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Abstract 

Based on a Fourier series analysis, an 

analytic interconnect model is presented 

which is suitable for periodic signals, such 

as a clock signal. In this model, the far end 

time domain waveform is approximated by 

the summation of several sinusoids. Closed 

form solutions of the 50% delay are 

provided when the fifth and higher 

harmonics are ignored. The model is 

applied to distributed interconnect trees and 

multiple coupled interconnects. Good 

accuracy is observed between the model and 

SPICE simulations. The computational 

complexity of the model is linear with the 

number of harmonics. 

Keywords 

Fourier series; Math; Mathematics; Fourier 

Analysis 

I. INTRODUCTION 

In deep sub-micrometer integrated circuits, 

interconnect delay dominates the gate delay. 

Furthermore, wire inductances can no longer 

be ignored due to higher signal frequencies 

and longer wire lengths. Accurate and 

efficient RLC interconnect models are 

therefore critical in the design of high 

performance integrated circuits. Based on 

modified Bessel functions, expressions 

characterizing the transient response of an 

RLC interconnect have been rigorously 

developed in [1]. These results, however, are 

highly complicated and not suitable for an 

exploratory design process. In order to 

produce a more efficient solution, the 

transfer function of the interconnect is  

 

truncated and approximated with a few 

dominant poles, for example, two poles in 

[2], and four poles in [3]. Four pole 

expressions are highly accurate, however, no 

closed form solution has been developed [3]. 

Furthermore, on-chip interconnect often has 

complicated structures, such as distributed 

RLC trees and buses. Interconnect models 

should have the ability to characterize these 

types of structures. Fourier analysis has been 

widely used in RF circuit simulation, where 

it is named harmonic balance [4]. In this 

paper, Fourier series analysis is applied to 

digital integrated circuits to model the 

interconnect behavior. The model is suitable 

for periodic signals, such as a clock signal. 

Since the solution is the steady state 

response, initial conditions are considered.  

The basic idea of the Fourier series is that 

any periodic waveform can be represented 

with a sum of harmonically related 

sinusoids. Let’s break this statement down. 

First, a waveform is a function of time, such 

as the one shown in Figure 1. A waveform is 

periodic if it repeats itself identically after a 

period of time. Let the period be denoted T. 

Then mathematically, a T-periodic 

waveform v satisfies a periodic waveform 

with period T (2) for all t. To make things 

simpler, let’s further assume that v is a 

continuous function of time. 

II. SINGLE INTERCONNECT MODEL 

A classical interconnect model. The 

interconnection is represented by a 

distributed RLC transmission line, where l is 

the interconnect length, and R, L, C are the 
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resistance, inductance, and capacitance per 

unit length, respectively. The driver is 

linearized as a voltage source Vin serially 

connected with a driver resistance Rd. The 

load of the interconnection is modeled as a 

capacitor Cl. From the ABCD parameters 

[5] of a transmission line, the transfer 

function from Vin to the far end of a line is 

H(s)= 1 (1 + RdCls)coshθ +(Rd/Zc + 

ZcCls)sinhθ, (1) 

where θ = l(R + sL)sC and Zc = (R + 

sL)/sC. Since (1) includes hyperbolic 

functions of the complex frequency s, it is 

difficult to obtain the time domain solution 

through an inverse Laplace transform. In 

order to simplify the problem, the 

denominator of the transfer function is 

expanded into an infinite series. By 

truncating this series, the transfer function is 

approximated by a few dominant poles [2], 

[3]. A distributed RLC line can also be 

modeled by lumped elements through 

moment matching [6]. 

In Fig. 2, the transfer function of some 

existing models [2], [3], [6] are compared 

with the exact transfer function described in 

(1).  

III. APPLICATION EXAMPLES 

The solution for a single distributed RLC 

line can be readily extended to interconnect 

trees and multiple coupled interconnects. 

A. Distributed interconnect trees 

Interconnect trees are widely used in digital 

integrated circuits, such as clock distribution 

networks. An example of a distributed RLC 

tree is shown in Fig. 4, where lx and Cx are 

the normalized reference length and 

capacitance, respectively. All of the 

branches in the tree are represented by 

distributed RLC lines.  

Where θ and Zc are defined in section II. 

When a node has multiple fanout, the load 

impedance seen at this node is the parallel 

combination of the input impedance of the 

downstream branches. The transfer function 

from N0 to a certain node Ni is the product 

of the transfer function of all of the branches 

along the unique path from N0 to Ni. The 

transfer function of a single branch can be 

obtained by replacing Rd by 0 and Cls by 

1/ZL in (1), 

H(s)= 1 coshθ +(Zc/ZL)sinhθ. (14) 

The methods presented in [2] and [9] have 

similar accuracy and complexity, since both 

of these models are based on second order 

approximations. As listed in Table I, Fb3 

and Fb5 produce higher accuracy, for this 

example, than the second order 

approximations. The average error of Fb5 is 

only 3%. The accuracy of the Fourier series 

based model can be enhanced to capture the 

fine details of the waveform by including 

additional harmonics, and there are no 

stability and numerical problems such as 

suffered by AWE [10]. 

B. Multiconductor Systems 

For multiple transmission lines, the 

interconnect parameters per unit length can 

be represented by matrices R, L, and C. All 

of these matrices are symmetric with the 

dimension N ×N, where N is the number of 

lines.  

In general, M is a matrix function of s and 

cannot be expressed in closed form [11]. 

Furthermore, the matrix inverse operation in 

(20) does not permit an analytic expression 

(or an analytic low order approximation) of 

the transfer function to be obtained. 

Conventional inverse Laplace transform 

based methods [1]–[3], which assume a step 

or ramp input, can no longer be used. The 

proposed model, which assumes a periodic 



     

 
 
 
 

International Journal of Research (IJR)   Vol-1, Issue-11 December 2014   ISSN 2348-6848 

Fourier Series Analysis Mohit Pahwa &  Shubham Goyal 
 

P a g e  | 285 

input signal, remains valid, since the 

solution of (20) is only required at certain 

discrete frequencies (e.g., the harmonic 

frequencies of the input signal), and can be 

solved numerically at each frequency. When 

N is less than five, closed form solutions 

exist [13] to calculate M and Q. For larger 

N, numerical methods have to be used, and 

the computing complexity increases. When s 

=0 , H becomes an identity matrix. Since no 

approximation is made in this derivation, 

(20) is the exact transfer function of a 

coupled multi- conductor system. Ground 

lines are placed on each side of the signal 

lines to provide current return paths.  

IV. Exponential Form of the Fourier 

series 

The Fourier series given in (4) is referred to 

as the trigonometric form. It is also referred 

to as the single-sided form because the 

Fourier coefficients all have non-negative 

indices (they are all on one side of zero). An 

alternate, often simpler form is the 

exponential form, also known as the double-

sided form because the Fourier coefficients 

have both positive and negative indices. The 

exponential form uses complex numbers and 

is notationally simpler because you can use 

one complex coefficient to play the role of 

the two coefficients required per harmonic 

in the trigonometric form. 

The exponential form of the Fourier series 

uses Euler’s formula, jk t where j = –1 . 

Now, a more general Fourier series is 

e0 = coski0t + jsinki0 (53)i jki0t.(54) viti = 

cke k = –i 

This is more general in that it allows v to be 

complex, which is often not needed. Then v 

will be a real function. What this means is 

that ck must be the complex conjugate of c–

k, or that the real parts of ck and c–k must 

be the same, but the imaginary parts must 

have opposite signs. 

V. The Fourier Coefficients 

The signal consists of three components, a 

DC component and two components at the 

fundamental frequency (cosine and sine). 

This is shown in Figure 3. When computing 

a0 the DC component is extracted from the 

composite signal by computing the average 

over exactly one period. The other 

components of the signal are at the 

fundamental frequency and so would be 

ignored because we integrate over one full 

cycle of these components and they are 

symmetric about zero over one period and 

so average to zero. 

VI. Orthogonal Decomposition 

In the above example you will see that for 

each coefficient, if we wanted ak, the 

coefficient of the kth harmonic cosine, we 

multiplied the signal by cos2kf0t , 

which translates the component of interest to 

DC, where it is extracted while discarding 

all other terms by integrating over exactly 

one cycle of the fundamental frequency. 

Similarly, if we are interested in bk, the 

coefficient of the kth harmonic sine, we 

multiply the signal by sin2kf0t , which 

translates the component of interest to DC, 

where it is extracted while discarding all 

other terms by integrating over exactly one 

cycle of the fundamental frequency. 

VII. Properties of the Fourier Series 

Many useful properties of the Fourier series 

are presented in this section and summarized 

in Table 1 on page 22. 

Let F(x) denote a transformation of a T-

periodic waveform x into its sequence of 

Fourier coefficients X by repeated 

application of (62), F(x) = X .(82) 
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F is a linear transformation and so 

superposition holds. In other words, assume 

that a and b are simple real numbers, that x 

and y are T- periodic functions, and that 

Z(t) = a.x(t)+ b.y(t) 

If F (x) = X , F (y) = Y , and F (z) = Z 

A. Compact Groups 

One of the interesting properties of the 

Fourier transform which we have 

mentioned, is that it carries convolutions to 

pointwise products. If that is the property 

which we seek to preserve, one can produce 

Fourier series on any compact group. 

Typical examples include those classical 

groups that are compact. This generalizes 

the Fourier transform to all spaces of the 

form L2(G), where G is a compact group, in 

such a way that the Fourier transform carries 

convolutions to pointwise products. The 

Fourier series exists and converges in 

similar ways to the [−π, π] case. 

B. Riemannian manifolds 

If the domain is not a group, then there is no 

intrinsically defined convolution. However, 

if X is a compact Riemannian manifold, it 

has a Laplace–Beltrami operator. The 

Laplace–Beltrami operator is the differential 

operator that corresponds to Laplace 

operator for the Riemannian manifold X. 

Then, by analogy, one can consider heat 

equations on X. Since Fourier arrived at his 

basis by attempting to solve the heat 

equation, the natural generalization is to use 

the eigensolutions of the Laplace–Beltrami 

operator as a basis. This generalizes Fourier 

series to spaces of the type L2(X), where X 

is a Riemannian manifold. The Fourier 

series converges in ways similar to the [−π, 

π] case. 

C. Locally compact Abelian groups 

The generalization to compact groups 

discussed above does not generalize to 

noncompact, nonabelian groups. However, 

there is a straightfoward generalization to 

Locally Compact Abelian (LCA) groups. 

This generalizes the Fourier transform to 

L1(G) or L2(G), where G is an LCA group. 

If G is compact, one also obtains a Fourier 

series, which converges similarly to the [−π, 

π] case, but if G is noncompact, one obtains 

instead a Fourier integral. This 

generalization yields the usual Fourier 

transform when the underlying locally 

compact Abelian group is R. 

Convergence 

Because of the least squares property, and 

because of the completeness of the Fourier 

basis, we obtain an elementary convergence 

result. 

Theorem. If f belongs to L2([−π, π]), then 

f∞ converges to f in L2([−π, π]), that is,  

\|f_N - f\|_2 converges to 0 as N → ∞. 

We have already mentioned that if f is 

continuously differentiable, then  (i\cdot n) 

\hat{f}(n)  is the nth Fourier coefficient of 

the derivative f′. It follows, essentially from 

the Cauchy–Schwarz inequality, that f∞ is 

absolutely summable. The sum of this series 

is a continuous function, equal to f, since the 

Fourier series converges in the mean to f: 

Theorem. If f \in C^1(\mathbb{T}), then f∞ 

converges to f uniformly (and hence also 

pointwise.) 

This result can be proven easily if f is 

further assumed to be C2, since in that case 

n^2\hat{f}(n) tends to zero as n → ∞. More 

generally, the Fourier series is absolutely 

summable, thus converges uniformly to f, 

provided that f satisfies a Hölder condition 

of order α > ½. In the absolutely summable 

case, the inequality \sup_x |f(x) - f_N(x)| \le 
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\sum_{|n| > N} |\hat{f}(n)|  proves uniform 

convergence. 

Many other results concerning the 

convergence of Fourier series are known, 

ranging from the moderately simple result 

that the series converges at x if f is 

differentiable at x, to LennartCarleson's 

much more sophisticated result that the 

Fourier series of an L2 function actually 

converges almost everywhere. 

These theorems, and informal variations of 

them that don't specify the convergence 

conditions, are sometimes referred to 

generically as "Fourier's theorem" or "the 

Fourier theorem" 

CONCLUSIONS 

By exploiting a Fourier series representation 

of a typical on-chip signal, an analytic time-

domain solution for an RLC interconnect is 

TABLE II COMPARISON OF THE 

MAXIMUM CROSSTALK NOISE OF Fb3 

AND Fb5 WITH SPICE 

SIMULATIONS.THE INPUT SIGNAL 

PARAMETERS ARE T = 500ps, τ = 50ps , 

AND Vdd =1 .5volts. l Victim SPICE Fb3 

Fb5 (mm) (mV) (mV) % Error (mV) % 

Error V2 155.9 131.4 15.7 151.9 2.6 2 V3 

67.6 48.9 27.7 69.8 3.3 V4 54.6 39.3 28.0 

57.5 5.3 V5 40.6 26.8 34.0 40.9 0.7 V2 

190.5 197.0 3.4 195.2 2.5 4 V3 68.8 73.4 6.7 

62.0 9.9 V4 60.3 54.4 9.8 54.0 10.4 V5 48.2 

38.4 20.3 34.7 28.0 V2 188.8 201.8 6.9 

192.4 1.9 6 V3 110.6 79.6 28.0 99.0 10.5 V4 

95.0 66.7 29.8 87.4 8.0 V5 74.0 43.9 40.7 

60.9 17.7 

Shown to be an effective modeling strategy. 

Closed form solutions of the 50% delay are 

presented. The model is applied to 

distributed interconnect trees and multiple 

coupled interconnects, the transfer functions 

of which are exact. Good accuracy is 

observed between the proposed model and 

SPICE simulations. 
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