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Abstract: The selective use of carry-save 

arithmetic, where appropriate, can accelerate a 

variety of arithmetic-dominated circuits. Carry-

save arithmetic occurs naturally in a variety of 

DSP applications, and further opportunities to 

exploit it can be exposed through systematic 

data flow transformations that can be applied by 

a hardware compiler. Field-programmable gate 

arrays (FPGAs), however, are not particularly 

well suited to carry-save arithmetic. To address 

this concern, we introduce the “field 

programmable counter array” (FPCA), an 

accelerator for carry-save arithmetic intended 

for integration into an FPGA as an alternative 

to DSP blocks. In addition to multiplication and 

multiply accumulation, the FPCA can 

accelerate more general carry-save operations, 

such as multi-input addition (e.g., add integers) 

and multipliers that have been fused with other 

adders. Our experiments show that the FPCA 

accelerates a wide variety of applications than 

DSP blocks and improves performance, area 

utilization, and energy consumption compared 

with soft FPGA logic. The extension for the 

above project is Dadda Multiplier. 

Experimental results are seen by using Xilinx 

ISE 13.2.  

Index Terms—Carry-save arithmetic, field-

programmable gate array (FPGA), Arithmetic 

optimizations, flexible accelerator. 

I. INTRODUCTION 

 Modern embedded systems target high-

end application domains requiring efficient 

implementations of computationally intensive 

digital signal processing (DSP) functions. The 

incorporation of heterogeneity through 

specialized hardware accelerators improves 

performance and reduces energy consumption 

[1]. Although application-specific integrated 

circuits (ASICs) form the ideal acceleration 

solution in terms of performance and power, 

their inflexibility leads to increased silicon 

complexity, as multiple instantiated ASICs are 

needed to accelerate various kernels. Many 

researchers have propounded the use of domain-

specific coarse-grained reconfigurable 

accelerators in order to increase ASICs‘ 

flexibility without significantly compromising 

their performance.  

 High-performance flexible data paths 

have been propounded to efficiently map 

primitive or chained operations found in the 

initial data-flow graph (DFG) of a kernel. The 

templates of complex chained operations are 

either extracted directly from the kernel‘s DFG 

or specified in a predefined behavioral template 

library. Design decisions on the accelerator‘s 

data path highly impact its efficiency. Existing 

works on coarse-grained reconfigurable data 

paths mainly exploit architecture-level 

optimizations, e.g., increased instruction-level 

parallelism (ILP). The domain-specific 

architecture generation algorithms of [5] and [9] 

vary the type and number of computation units 

achieving a customized design structure. The 

flexible architectures were designed exploiting 

ILP and operation chaining. Recently aggressive 

operation chaining is adopted to enable the 
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computation of entire sub expressions using 

multiple ALUs with heterogeneous arithmetic 

features. 

 The aforementioned reconfigurable  

architectures exclude arithmetic  optimizations 

during the architectural synthesis and consider 

them only at the internal circuit structure of 

primitive components, e.g., adders, during the 

logic synthesis . However, research activities 

have shown that the arithmetic optimizations at 

higher abstraction levels than the structural 

circuit one significantly impact on the data path 

performance. In [10], timing-driven 

optimizations based on carry-save (CS) 

arithmetic were performed at the post-Register 

Transfer Level (RTL) design stage. In [11], 

common sub expression elimination in CS 

computations is used to optimize linear DSP 

circuits. Verma et al. [12] developed 

transformation techniques on the application‘s 

DFG to maximize the use of CS arithmetic prior 

the actual data path synthesis. The 

aforementioned CS optimization approaches 

target inflexible data path, i.e., ASIC, 

implementations. Recently, a flexible 

architecture combining the ILP and pipelining 

techniques with the CS-aware operation 

chaining has been aimed. However, all the 

aforementioned solutions feature an inherent 

limitation, i.e., CS optimization is bounded to 

merging only additions/subtractions. A CS to 

binary conversion is inserted before each 

operation that differs from addition/subtraction, 

e.g. multiplication, thus, allocating multiple CS 

to binary conversions that heavily degrades 

performance due to time-consuming carry 

propagations. 

 In this brief, we propose a high-

performance architectural scheme for the 

synthesis of flexible hardware DSP accelerators 

by combining optimization techniques from 

both the architecture and arithmetic levels of 

abstraction. We introduce a flexible data path 

architecture that exploits CS optimized 

templates of chained operations. The aimed 

architecture comprises flexible computational 

units (FCUs), which enable the execution of a 

large set of operation templates found in DSP 

kernels. The accelerator architecture delivers 

average gains in area-delay product and in 

energy consumption compared to state-of-art 

flexible data paths , sustaining efficiency toward 

scaled technologies. 

II. PREVIOUS WORK 

[1] Hardware acceleration has been 

proved an extremely promising implementation 

strategy for the digital signal processing (DSP) 

domain. Rather than adopting a monolithic 

application-specific integrated circuit design 

approach, in this brief, we present a novel 

accelerator architecture comprising flexible 

computational units that support the execution 

of a large set of operation templates found in 

DSP kernels. We differentiate from previous 

works on flexible accelerators by enabling 

computations to be aggressively performed with 

carry-save (CS) formatted data. Advanced 

arithmetic design concepts, i.e., recoding 

techniques, are utilized enabling CS 

optimizations to be performed in a larger scope 

than in previous approaches. Extensive 

experimental evaluations show that the 

accelerator architecture delivers average gains 

of up to 61.91% in area-delay product and 

54.43% in energy consumption compared with 

the state-of-art flexible data-paths. 

[2] The recent introduction of Variable 

Latency Functional Units (VLFUs) has 

broadened the design space of High-Level 

Synthesis (HLS). Nevertheless their use is 

restricted to only few operators in the datapaths 

because the number of cases to control grows  

exponentially. In this work an instance of 

VLFUs is described, and based on its structure, 

the average latency of tree structures is  

improved. Multispeculative Functional Units 

(MSFUs) are arithmetic Functional Units that 

operate using several predictors for the carry 

signal. In spite of utilizing more than a 

predictor, none or only one additional very short 
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cycle is enough for producing the correct  result 

in the majority of the cases. In this paper our 

proposal takes advantage of multispeculation in 

order to increase the performance of tree 

structures with a negligible area penalty. By 

judiciously introducing these structures into 

computation trees, it will only be necessary to 

predict the carry signals in certain selected 

nodes, thus minimizing the total number of 

predictions and the number of  operations that 

can potentially mispredict. Hence, the average 

latency will be diminished and thus performance 

will be increased. 

[3] The selective use of carry-save 

arithmetic, where appropriate, can accelerate a 

variety of arithmetic-dominated circuits. Carry-

save arithmetic occurs naturally in a variety of 

DSP applications, and further opportunities to 

exploit it can be exposed through systematic 

data flow transformations that can be applied by 

a hardware compiler. Field-programmable gate 

arrays (FPGAs), however, are not particularly 

well suited to carry-save arithmetic. To address 

this concern, we introduce the ―field 

programmable counter array‖ (FPCA), an 

accelerator for carry-save arithmetic intended 

for integration into an FPGA alternative to DSP 

blocks. In addition to multiplication and 

multiply accumulation, the FPCA can accelerate 

more general carry-save operations, such as 

multi-input addition (e.g., add K>2 integers) and 

multipliers that have been fused with other 

adders. Our experiments show that the FPCA 

accelerates a wider variety of applications than 

DSP blocks and improves performance, area 

utilization, and energy consumption compared 

with soft FPGA logic. 

One of the ways that custom instruction 

set extensions can improve over software 

execution is through the use of hardware 

structures that have been optimized at the 

arithmetic level. Arithmetic hardware, in many 

cases, can be partitioned into networks of full-

adders, separated by other logic that is better 

expressed using other types of logic gates. In 

this paper we present a novel logic synthesis 

technique that optimizes networks of full adders 

and is intended for use in the context of custom 

instruction set synthesis. Unlike earlier work 

(e.g., Three Greedy Approach) our approach 

does not require any prior knowledge about the 

functionality of the circuit. The aimed technique 

automatically infers the use of carry-save 

arithmetic, when appropriate, and suppresses its 

use when unfavorable. Our approach reduces the 

critical path delay through networks of full 

adders, when compared to the Three Greedy 

Approach, and in some cases, reduces the cell 

area as well.  

On the exemplary vehicle of a Viterbi 

decoder as frequently used in communication 

systems we show which costs in terms of ATE 

complexity arise implementing typical 

components on different types of architecture 

blocks. A factor of about seven orders of 

magnitude spans between a physically 

optimized implementation and an 

implementation on a programmable DSP kernel. 

An implementation on an embedded FPGA 

kernel is in between these two representing an 

attractive compromise with high flexibility and 

low power consumption. Extending this 

comparison to further components, it is shown 

quantitatively that the cost ratio between 

different implementation alternatives is closely 

related to the operation to be performed. This 

information is essential for the appropriate 

partitioning of heterogeneous systems. 

 

III. Carry-Save Arithmetic: Motivational 

Observations and Limitations 

Arithmetically-oriented logic synthesis 

technique for ISEs that focuses on networks of 

full adders (FA) and half adders(HA). An FA 

(HA) is a circuit having three (two) input bits, 

that counts the number of input bits set to1and 

outputs the result as an unsigned two-bit binary 

number. Many arithmetic circuits, including 

multi-input adders and the partial product 

reduction trees of parallel multipliers, employ 

some rudimentary form of counting, and are 
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built from networks of FAs and HAs. The most 

common way of computing a multi-input 

addition is through compressor tree introduced 

by Wallace and Dadda. A compressor tree takes 

a set of n integers and reduces them to two 

output values sum (S) and carry (C).  

 CS representation  has been widely used 

to design fast arithmetic circuits due to its 

inherent advantage of eliminating the large 

carry-propagation chains. CS arithmetic 

optimizations rearrange the application‘s DFG 

and reveal multiple input additive operations 

(i.e., chained additions in the initial DFG), 

which can be mapped onto CS compressors. The 

goal is to maximize the range that a CS 

computation is performed within the DFG. 

However, whenever a multiplication node is 

interleaved in the DFG, either a CS to binary 

conversion is invoked or the DFG is 

transformed using the distributive property. 

Thus, the aforementioned CS optimization 

approaches have limited impact on DFGs 

dominated by multiplications, e.g., filtering DSP 

applications. 

  In this brief, we tackle the 

aforementioned limitation by exploiting the CS 

to modified Booth (MB) recoding each time a 

multiplication needs to be performed within a 

CS-optimized data path. Thus, the computations 

throughout the multiplications are processed 

using CS arithmetic and the operations in the 

targeted data path are carried out without using 

any intermediate carry-propagate adder for CS 

to binary conversion, thus improving 

performance. 

IV. Flexible Accelerator 

 The flexible accelerator architecture is 

shown in Fig. 1. Each FCU operates directly on 

CS operands and produces data in the same 

form1 for direct reuse of intermediate results. 

Each FCU operates on 16-bit operands. Such a 

bit-length is adequate for the most DSP data 

paths, but the architectural concept of the FCU 

can be straightforwardly adapted for smaller or 

larger bit-lengths. The number of FCUs is 

determined at design time based on the ILP and 

area constraints imposed by the designer. The 

CStoBin module is a ripple-carry adder and 

converts the CS form to the two‘s complement 

one. 

The register bank consists of scratch registers 

and is used for storing intermediate results and 

sharing operands among the FCUs. Different 

DSP kernels (i.e., different register allocation 

and data communication patterns per kernel) can 

be mapped onto the proposed architecture using 

post-RTL data path interconnection sharing 

techniques. 

  The control unit drives the overall 

architecture (i.e., communication between the 

data port and the register bank, configuration 

words of the FCUs and selection signals for the 

multiplexers) in each clock cycle. 

 

Fig. 1. Abstract form of the flexible data path 

A. Structure of the Flexible Computational Unit 

 The structure of the FCU (Fig. 2) has 

been designed to enable high-performance 

flexible operation chaining based on a library of 

operation templates. Each FCU can be 
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configured to any of the T1–T5 operation 

templates shown in Fig. 3. The FCU enables 

intra template operation chaining by fusing the 

additions performed before/after the 

multiplication &performs any partial operation 

template of the following complex operations: 

W* = A × (X* + Y*) + K*  (1) 

W* = A × K* + (X* + Y*)  (2) 

 
Fig. 2. FCU 

 The following relation holds for all CS 

data: X* = { XC, XS} =  XC + XS. The operand A 

is a two‘s complement number. The alternative 

execution paths in each FCU are specified after 

properly setting the control signals of the 

multiplexers MUX1 and MUX2 (Fig. 2). The 

multiplexer MUX0 outputs Y* when CL0 = 0 

(i.e., X* + Y* is carried out) or Y* when X* − 

Y* is required and CL0 = 1. The two‘s 

complement 4:2 CS adder produces the N* = X* 

+ Y* when the input carry equals 0 or the N* = 

X* − Y* when the input carry equals 1. The 

MUX1 determines if N* (1) or K* (2) is 

multiplied with A. The MUX2 specifies if K* 

(1) or N* (2) is added with the multiplication 

product. The multiplexer MUX3 accepts the 

output of MUX2 and its 1‘s complement and 

outputs the former one when an addition with 

the multiplication product is required (i.e., CL3 

= 0) or the later one when a subtraction is 

carried out (i.e., CL3 = 1). The 1-bit ace for the 

subtraction is added in the CS adder tree. 

  The multiplier comprises a CS-to-MB 

module, which adopts a recently designed 

technique to recode the 17-bit P* in its 

respective MB digits with minimal carry 

propagation. The multiplier‘s product consists 

of 17 bits. The multiplier includes a 

compensation method for reducing the error 

imposed at the product‘s accuracy by the 

truncation technique. However, since all the 

FCU inputs consist of 16 bits and provided that 

there are no overflows, the 16 most significant 

bits of the 17-bit W* (i.e., the output of the 

Carry-Save Adder (CSA) tree, and thus, of the 

FCU) are inserted in the appropriate FCU when 

requested. 

B. DFG Mapping Onto the FCU-Based 

Architecture 

 In order to efficiently map DSP kernels 

onto the FCU-based accelerator, the 

semiautomatic synthesis methodology  has been 

adapted. At first, a CS-aware transformation is 

performed onto the original DFG, merging 

nodes of multiple chained additions/subtractions 

to 4:2 compressors. A pattern generation on the 

transformed DFG clusters the CS nodes with the 

multiplication operations to form FCU template 

operations (Fig. 3). The designer selects the 

FCU operations covering the DFG for 

minimized latency. Given that the number of 

FCUs is fixed, a resource-constrained 

scheduling is considered with the available 

FCUs and CStoBin modules determining the 

resource constraint set. The clustered DFG is 

scheduled, so that each FCU operation is 

assigned to a specific control step. A list-based 

scheduler has been adopted considering the 

mobility2 of FCU operations. The FCU 

operations are scheduled according to 

descending mobility. The scheduled FCU 
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operations are bound onto FCU instances and 

proper configuration bits are generated. After 

completing register allocation, a FSM is 

generated in order to implement the control unit 

of the overall architecture. 

 

(A)    (B)                      

Fig.3. Typical chaining of addition–

multiplication–addition operations   reflecting 

T1 template of Fig. 3. Its design is based on (A) 

CS optimizations with multiplication 

distribution (B) incorporating the CS-to-MB 

recoding concept. 

V. EXTENSION 

The Dadda multiplier is a hardware 

multiplier design, invented by computer 

scientist Luigi Dadda in 1965. It is slightly 

faster (for all operand sizes) and requires fewer 

gates (for all but the smallest operand sizes) 

than array multiplier. Dadda multipliers have the 

same 3 steps: 1. Multiply (that is - AND) each 

bit of one of the arguments, by each bit of the 

other, yielding N2 results. Depending on 

position of the multiplied bits, the wires carry 

different weights, for example wire of bit 

carrying result of a2b3 is 32. 2. Reduce the 

number of partial products to two layers of full 

and half adders. 3. Group the wires in two 

numbers, and add them with a conventional 

adder.  

Dadda multipliers perform few 

reductions only when compared to Wallace 

multiplier. Because of this, Dadda multipliers 

have less expensive reduction phase, but the 

numbers may be a few bits longer, thus 

requiring slightly bigger adders To achieve this, 

the structure of the second step is governed by 

slightly more complex rules than in the wallace 

multipliers. The reduction rules however are as 

follows: Take any 3 wires with the same 

weights and input them into a full adder. The 

result will be an output wire of the same weight 

and an output wire with a higher weight for each 

3 input wires. If there are 2 wires of the same 

weight left, and the current number of output 

wires with that weight is equal to 2 (modulo 3), 

input them into a half adder. Otherwise, pass 

them through to the next layer. 

If there is just 1 wire left, connect it to 

the next layer. This step does only as many adds 

as necessary, so that the number of output 

weights stays close to a multiple of 3, which is 

the ideal number of weights when using full 

adders as (3, 2) counters. 

However, when a layer carries at most 3 

input wires for any weight, that layer will be the 

last one. In this case, the Dadda tree will use 

half adder more aggressively to ensure that there 

are only two outputs for any weight. Then, the 

second rule is above changes as follows If there 

are 2 wires of the same weight left, and the 

current number of output wires with that weight 

is equal to 1 or 2 (modulo 3), input them into a 

half adder. Otherwise, pass them through to the 

next layer. III Implementation of multiplier In 

order to make the most effective use of the 

processing elements, the multiplier was 

implemented as a linear pipeline. It was 

important to ensure that the delay of each 

processing stage in the pipeline was 

approximately equal so that a ‗bottleneck‘ was 

not introduced by any individual processing 

stage.  
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The multiplication of an M-bit 

multiplicand by an N-bit multiplier yields an N 

by M matrix of partial products. The reduction 

of this partial product matrix through the 

parallel application of (3, 2) and (2, 2) counters 

results in a matrix with a height of two. Each (3, 

2) counter (full adder) accepts three inputs from 

a given column and produces a sum bit which 

remains in that column and a carry bit which 

goes into the next more significant column. A 

(2, 2) counter (half adder) accepts two inputs 

from a column and produces a sum bit in the 

same column and a carry bit in the next more 

significant column. The implemented 16 × 16 

Dadda multiplier with the help of dot diagram is 

shown in Fig 2 (The notation is taken from 

[8][10] in which the outputs from a full adder 

are joined by a solid line, and those from half 

adders are joined by a line with a dash through 

the centre). The Dadda scheme essentially 

minimizes the number of adder stages required 

to perform the summation of the partial 

products. This is achieved by using full and half 

adders to reduce the number of rows in the 

matrix of bits at each summation stage by a 

factor of 3/2.  

 
Fig.4 Dadda Multiplier 

VI. SIMULATION RESULTS 

FCU Simulation. 

 

Design Utilization Summary. 

 

Extension Simulation. 

 

Design Utilization Summary. 

 

VII. CONCLUSION 

 In this brief, we introduced a flexible 

accelerator architecture that exploits the 

incorporation of CS arithmetic optimizations to 

enable fast chaining of additive and 
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multiplicative operations. The flexible 

accelerator architecture is able to operate on 

both conventional two‘s complement and CS-

formatted data operands, thus enabling high 

degrees of computational density to be achieved. 

Theoretical and experimental analyses have 

shown that the solution forms an efficient design 

tradeoff point delivering optimized latency/area 

and energy implementations. The extension for 

the above project is Dadda Multiplier. 

Experimental results are seen by using Xilinx 

ISE 13.2. Results when compared with the 

extension are more better with the flexible 

accelerator. 

Future Scope. 

The project here is done for operation in 

which a number is either multiplied or added. In 

the Future this can be extended for a polynomial 

equation which is used in Elliptical Curve 

Cryptography ECC in which the multiplication 

process is done for a polynomial equation. 
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