

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

Object Oriented Programmingversusabstract Data Type ShubhamGoyal & Mohit Pahwa
 P a g e | 213

Object Oriented Programmingversusabstract

Data Type

ShubhamGoyal & Mohit Pahwa

Department of Informational Technology, Dronacharya College of Engineering, Gurgaon, India

Shubham.16936@ggnindia.dronacharya.info

Mohit.16921@ggnindia.dronacharya.info

ABSTRACT

This abstract collects and elaborates

arguments for distinguishing between

Object oriented programming and abstract

data types. The basic distinction is that

object oriented programming achieves

data abstraction by the use of procedural

abstraction, while abstract data types

depends upon type abstraction. In this

paper we will study about the application

of object oriented programming and

abstract data type.

Keywords-

Object oriented programming (OOP);

Abstract data type (PDP); programming;

Operation

INTRODUCTION

The development of abstract data types

and object-oriented programming, from

their roots in Simula 67 to their current

diverse forms, has been prominent in

programming language research for the

last two decades. This tutorial is aimed at

organizing and collecting arguments that

distinguish between the two paradigms.

The focus of the arguments is on the basic

mechanisms for data abstraction,

illustrating the differences with examples.

Although more advanced topics, like

inheritance, overloading, and mutable

state, is important features of one or the

other paradigm, they are not considered in

this presentation. The interpretations of

―abstract data type‖ and ―object-oriented

programming‖ compared in this paper are

based upon major lines of development

recorded in the literature and in general

use.

Abstract data types are often called user-

defined data types, because they allow

programmers to define new types that

resemble primitive data types. Just like a

primitive type INTEGER with operations

+, −, _, etc., an abstract data type has a

type domain, whose representation is

unknown to clients, and a set of operations

defined on the domain. They are also

closely related to algebraic specification.

In this context the phrase ―abstract type‖

can be taken to mean that there is a type

that is ―conceived apart from concrete

realities‖ [1].

Object-oriented programming involves the

construction of objects which have a

collection of methods, or procedures, that

share access to private local state. Objects

resemble machines or other things in the

real world more than any well-known

mathematical concept. In this tutorial,

Smalltalk is taken as the paradigmatic

object-oriented language. The term

mailto:Shubham.16936@ggnindia.dronacharya.info

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

Object Oriented Programmingversusabstract Data Type ShubhamGoyal & Mohit Pahwa
 P a g e | 214

―object‖ is not very descriptive of the use

of collections of procedures to implement

a data abstraction. Thus we adopt the term

procedural data abstraction as a more

precise name for a technique that uses

procedures as abstract data. In the

remainder of this paper, procedural data

abstraction (PDA) will be used instead of

―object-oriented programming‖. By

extension, the term ―object‖ is

synonymous with procedural data value.

HISTORICAL OVERVIEW

In 1972, David Parnas published his

seminal work on modularization [2]. He

showed the value of decomposition of a

system into a collection of modules

supporting a procedural interface to hidden

local state. He pointed out the usefulness

of modules for facilitating modification or

evolution of a system. His specification

technique [36] for describing modules as

abstract machines has not been generally

adopted, but the module concept has had a

great impact, especially on the

development of languages like Modula-2

[3]. Although Parnas recognized that

modules with compatible interfaces can be

used interchangeably, he did not develop

this possibility. As a result, modules are

not first-class values, so they cannot be

passed as arguments or returned as values.

In 1973, Stephen Zilles published a paper

on ―Procedural abstraction: a linguistic

protection technique‖ which showed ―how

procedures can be used to represent

another class of system components, data

objects, which are not normally expressed

as programs‖ (emphasis added). His notion

of procedural abstraction is very similar to

Parnas’s modules; however, he views them

as data and discusses passing them as

arguments to other procedures, and

returning them as values. He also noted the

similarity to objects in Simula. He

illustrated them by discussing streams

represented as a vector of procedures with

local state. Calling an operation was

defined as an indirect procedure call

through the vector. He shows that different

classes of stream objects can be defined by

building an appropriate vector of

procedures. He also presents two of the

main methodological advantages of

objects: encapsulation and independence

of implementations.

The following year, in 1974, Zilles

published an influential paper with

Barbara Liskov on ADTs and CLU. Gone

was any mention of OOP; type abstraction

had taken its place. The formalism of

ADTs was still presented as closely related

to Simula; the main difference was

claimed to be that Simula allowed full

inspection of object representations.

In 1975, John Reynolds published a paper

called ―User-defined data types and

procedural data structures as

complementary approaches to data

abstraction‖ in which he compares

procedural data abstraction to user-defined

data types. He argued that they are

complementary, in that they each have

strengths and weaknesses, and the

strengths of one are generally the

weaknesses of the other. In particular, he

found that PDAs offer extensibility and

interoperability but obstruct some

optimizations. ADTs, on the other hand,

facilitate certain kinds of optimizations,

but are difficult to extend or get to

interoperate. He also discussed the typing

of the two approaches, and identified

recursion in values and types as

characteristic of PDA. One limitation of

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

Object Oriented Programmingversusabstract Data Type ShubhamGoyal & Mohit Pahwa
 P a g e | 215

his presentation is that the objects in his

examples only have a single method. The

introduction of a second method was

described as an intellectual ―tour de force‖,

implying that multiple methods are too

complicated for use in practical designs.

After 1975 little was written that related to

the theory of object-oriented

programming, while investigation of

ADTs continued. Yet development of

object-oriented languages, like Smalltalk

and Flavors , continued, especially in the

context of extensible, interactive, open

systems which encouraged user

programming. Theoretical interest in

object-oriented programming was sparked

in 1984 by Cardelli’s paper on ―The

semantics of multiple inheritances‖ [4].

This paper identified the notion of

subtyping as central to an understanding of

object-oriented programming. Subtyping

and parametric polymorphism were

combined to form bounded quantification,

which could describe aspects of update

operations on records A good explanation

for the complementarity noted by

Reynolds was presented by Abelson and

Sussman [1] in 1985, although they do not

cite his work. They discuss ―data-oriented

programming‖ as a technique for writing

flexible and extensible programs in Lisp.

They note that abstractions are

characterized by observations and

representations, where the operation

needed to perform an observation depends

upon the representation. Data-oriented

programming works by grouping all the

observations on a particular representation

together as components, or methods, of a

value containing that representation. This

is in contrast to operation-oriented

programming, or ADT programming,

where a function is written for each

observation with cases for each

representation. By organizing the

observations and constructors into a two-

dimensional matrix, it becomes clear that

ADTs and object-oriented programming

arise from a fundamental dichotomy: there

are two ways to organize this table: either

by observers for ADTs or by constructors

for PDAs

DISTINGUISHING ADTs and OOP

Abstract Data Type (ADP)

An abstract data type is defined as a

mathematical model of the data objects

that make up a data type as well as the

functions that operate on these objects.

There are no standard conventions for

defining them. A broad division may be

drawn between "imperative" and

"functional" definition styles.

Abstract data type (ADT) is

a mathematical model for a certain class

of data structures that have similar

behaviour; or for certain data types of one

or more programming languages that have

similar semantics. An abstract data type is

defined indirectly, only by the operations

that may be performed on it and by

mathematical constraints on the effects

(and possibly cost) of those operations.
[1]

For example, an abstract stack could be

defined by three operations: PUSH , that

inserts some data item onto the

structure, POP , that extracts an item from

it (with the constraint that each pop always

returns the most recently pushed item that

has not been popped yet), and PEEK , that

allows data on top of the structure to be

examined without removal.

When analysing the efficiency of

algorithms that use stacks, one may also

specify that all operations take the same

http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Data_type
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Semantics
http://en.wikipedia.org/wiki/Computational_complexity
http://en.wikipedia.org/wiki/Abstract_data_type#cite_note-liskov-1
http://en.wikipedia.org/wiki/Stack_(abstract_data_type)
http://en.wikipedia.org/wiki/Analysis_of_algorithms

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

Object Oriented Programmingversusabstract Data Type ShubhamGoyal & Mohit Pahwa
 P a g e | 216

time no matter how many items have been

pushed into the stack, and that the stack

uses a constant amount of storage for each

element.

Abstract data types are purely theoretical

entities, used (among other things) to

simplify the description of abstract

algorithms, to classify and evaluate data

structures, and to formally describe

the typesystems of programming

languages. However, an ADT may

be implemented by

specific datatypes or datastructures, in

many ways and in many programming

languages; or described in

a formalspecificationlanguage. ADTs are

often implemented as modules: the

module's interface declares procedures that

correspond to the ADT operations,

sometimes with comments that describe

the constraints.

This informationhiding strategy allows the

implementation of the module to be

changed without disturbing the

client programs.

Object Oriented Programme (OOP)

Object-oriented programming attempts to

provide a model for programming based

on objects [5]. Object-oriented

programming integrates code and data

using the concept of an "object". An object

is an abstract data type with the addition

of polymorphism and inheritance. An

object has both state (data) and behaviour

(code).

Objects sometimes correspond to things

found in the real world. For example, a

graphics program may have objects such

as "circle," "square," "menu." An online

shopping system will have objects such as

"shopping cart," "customer," and

"product." The shopping system will

support behaviour’s such as "place order,"

"make payment," and "offer discount."

Objects are designed in class hierarchies.

For example, with the shopping system

there might be high level classes such as

"electronics product," "kitchen product,"

and "book." There may be further

refinements for example under "electronic

products": "CD Player," "DVD player,"

etc. These classes and subclasses

correspond to sets and subsets

in mathematical logic. Rather than

utilizing database tables and programming

subroutines, the developer utilizes objects

the user may be more familiar with:

objects from their application domain.
[4]

Object orientation

uses encapsulation and information hiding.

Object-orientation essentially merges

abstract data types with structured

programming and divides systems into

modular objects which own their own data

and are responsible for their own

behaviour. This feature is known as

encapsulation. With encapsulation, the

data for two objects are divided so that

changes to one object cannot affect the

other. Note that all this relies on the

various languages being used

appropriately, which, of course, is never

certain. Object-orientation is not

a software silver bullet [6].

WHAT IS ADTs in OOP?

An abstract class is a generalization

concept. It is a class you invent to only use

as a base class for inheritance but not to

instantiate objects from.

And abstract data type is not necessarily

an OOP concept. It is an older term to

describe the concepts of for example Stack

and Queue in terms of their functionality,

without describing the implementation.

http://en.wikipedia.org/wiki/Type_system
http://en.wikipedia.org/wiki/Implementation
http://en.wikipedia.org/wiki/Data_type
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Formal_specification_language
http://en.wikipedia.org/wiki/Modular_programming
http://en.wikipedia.org/wiki/Interface_(computer_science)
http://en.wikipedia.org/wiki/Comment_(computer_programming)
http://en.wikipedia.org/wiki/Information_hiding
http://en.wikipedia.org/wiki/Client_(computing)
http://en.wikipedia.org/wiki/Abstract_data_type
http://en.wikipedia.org/wiki/Polymorphism_(computer_science)
http://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)
http://en.wikipedia.org/wiki/Mathematical_logic
http://en.wikipedia.org/wiki/Object-oriented_programming#cite_note-4
http://en.wikipedia.org/wiki/Encapsulation_(object-oriented_programming)
http://en.wikipedia.org/wiki/Information_hiding
http://en.wikipedia.org/wiki/No_Silver_Bullet

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

Object Oriented Programmingversusabstract Data Type ShubhamGoyal & Mohit Pahwa
 P a g e | 217

Since you are probably interested in

abstract class, a small example:

Suppose you have to make a program to

deal with cars and motorbikes. You can

define the classes (entities)

of Car and Bike and you will see they have

much (but not all) functionality in

common. It would be a mistake to

derive Car from Bike or the other way

around. What you need to do is to define a

common abstract base-

class MotorVehicle and derive

both Car and Bike from that class.

Abstract class MotorVehicle {...}

/*concrete*/ class Car: MotorVehicle {...}

/*concrete*/ class Bike: MotorVehicle

{...}

Note that you would never want to create

an object of class MotorVehicle, it would

not be 'concrete'

(complete). MotorVehicle is only used to

build a correct object-model.

COMPARING ADTs and OOP

The difference between ADTs and

procedural abstraction involve both the

client’s use of the abstractionand the

implementer’s definition of the

abstraction. The differences are illustrated

in the areas of Incremental programming,

optimization, typing, and verification. The

client has an abstract view of data in both

ADTs and OOP. The major difference

between them is the technique used to

enforce the encapsulation and abstraction.

In an ADT the mechanism is type

abstraction, while in OOP it is procedural

abstraction. Another major difference is

that in OOP the objects act as clients

among themselves, and so are

encapsulated from each other. In an ADT,

the &abstract values are all enclosed

within a single abstraction, and so they are

not encapsulated from each other.
OPTIMIZING OPERATIONS

Optimizing operations is an important

consideration in programming. One of the

benefits of abstraction is that some

optimizations can be performed in

isolation within an abstraction. However,

abstraction can also prevent optimization

because it prevents access to the

information on which the optimization

would be based. When the interval

representation is added to the lists, the

equality operation becomes very

inefficient because it must create the

complete sequence of numbers in the

interval. It is easier to optimize the ADT

implementation because the list values are

not encapsulated from each other as they

are in the procedural data abstraction.

Length (l: list) = case l ofNIL) 0
CELL(x, l 0)) 1+length (l 0)
 Figure 1: A length operation for the list ADT.

NilWithLength = Inherit Nil
With [Length = 0]
CellWithLength(x, l) = Inherit Cell(x, l)
With [Length = l.length+1]
IntervalWithLength(x: integer, y: integer)
=Inherit Interval(x, y)
With [Length = (y - x + 1)]
 Figure 2: Adding a length operation to list

constructors using inheritance.

OPTIMIZING ADTs

In the ADT it is possible to improve the

efficiency, because the representations of

both arguments to the equality function

may be inspected. The equality operation

in the list ADT can be improved by adding

cases for the constructors of both

arguments to the operation. Previously, all

operations performed a case statement on

only their first argument. By using case

statement on both arguments of the equal

operation, as shown in Figure 13, a much

more efficient comparison of intervals is

possible. This is still not the most efficient

implementation possible, but it does

illustrate examination of more than one

representation.

OPTIMIZING OOP

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

Object Oriented Programmingversusabstract Data Type ShubhamGoyal & Mohit Pahwa
 P a g e | 218

In OOP it is much more difficult to

optimize operations, because the

representation of argument to theequality

observation cannot be determined. For

example, the equality method on an

interval object cannot be optimized

because there is no way to determine if its

argument is also an interval. This is the

cost of the flexibility of objects. The

optimization of methods is only one form

of optimization; addition of specialized

representations can also be viewed as a

form of optimization, which is supported

by objects. Another promising approach

involves compilation techniques that

create special code for common

combinations of arguments to methods

[25, 22, 14]. Direct optimization of

methods is possible in some cases. By

adding additional messages to the object, it

is possible for other objects to query these

messages and perform more efficiently.

These messages can easily degenerate into

simply specifying representational details.

The trick is to define sufficiently abstract

queries that provide quick answers for

some implementations, while not

prohibiting other implementations. To give

a simple example illustrating this, consider

the addition of an append

Equal (l: list, m: list) =

Case l of

NIL) null? (m)

CELL(x, l 0)) (not null? (m))

and (x = head (m))

 And equal (l 0, tail (m))

INTERVAL(x, y)) case m of

NIL) false

CELL(y, m0)) (x = y) and equal (tail (l), m0)

INTERVAL(x0, y0)) (x = x0) and (y = y0)

 Figure 3: Efficient comparison of ADT intervals.

IMPLEMENTING ADTs

A wide variety of languages support the

implementation of abstract data types.

These languages include use of private

types in Ada packages, Clu clusters, ML

abstype definitions, and opaque types in

Modula-2. The overall structures of these

facilities are very similar. The key element

is of course that the representation of

abstract values is hidden from users of the

operations. Exactly how the representation

type is defined and how the operations are

implemented depends upon the data types

and control structures of the language.

Figure 4 defines an ADT implementing

integer lists. The syntax is based loosely

on ML. The ADT has two distinct parts: a

representation and a set of operations. The

representation is defined as a labelled

union type, or variant record, with cases

named NIL and CELL. The NIL variant is

simply a constant, while the CELL variant

contains a pair of an integer and a list.

A client of the ADT is able to declare

variables of type list and use the operations

to create and manipulate list values.

adtIntList
representation
list = NIL | CELL of integer *list operations
nil = NIL
adjoin(x:integer,l: list) =CELL(x, l)
Null? (l: list) = case l ofNIL) true
CELL(x, l)) false
Head (l: list) = case l of NIL) error
CELL(x, l 0)) x
tail (l: list) = case l of NIL) error
CELL(x, l 0)) l 0
equal (l: list, m : list) = case l of
NIL) null?(m)
CELL(x, l 0)) not null?(m)
and x = head (m)
and equal (l 0, tail (m))

 Figure 4: Implementation of an ADT for lists.

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

Object Oriented Programmingversusabstract Data Type ShubhamGoyal & Mohit Pahwa
 P a g e | 219

IMPLEMENTING OOP

As combinations of procedural

observations with shared local state, OOP

are naturally implemented a closures

containing records of procedures [7]. The

procedures are derived from the

specification of the data abstraction. The

record is formed by using the observations

as field names and the procedures as

values. The closure is used to encapsulate

the constructor’s arguments, which act as

local state for the procedures. The class

constructs in most OOP languages can be

viewed as special mechanism for creating

closures of records. This form of closure is

different from the kind commonly found in

functional languages like Lisp for two

reasons. First, in functional languages it is

often only possible to form closures over

functions, not records. Thus records must

be simulated as an explicit case over a set

of field names [8]. Second, the closures are

not a general construct of the language, but

are provided only within the class

construct.

Nil = recursive self = record
 Null? = true
head = error;
tail = error;
cons = fun(y) Cell(y, self);
equal = fun(m) m.null?
end
Cell(x, l) = recursive self = record
null? = false
head = x;
tail = l;
cons = fun(y) Cell(y, self);
equal = fun(m) (not m.null?)
and (x = m.head)
andl.equal(m.tail) end
Figure 5: Implementation of lists as OOP.

The two constructors for list objects are

defined in Figure 5. The constructor

functions, Nil andCell, return record

values. The constructor for cells takes two

arguments, x and l, which play the role of

instance variables of the object. In this

example they are not changed by

assignment, though there is no essential

reason why they could not be modified (if,

for example, a set-head method were

introduced).

LANGUAGE USED IN ADTs and OOP

Simula 67 was the first object-oriented

language. It was defined as an extension of

Algol 60 by allowingblocks to be detached

from the normal nested activation scheme

and have an independent lifetime. The

declarations in a detached block were

made accessible to other parts of the

program through a reference. The

definition of such blocks was called

classes, which also acted as types or

qualifications on references. Classes could

also be defined by extension of previous

classes, resulting in an inheritance

hierarchy. Early versions of the language

did not provide sufficient encapsulation of

the attributes of classes, but later versions

corrected this problem.

Simula was the inspiration for both the

pure ADT languages, like CLU, and the

pure OOP language Smalltalk. This is not

surprising, because Simula embodies

aspects of both techniques. This composite

approach has been preserved in most of its

statically-typed descendants, including

C++, Beta, and Eiffel. A class definition is

both constructor of objects and a type. If

the hidden part is empty then the class

resembles an object-oriented interface.

Such classes are sometimes called abstract

classes. If a class with private components

is used as a type, then it is acting more like

an ADT.

Simula and C++ also support a distinction

between virtual and non-virtual operations.

When a virtual operation is invoked, the

method to be called is determined from the

object on which the operation is being

performed. This is the behaviour that has

been assumed as normal in the general

discussion of OOP. All operations are

virtual in Smalltalk, Eiffel, and Trellis.

The method for a non-virtual operation is

determined from the class of the variable

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

Object Oriented Programmingversusabstract Data Type ShubhamGoyal & Mohit Pahwa
 P a g e | 220

used to refer to the object, not from the

object itself. Nonvirtualoperations model

the operations in an ADT, because they are

taken from the implementation of the type,

not from the abstract values themselves.

Classes in which all of the operations are

virtual are called virtual classes.

CONCLUSION

The essence of object-oriented

programming is procedural data

abstraction, in which procedures are

usedto represent data and procedural

interfaces provide information hiding and

abstraction. This technique is

complementary to ADTs, in which

concrete algebras are used to represent

data, and type abstraction provides

information hiding. The two paradigms

can be derived from a fundamental

dichotomy in decomposing a matrix of

observers and constructors that specify

abstract data.

As would be expected, given the

organization biases of the two paradigms,

they are complementary in the sense that

each has advantages and disadvantages.

Using OOP it is easy to add new

constructors, and the absence of a shared

abstracted type reduces code

interdependence. With inheritance and

subtyping it is also possible to add new

observations (methods). However, the use

of strong functional abstraction prevents

optimizations that might be performed if

more than one representation could be

inspected at a time. Binary observations in

particular cause difficulties for OOP

Simula was the inspiration for the

development of both abstract data types

(exemplified by CLU) and OOP

(exemplified by Smalltalk). This is not

surprising, because Simula embodies a

combination of both techniques, a

characteristic preserved by its descendants

C++, Eiffel, and Beta. The combination is

more of an interweaving than unification,

because the trade-offs outlined above is

still operative.

REFERENCES

[1] J. Stein, editor. Random House Dictionary

of the English Language. Random House,

1967.

[2] D. Parnas. On the criteria to be used in

decomposing systems into modules.

[3] N. Wirth. Programming in Modula- 2.

Springer-Verlag, 1983.

[4] L.Cardelli. A semantics of multiple

inheritances. In Semantics Data Types, volume

173 Notes CS.

[5]Jump up^Booch, Grady (1986). Software

Engineering with Ada

[6]Jump up^ Brooks, Fred P. (April 1987).

"No Silver Bullet — Essence and Accidents of

Engi.

[7] U. S. Reddy. Objects as closures: Abstract

semantics of object-oriented languages. In

Proc. of the

ACM Conf. on Lisp and Functional

Programming, pages 289–297, 1988.

https://en.wikiquote.org/wiki/Grady_Booch
https://en.wikiquote.org/wiki/Grady_Booch
https://en.wikiquote.org/wiki/Grady_Booch
http://en.wikipedia.org/wiki/Object-oriented_programming#cite_ref-5
http://en.wikipedia.org/wiki/Fred_Brooks

