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ABSTRACT: 

Hybrid configurable logic block architectures for field-

programmable gate arrays that contain a mixture of 

lookup tables and hardened multiplexers are evaluated 

toward the goal of higher logic density and area 

reduction. Multiple hybrid configurable logic block 

architectures, both non-fracturable and factorable with 

varying MUX:LUT logic element ratios are evaluated 

across two benchmark suites (VTR and CH Stone) using a 

custom tool flow consisting of Leg Up-HLS, Odin-II front-

end synthesis, ABC logic synthesis and technology 

mapping, and VPR for packing, placement, routing, and 

architecture exploration. Technology mapping 

optimizations that target the proposed architectures are 

also implemented within ABC. Experimentally, we show 

that for nonfracturable architectures, without any mapper 

optimizations, we naturally save area post place and 

route; both accounting for complex logic block and 

routing area while maintaining mapping depth. With 

architecture-aware technology mapper optimizations in 

ABC. . For fracturable architectures, the proposed 

architecture of this paper analysis the logic size, area and 

power consumption using Xilinx 14.2. 

KEYWORDS: FPGA, Multiplexer logic element, 

Complex logic block, mapping technologies 

INTRODUCTION: 

Field Programmable Gate Arrays (FPGAs) are a step in 

the continuum ofevolution of Integrated Circuits (IC). 

FPGAs are reprogrammable silicon chips and are one of  

 

the Programmable Logic Devices (PLDs) that can be 

configured to implement customized hardware  

 

functionality of any digital circuit. Due to their flexibility, 

programmability, capacity for various applications and 

low end product cycle, FPGAs are highly desirable for 

implementation of digital circuits. The main difference 

between FPGAs and conventional fixed logic 

implementations, such as Application Specific Integrated 

Circuits (ASICs), is that the designer can program the 

FPGA on-site. Using an FPGA instead of a fixed logic 

implementation eliminates the non-recurring engineering 

(NRE) costs and significantly reduces time-to-market. 

FPGA chips adoption across all industries is driven by the 

fact that FPGAs combine the best parts of ASICs and 

processor-based systems. These reprogrammable silicon 

chips also have the same flexibility of software running on 

a processor-based system, but it is not limited by the 

number of processing cores available. The software tools 

provide the programming environment, whereas FPGA 

circuitry is truly a “hard” implementation of program 

execution. 

FPGAs are reprogrammable silicon chips that can be 

configured to implement customized hardware 

functionality by using its prebuilt logic blocks and 

programmable 2 routing resources without even picking 

up a breadboard or soldering iron. They are based around 

a matrix of Configurable Logic Blocks (CLBs) connected 

through programmable interconnects. The FPGA share a 

common history with most PLDs. PLDs is divided into 

three basic architecture types: Simple Programmable 

Logic Devices (SPLD), Complex Programmable Logic 

Devices (CPLD) and FPGA. The first of this kind of 

devices was the Programmable Read Only Memory 

(PROM). Philips invented the Field Programmable Logic 

Array (FPLA) in the 1970s which was driven by need of 

specifically implementing logic circuits. It consisted of 
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two planes, a programmable wired AND-plane and the 

other as wired OR that could implement functions in the 

Sum of Products form. But in both the devices (PROM 

and FPLA), sequential logic like a flip-flop to create 

synchronous designs or state machine are missing. 

FPGA- ARCHITECTURE 

The FPGA-architecture consists of many logic modules 

which are placed in arraystructure and these modules are 

configurable at site and are therefore called as 

Configurable Logic Blocks (CLBs). The channels between 

the CLBs are used for routing. The arrays of the CLBs are 

surrounded by programmable I/O modules and connected 

via programmable interconnects. There are two subclasses 

of FPGA architecture depending on granularity of CLBs: 

Coarse-grained and Fine-grained FPGAs. 

 

 

 

FPGA architecture 

 

 

The coarse-grained FPGAs have very large logic 

modules/CLBs with sometimes two or more sequential 

logic elements, whereas the fine-grained FPGAs have very 

simple logic modules. A conventional, island-style FPGA 

can be viewed as an array of CLBs connected by 

programmable interconnects i.e. switchboxes (SBox) and 

connection boxes (CBoxes) as shown in Figure Parvez and 

Mehrez (2011).  N programmable lookup tables (LUTs) 

are connected together using internal interconnect inside 

the CLB. The LUT is simply a circuit that selects the 

output of aStatic Random Access Memory(SRAM) cell 

based on the LUT’s k inputs: by programming appropriate 

values in the SRAM cells the LUT can implement any k-

input function. Figure 1.4b shows the architecture of 3-

input LUT. All programmable interconnect is 

implemented using the simple, unidirectional switch that 

takes several inputs and selects one output. The circuit 

consists of input end buffers for each input that serve to 

isolate the switch, a multiplexer, and an output buffer that 

drives a longwire segment. Each of the input and output 

buffers can be built using a single or multiple staged 

inverters as described by Parvez and Mehrez (2011).  

Farooq, et.al (2012) shows how to assemble these switches 

into a switchbox and the basic 3-input switch circuit. 

 

 
 

CLB with 5 look-up tables (LUTs)   

    

3 input LUT 
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LITERATURE REVIEW  

 

Recent works have shown that the heterogeneous 

architectures and synthesis methods can have a significant 

impact on improving logic density and delay, narrowing 

the ASIC–FPGA gap. Works by Anderson and Wang with 

“gated” LUTs, then with asymmetric LUT LEs, show that 

the LUT elements present in commercial FPGAs provide 

unnecessary flexibility. Toward improved delay and area, 

the macro cell-based FPGA architectures have been 

proposed. These studies describe significant changes to the 

traditional FPGA architectures, whereas the changes 

proposed here build on architectures used in industry and 

academia. Similarly, and-inverter cones have been 

proposed as replacements for the LUTs, inspired by and-

inverter graphs (AIGs).  

PURNAPRAJNA and IENNE explored the possibility of 

repurposing the existing MUXs contained within the 

Xilinx Logic Slices. Similar to this work, they use the 

ABC priority cut mapper as well as VPR for packing, 

place, and route. However, their work is primarily delay 

based showing an average speed up of 16% using only ten 

of 19 VTR7 benchmarks.  

In this article, we study the technology mapping problem 

for a novel field programmable gate array (FPGA) 

architecture that is based on k-input single-output 

programmable logic array- (PLA-) like cells, or, k/m-

macro cells. Each cell in this architecture can implement a 

single output function of up to k inputs and up to m 

product terms. We develop a very efficient technology 

mapping algorithm, km flow, for this new type of 

architecture. The experimental results show that our 

algorithm can achieve depth-optimality on almost all the 

test cases in a set of 16 Microelectronics Center of North 

Carolina (MCNC) benchmarks. Furthermore it is shown 

that on this set of benchmarks, with only a relatively small 

number of product terms (m≤k+3), the k/m-macro cell 

based FPGAs can achieve the same or similar mapping 

depth compared with the traditional k input single-output 

lookup table- (k-LUT-) based FPGAs. We also investigate 

the total area and delay of k/m-macro cell-based FPGAs 

and compare them with those of the commonly used 4-

LUT-based FPGAs. The experimental results show that 

k/m-macro cell-based FPGAs can outperform 4-LUT-

based FPGAs in terms of both delay and area after 

placement and routing by VPR on this set of benchmarks  

This paper presents experimental measurements of the 

differences between a 90-nm CMOS field programmable 

gate array (FPGA) and 90-nm CMOS standard-cell 

application specific integrated circuits (ASICs) in terms of 

logic density, circuit speed, and power consumption for 

core logic. We are motivated to make these measurements 

to enable system designers to make better informed 

choices between these two media and to give insight to 

FPGA makers on the deficiencies to attack and, thereby, 

improve FPGAs. We describe the methodology by which 

the measurements were obtained and show that, for 

circuits containing only look-up table-based logic and flip-

flops, the ratio of silicon area required to implement them 

in FPGAs and ASICs is on average 35. Modern FPGAs 

also contain “hard” blocks such as multiplier/accumulators 

and block memories. We find that these blocks reduce this 

average area gap significantly to as little as 18 for our 

benchmarks, and we estimate that extensive use of these 

hard blocks could potentially lower the gap to below five. 

The ratio of critical-path delay, from FPGA to ASIC, is 

roughly three to four with less influence from block 

memory and hard multipliers. The dynamic power 

consumption ratio is approximately 14 times and, with 

hard blocks, this gap generally becomes smaller.  

In this paper the new architectural proposals are routinely 

generated in both academia and industry. For FPGA’s to 

continue to grow, it is important that these new 

architectural ideas are fairly and accurately evaluated, so 

that those worthy ideas can be included in future chips. 

Typically, this evaluation is done using experimentation. 

However, the use of experimentation is dangerous, since it 

requires making assumptions regarding the tools and 

architecture of the device in question. If these assumptions 

are not accurate, the conclusions from the experiments 

may not be meaningful. In this paper, we investigate the 

sensitivity of FPGA architectural conclusions to 

experimental variations. To make our study concrete, we 

evaluate the sensitivity of four previously published and 

well-known FPGA architectural results: lookup-table size, 

switch block topology, cluster size, and memory size. It is 

shown that these experiments are significantly affected by 

the assumptions, tools, and techniques used in the 

experiments. 

 

Technology mapping using ABC  

ABC was used for technology mapping, with 

modifications that allow for MUX4- embeddable function 

identification and MUX2- embeddable function 

identification in the case of fracturable MUX4s and 

custom mapping. The internal data structure used within 

the ABC is an AIG, where the logic circuit is represented 

using 2-input AND gates with inverters. Priority Cuts 

mapping in ABC (invoked with the, if command) was 

modified to perform our custom technology mapping. This 

mapper traverses the AIG from primary inputs to primary 

outputs finding intermediate mappings for internal nodes 

and finally the primary outputs, using a dynamic 

programming approach. The priority cuts mapper 

performs multiple passes on the AIG to find the best cut 

per node. For depth-oriented mapping, the mapper first 
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prioritizes mapping depth then optimizes for area 

discarding cuts whose selection would increase the overall 

depth of the mapped network. Based on this standard 

mapper, two mapper variants were produced and 

evaluated. The first variant, Natural Mux, evaluates and 

identifies internal functions that are MUX4-embeddable, 

agnostic of the target architecture; i.e., this flow uses the 

default priority cuts mapping and performs a post 

processing step to identify MUX4-embeddable functions. 

From this mapping, we can evaluate what area savings are 

possible without any mapper changes. The second variant 

Mux Map, area-weights the MUX4-embeddable cuts 

relative to 6-LUT cuts, thereby establishing a preference 

for selection/creation of MUX4- embeddable solutions. 

 

Modeling using VPR:  

VPR was used to perform architectural evaluation. The 

standard ten 6-LUT CLB architecture in 40-nm included 

with the VPR distribution was used for baseline modeling. 

The hybrid CLBs shown in Figs. 3.1 and 3.2 were 

modeled using the XML-based VPR architectural 

language. The snippet from the architecture file for the 

physical block hardened MUX4 element, this code 

specifies a MUX4 as a six-input one-output black box to 

the VPR. In addition, since all MUX4s can also be 

mapped to the 6-LUTs, an additional mode was added to 

the 6-LUT physical block. The mode concept allows the 

VPR packer to pack LUTs into LUTs (as usual), but also 

enables MUX4s to be packed into the LUTs. The 

architectures with CLBs having MUX4: LUT ratios from 

1:9 to 5:5 were created from the baseline 40-nm 

architectures with delays obtained through circuit 

simulations of the MUX4 variants. Importantly, we made 

minor modifications to the VPR packing algorithm itself, 

so that the MUX4 net list elements are preferred to be 

packed into the MUX4 Les in the architecture (while 

limiting packing MUX4 net list elements into LUTs). The 

modifications involved changing the attraction function 

during the CLB packing. One change was to ensure that 

the logic functions that were MUX4 embeddable were 

preferentially packed into a physical MUX4 element and 

not into an LUT. Another was to apply a negative weight 

on MUX4-embeddable functions when the current CLB’s 

physical MUX4 elements are all occupied also preventing 

MUX4-embeddable functions from being placed into the 

LUTs. Without this, the MUX4 net list elements might 

needlessly consume LUTs, which should be reserved, 

where possible, for those net list elements that demand 

their flexibility. This becomes doubly important for 

fracturable architectures, since their packing problem is 

more complex. Without this modification, a significant 

CLB usage increase was observed across all benchmark 

sets. 

 

SIMULATION RESULTS 

 

The proposed circuits are simulated and synthesized by 

using modalism and xilinx12.1 which occurs low area than 

the existing. The experimental results are given in Table 1 

and the simulation results of layout and the waveforms are 

shown in the fig.9.1 and fig.9.2. Then the RTL schematic 

of the proposed are shown in fig.9.2 

 

 

 

 
 

Fig 9.1 simulation results 

 

 

 

 
Fig.9.2 RTL schematic 
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Figure 9.3: Synthesis report 

 

 

CONCLUSION  

 

We have proposed a new hybrid CLB architecture 

containing MUX4 hard MUX elements and shown 

techniques for efficiently mapping to these architectures. 

We also provided analysis of the benchmark suites post 

mapping, discussing the distribution of functions within 

each benchmark suite. The area reductions for non-

fracturable architectures, is 8% and MUX4: LUT ratio is 

4:6 and in the case of fracturable architecture the area 

reductions are 2%.The CH Stone benchmarks being high 

level synthesized with Leg Up-HLS also showed 

marginally better performance and this could be due to the 

way Leg Up performs HLS on the STUDIES Volume VIII 

/Issue 1 / DEC 2016 IJPRES CH Stone benchmarks 

themselves. Overall, the addition of MUX4s to FPGA 

architectures minimally impact F Max and show potential 

for improving logic-density in non-fracturable 

architectures and modest potential for improving logic 

density in fracturable architecture. 
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