++ Power

Paradigms. McGraw-Hill, Inc..

5. Burrus, N., Duret-Lutz, A., Géraud, T.,

Lesage, D., & Poss, R. (2003, October).
A static C++ object-oriented
programming (SCOOP) paradigm
mixing benefits of traditional OOP and
generic programming. In Proceedings
of the Workshop on Multiple
Paradigm with OO Languages
(MPOOL), Anaheim, CA, USA.

6. Coplien, J. O. (1999). Multi-

paradigm Design for C+. Addison-

Wesley.

7. Gregor, D., Järvi, J., Siek, J.,

Stroustrup, B., Dos Reis, G., &

Lumsdaine, A. (2006, October).

Concepts: linguistic support for

generic programming in C++. In

ACM SIGPLAN Notices (Vol. 41,

No. 10, pp. 291-310). ACM.

