

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2836

A Review on Hybrid Lut / Multiplexer Fpga Logic Architectures
Pathan Mubeena & Yendluri Kondaiah

M.Tech (VLSI) Department of ECE, Priyadarshini Institute of Technology and Management.

Pulladigunta,Guntur, A.P.

Associate professor Department of ECE, Priyadarshini Institute of Technology and Management

Pulladigunta, Guntur, A.P

ABSTRACT:

Hybrid configurable logic block architectures for field-

programmable gate arrays that contain a mixture of

lookup tables and hardened multiplexers are evaluated

toward the goal of higher logic density and area

reduction. Multiple hybrid configurable logic block

architectures, both non-fracturable and factorable with

varying MUX:LUT logic element ratios are evaluated

across two benchmark suites (VTR and CH Stone) using a

custom tool flow consisting of Leg Up-HLS, Odin-II front-

end synthesis, ABC logic synthesis and technology

mapping, and VPR for packing, placement, routing, and

architecture exploration. Technology mapping

optimizations that target the proposed architectures are

also implemented within ABC. Experimentally, we show

that for nonfracturable architectures, without any mapper

optimizations, we naturally save area post place and

route; both accounting for complex logic block and

routing area while maintaining mapping depth. With

architecture-aware technology mapper optimizations in

ABC. . For fracturable architectures, the proposed

architecture of this paper analysis the logic size, area and

power consumption using Xilinx 14.2.

KEYWORDS: FPGA, Multiplexer logic element,

Complex logic block, mapping technologies

INTRODUCTION:

Field Programmable Gate Arrays (FPGAs) are a step in

the continuum ofevolution of Integrated Circuits (IC).

FPGAs are reprogrammable silicon chips and are one of

the Programmable Logic Devices (PLDs) that can be

configured to implement customized hardware

functionality of any digital circuit. Due to their flexibility,

programmability, capacity for various applications and

low end product cycle, FPGAs are highly desirable for

implementation of digital circuits. The main difference

between FPGAs and conventional fixed logic

implementations, such as Application Specific Integrated

Circuits (ASICs), is that the designer can program the

FPGA on-site. Using an FPGA instead of a fixed logic

implementation eliminates the non-recurring engineering

(NRE) costs and significantly reduces time-to-market.

FPGA chips adoption across all industries is driven by the

fact that FPGAs combine the best parts of ASICs and

processor-based systems. These reprogrammable silicon

chips also have the same flexibility of software running on

a processor-based system, but it is not limited by the

number of processing cores available. The software tools

provide the programming environment, whereas FPGA

circuitry is truly a “hard” implementation of program

execution.

FPGAs are reprogrammable silicon chips that can be

configured to implement customized hardware

functionality by using its prebuilt logic blocks and

programmable 2 routing resources without even picking

up a breadboard or soldering iron. They are based around

a matrix of Configurable Logic Blocks (CLBs) connected

through programmable interconnects. The FPGA share a

common history with most PLDs. PLDs is divided into

three basic architecture types: Simple Programmable

Logic Devices (SPLD), Complex Programmable Logic

Devices (CPLD) and FPGA. The first of this kind of

devices was the Programmable Read Only Memory

(PROM). Philips invented the Field Programmable Logic

Array (FPLA) in the 1970s which was driven by need of

specifically implementing logic circuits. It consisted of

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2837

two planes, a programmable wired AND-plane and the

other as wired OR that could implement functions in the

Sum of Products form. But in both the devices (PROM

and FPLA), sequential logic like a flip-flop to create

synchronous designs or state machine are missing.

FPGA- ARCHITECTURE

The FPGA-architecture consists of many logic modules

which are placed in arraystructure and these modules are

configurable at site and are therefore called as

Configurable Logic Blocks (CLBs). The channels between

the CLBs are used for routing. The arrays of the CLBs are

surrounded by programmable I/O modules and connected

via programmable interconnects. There are two subclasses

of FPGA architecture depending on granularity of CLBs:

Coarse-grained and Fine-grained FPGAs.

FPGA architecture

The coarse-grained FPGAs have very large logic

modules/CLBs with sometimes two or more sequential

logic elements, whereas the fine-grained FPGAs have very

simple logic modules. A conventional, island-style FPGA

can be viewed as an array of CLBs connected by

programmable interconnects i.e. switchboxes (SBox) and

connection boxes (CBoxes) as shown in Figure Parvez and

Mehrez (2011). N programmable lookup tables (LUTs)

are connected together using internal interconnect inside

the CLB. The LUT is simply a circuit that selects the

output of aStatic Random Access Memory(SRAM) cell

based on the LUT’s k inputs: by programming appropriate

values in the SRAM cells the LUT can implement any k-

input function. Figure 1.4b shows the architecture of 3-

input LUT. All programmable interconnect is

implemented using the simple, unidirectional switch that

takes several inputs and selects one output. The circuit

consists of input end buffers for each input that serve to

isolate the switch, a multiplexer, and an output buffer that

drives a longwire segment. Each of the input and output

buffers can be built using a single or multiple staged

inverters as described by Parvez and Mehrez (2011).

Farooq, et.al (2012) shows how to assemble these switches

into a switchbox and the basic 3-input switch circuit.

CLB with 5 look-up tables (LUTs)

3 input LUT

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2838

LITERATURE REVIEW

Recent works have shown that the heterogeneous

architectures and synthesis methods can have a significant

impact on improving logic density and delay, narrowing

the ASIC–FPGA gap. Works by Anderson and Wang with

“gated” LUTs, then with asymmetric LUT LEs, show that

the LUT elements present in commercial FPGAs provide

unnecessary flexibility. Toward improved delay and area,

the macro cell-based FPGA architectures have been

proposed. These studies describe significant changes to the

traditional FPGA architectures, whereas the changes

proposed here build on architectures used in industry and

academia. Similarly, and-inverter cones have been

proposed as replacements for the LUTs, inspired by and-

inverter graphs (AIGs).

PURNAPRAJNA and IENNE explored the possibility of

repurposing the existing MUXs contained within the

Xilinx Logic Slices. Similar to this work, they use the

ABC priority cut mapper as well as VPR for packing,

place, and route. However, their work is primarily delay

based showing an average speed up of 16% using only ten

of 19 VTR7 benchmarks.

In this article, we study the technology mapping problem

for a novel field programmable gate array (FPGA)

architecture that is based on k-input single-output

programmable logic array- (PLA-) like cells, or, k/m-

macro cells. Each cell in this architecture can implement a

single output function of up to k inputs and up to m

product terms. We develop a very efficient technology

mapping algorithm, km flow, for this new type of

architecture. The experimental results show that our

algorithm can achieve depth-optimality on almost all the

test cases in a set of 16 Microelectronics Center of North

Carolina (MCNC) benchmarks. Furthermore it is shown

that on this set of benchmarks, with only a relatively small

number of product terms (m≤k+3), the k/m-macro cell

based FPGAs can achieve the same or similar mapping

depth compared with the traditional k input single-output

lookup table- (k-LUT-) based FPGAs. We also investigate

the total area and delay of k/m-macro cell-based FPGAs

and compare them with those of the commonly used 4-

LUT-based FPGAs. The experimental results show that

k/m-macro cell-based FPGAs can outperform 4-LUT-

based FPGAs in terms of both delay and area after

placement and routing by VPR on this set of benchmarks

This paper presents experimental measurements of the

differences between a 90-nm CMOS field programmable

gate array (FPGA) and 90-nm CMOS standard-cell

application specific integrated circuits (ASICs) in terms of

logic density, circuit speed, and power consumption for

core logic. We are motivated to make these measurements

to enable system designers to make better informed

choices between these two media and to give insight to

FPGA makers on the deficiencies to attack and, thereby,

improve FPGAs. We describe the methodology by which

the measurements were obtained and show that, for

circuits containing only look-up table-based logic and flip-

flops, the ratio of silicon area required to implement them

in FPGAs and ASICs is on average 35. Modern FPGAs

also contain “hard” blocks such as multiplier/accumulators

and block memories. We find that these blocks reduce this

average area gap significantly to as little as 18 for our

benchmarks, and we estimate that extensive use of these

hard blocks could potentially lower the gap to below five.

The ratio of critical-path delay, from FPGA to ASIC, is

roughly three to four with less influence from block

memory and hard multipliers. The dynamic power

consumption ratio is approximately 14 times and, with

hard blocks, this gap generally becomes smaller.

In this paper the new architectural proposals are routinely

generated in both academia and industry. For FPGA’s to

continue to grow, it is important that these new

architectural ideas are fairly and accurately evaluated, so

that those worthy ideas can be included in future chips.

Typically, this evaluation is done using experimentation.

However, the use of experimentation is dangerous, since it

requires making assumptions regarding the tools and

architecture of the device in question. If these assumptions

are not accurate, the conclusions from the experiments

may not be meaningful. In this paper, we investigate the

sensitivity of FPGA architectural conclusions to

experimental variations. To make our study concrete, we

evaluate the sensitivity of four previously published and

well-known FPGA architectural results: lookup-table size,

switch block topology, cluster size, and memory size. It is

shown that these experiments are significantly affected by

the assumptions, tools, and techniques used in the

experiments.

Technology mapping using ABC

ABC was used for technology mapping, with

modifications that allow for MUX4- embeddable function

identification and MUX2- embeddable function

identification in the case of fracturable MUX4s and

custom mapping. The internal data structure used within

the ABC is an AIG, where the logic circuit is represented

using 2-input AND gates with inverters. Priority Cuts

mapping in ABC (invoked with the, if command) was

modified to perform our custom technology mapping. This

mapper traverses the AIG from primary inputs to primary

outputs finding intermediate mappings for internal nodes

and finally the primary outputs, using a dynamic

programming approach. The priority cuts mapper

performs multiple passes on the AIG to find the best cut

per node. For depth-oriented mapping, the mapper first

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2839

prioritizes mapping depth then optimizes for area

discarding cuts whose selection would increase the overall

depth of the mapped network. Based on this standard

mapper, two mapper variants were produced and

evaluated. The first variant, Natural Mux, evaluates and

identifies internal functions that are MUX4-embeddable,

agnostic of the target architecture; i.e., this flow uses the

default priority cuts mapping and performs a post

processing step to identify MUX4-embeddable functions.

From this mapping, we can evaluate what area savings are

possible without any mapper changes. The second variant

Mux Map, area-weights the MUX4-embeddable cuts

relative to 6-LUT cuts, thereby establishing a preference

for selection/creation of MUX4- embeddable solutions.

Modeling using VPR:

VPR was used to perform architectural evaluation. The

standard ten 6-LUT CLB architecture in 40-nm included

with the VPR distribution was used for baseline modeling.

The hybrid CLBs shown in Figs. 3.1 and 3.2 were

modeled using the XML-based VPR architectural

language. The snippet from the architecture file for the

physical block hardened MUX4 element, this code

specifies a MUX4 as a six-input one-output black box to

the VPR. In addition, since all MUX4s can also be

mapped to the 6-LUTs, an additional mode was added to

the 6-LUT physical block. The mode concept allows the

VPR packer to pack LUTs into LUTs (as usual), but also

enables MUX4s to be packed into the LUTs. The

architectures with CLBs having MUX4: LUT ratios from

1:9 to 5:5 were created from the baseline 40-nm

architectures with delays obtained through circuit

simulations of the MUX4 variants. Importantly, we made

minor modifications to the VPR packing algorithm itself,

so that the MUX4 net list elements are preferred to be

packed into the MUX4 Les in the architecture (while

limiting packing MUX4 net list elements into LUTs). The

modifications involved changing the attraction function

during the CLB packing. One change was to ensure that

the logic functions that were MUX4 embeddable were

preferentially packed into a physical MUX4 element and

not into an LUT. Another was to apply a negative weight

on MUX4-embeddable functions when the current CLB’s

physical MUX4 elements are all occupied also preventing

MUX4-embeddable functions from being placed into the

LUTs. Without this, the MUX4 net list elements might

needlessly consume LUTs, which should be reserved,

where possible, for those net list elements that demand

their flexibility. This becomes doubly important for

fracturable architectures, since their packing problem is

more complex. Without this modification, a significant

CLB usage increase was observed across all benchmark

sets.

SIMULATION RESULTS

The proposed circuits are simulated and synthesized by

using modalism and xilinx12.1 which occurs low area than

the existing. The experimental results are given in Table 1

and the simulation results of layout and the waveforms are

shown in the fig.9.1 and fig.9.2. Then the RTL schematic

of the proposed are shown in fig.9.2

Fig 9.1 simulation results

Fig.9.2 RTL schematic

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2840

Figure 9.3: Synthesis report

CONCLUSION

We have proposed a new hybrid CLB architecture

containing MUX4 hard MUX elements and shown

techniques for efficiently mapping to these architectures.

We also provided analysis of the benchmark suites post

mapping, discussing the distribution of functions within

each benchmark suite. The area reductions for non-

fracturable architectures, is 8% and MUX4: LUT ratio is

4:6 and in the case of fracturable architecture the area

reductions are 2%.The CH Stone benchmarks being high

level synthesized with Leg Up-HLS also showed

marginally better performance and this could be due to the

way Leg Up performs HLS on the STUDIES Volume VIII

/Issue 1 / DEC 2016 IJPRES CH Stone benchmarks

themselves. Overall, the addition of MUX4s to FPGA

architectures minimally impact F Max and show potential

for improving logic-density in non-fracturable

architectures and modest potential for improving logic

density in fracturable architecture.

REFERECES

1. I. KUON R. Tessier and J. Rose. FPGA Architecture:

Survey and Challenges. Foundations and Trends in

Electronic Design Automation, 2(2):135–253, 2008.

2. Altera Corp. STRATIX III Device Handbook, Vol.1.

2006.

3. Xilinx Inc. Virtex-5 Family Overview - LX, LXT, and

SXT Platforms. 2007.

4. I. KUON and J. Rose. Measuring the Gap between

FPGAs and ASICs. IEEE Transactions on Computer-

Aided Design (CAD) of Integrated Circuits and Systems,

26(2):203–215, 2007.

5. S.J.E.WILTON. Architecture and Algorithms for Field-

Programmable Gate Arrays with Embedded Memory. PhD

dissertation, University of Toronto, 1997.

6. ACTEL, ProASIC3 Flash Family FPGAs Datasheet:

Device Architecture, 2007.

7. G.L. Zhang and P.H.W. Leong and C.H. Ho and K.H.

TSOI and C.C.C. Cheung, D. Lee, R.C.C. Cheung and W.

LUK. Reconfigurable Acceleration for Monte Carlo Based

Financial Simulation. In Proc. International Conference on

Field-Programmable Technology (FPT), pages 215–222,

2005.

8. J.D. Owens, M. Houston, D. LUEBKE, S. Green, J.E.

Stone and J.C. Phillips. GPU Computing Proceedings of

the IEEE, 96(5):879–899, May 2008.

9. M. ZECHNER and M. GRANITZER. Accelerating K-

Means on the Graphics Processor via CUDA In-Proc.

International Conference on Intensive Applications and

Services (INTENSIVE), pages 7–15, 2009.

