

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3007

VLSI Architecture for Exploiting Carry-Save Arithmetic

Using Verilog HDL
Saritha Gone

& Dr. G.V. Maha Lakshmi

gonesaritha22@gmail.com1, mahalakshmi@sreenidhi.edu.in2

1PG Scholar, Department. of ECE, Sreenidhi Institute of Science & Technology ,Yamnampet,

Ghatkesar, Medchal, Telangana.

2Professor, Department of ECE, Sreenidhi Institute of Science & Technology ,Yamnampet,

Ghatkesar, Medchal, Telangana.

Abstract: The selective use of carry-save

arithmetic, where appropriate, can accelerate a

variety of arithmetic-dominated circuits. Carry-

save arithmetic occurs naturally in a variety of

DSP applications, and further opportunities to

exploit it can be exposed through systematic

data flow transformations that can be applied by

a hardware compiler. Field-programmable gate

arrays (FPGAs), however, are not particularly

well suited to carry-save arithmetic. To address

this concern, we introduce the “field

programmable counter array” (FPCA), an

accelerator for carry-save arithmetic intended

for integration into an FPGA as an alternative

to DSP blocks. In addition to multiplication and

multiply accumulation, the FPCA can

accelerate more general carry-save operations,

such as multi-input addition (e.g., add integers)

and multipliers that have been fused with other

adders. Our experiments show that the FPCA

accelerates a wide variety of applications than

DSP blocks and improves performance, area

utilization, and energy consumption compared

with soft FPGA logic. The extension for the

above project is Dadda Multiplier.

Experimental results are seen by using Xilinx

ISE 13.2.

Index Terms—Carry-save arithmetic, field-

programmable gate array (FPGA), Arithmetic

optimizations, flexible accelerator.

I. INTRODUCTION

 Modern embedded systems target high-

end application domains requiring efficient

implementations of computationally intensive

digital signal processing (DSP) functions. The

incorporation of heterogeneity through

specialized hardware accelerators improves

performance and reduces energy consumption

[1]. Although application-specific integrated

circuits (ASICs) form the ideal acceleration

solution in terms of performance and power,

their inflexibility leads to increased silicon

complexity, as multiple instantiated ASICs are

needed to accelerate various kernels. Many

researchers have propounded the use of domain-

specific coarse-grained reconfigurable

accelerators in order to increase ASICs‘

flexibility without significantly compromising

their performance.

 High-performance flexible data paths

have been propounded to efficiently map

primitive or chained operations found in the

initial data-flow graph (DFG) of a kernel. The

templates of complex chained operations are

either extracted directly from the kernel‘s DFG

or specified in a predefined behavioral template

library. Design decisions on the accelerator‘s

data path highly impact its efficiency. Existing

works on coarse-grained reconfigurable data

paths mainly exploit architecture-level

optimizations, e.g., increased instruction-level

parallelism (ILP). The domain-specific

architecture generation algorithms of [5] and [9]

vary the type and number of computation units

achieving a customized design structure. The

flexible architectures were designed exploiting

ILP and operation chaining. Recently aggressive

operation chaining is adopted to enable the

mailto:gonesaritha22@gmail.com1
mailto:mahalakshmi@sreenidhi.edu.in2
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjl2JPgm4fXAhULOo8KHXMOAEkQFgglMAA&url=https%3A%2F%2Fwww.sreenidhi.edu.in%2Fpagecontents.php%3Fcatid%3D7%26scatid%3D59&usg=AOvVaw2VS7hldI2NlL9KEZO0qRLR
https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjl2JPgm4fXAhULOo8KHXMOAEkQFgglMAA&url=https%3A%2F%2Fwww.sreenidhi.edu.in%2Fpagecontents.php%3Fcatid%3D7%26scatid%3D59&usg=AOvVaw2VS7hldI2NlL9KEZO0qRLR

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3008

computation of entire sub expressions using

multiple ALUs with heterogeneous arithmetic

features.

 The aforementioned reconfigurable

architectures exclude arithmetic optimizations

during the architectural synthesis and consider

them only at the internal circuit structure of

primitive components, e.g., adders, during the

logic synthesis . However, research activities

have shown that the arithmetic optimizations at

higher abstraction levels than the structural

circuit one significantly impact on the data path

performance. In [10], timing-driven

optimizations based on carry-save (CS)

arithmetic were performed at the post-Register

Transfer Level (RTL) design stage. In [11],

common sub expression elimination in CS

computations is used to optimize linear DSP

circuits. Verma et al. [12] developed

transformation techniques on the application‘s

DFG to maximize the use of CS arithmetic prior

the actual data path synthesis. The

aforementioned CS optimization approaches

target inflexible data path, i.e., ASIC,

implementations. Recently, a flexible

architecture combining the ILP and pipelining

techniques with the CS-aware operation

chaining has been aimed. However, all the

aforementioned solutions feature an inherent

limitation, i.e., CS optimization is bounded to

merging only additions/subtractions. A CS to

binary conversion is inserted before each

operation that differs from addition/subtraction,

e.g. multiplication, thus, allocating multiple CS

to binary conversions that heavily degrades

performance due to time-consuming carry

propagations.

 In this brief, we propose a high-

performance architectural scheme for the

synthesis of flexible hardware DSP accelerators

by combining optimization techniques from

both the architecture and arithmetic levels of

abstraction. We introduce a flexible data path

architecture that exploits CS optimized

templates of chained operations. The aimed

architecture comprises flexible computational

units (FCUs), which enable the execution of a

large set of operation templates found in DSP

kernels. The accelerator architecture delivers

average gains in area-delay product and in

energy consumption compared to state-of-art

flexible data paths , sustaining efficiency toward

scaled technologies.

II. PREVIOUS WORK

[1] Hardware acceleration has been

proved an extremely promising implementation

strategy for the digital signal processing (DSP)

domain. Rather than adopting a monolithic

application-specific integrated circuit design

approach, in this brief, we present a novel

accelerator architecture comprising flexible

computational units that support the execution

of a large set of operation templates found in

DSP kernels. We differentiate from previous

works on flexible accelerators by enabling

computations to be aggressively performed with

carry-save (CS) formatted data. Advanced

arithmetic design concepts, i.e., recoding

techniques, are utilized enabling CS

optimizations to be performed in a larger scope

than in previous approaches. Extensive

experimental evaluations show that the

accelerator architecture delivers average gains

of up to 61.91% in area-delay product and

54.43% in energy consumption compared with

the state-of-art flexible data-paths.

[2] The recent introduction of Variable

Latency Functional Units (VLFUs) has

broadened the design space of High-Level

Synthesis (HLS). Nevertheless their use is

restricted to only few operators in the datapaths

because the number of cases to control grows

exponentially. In this work an instance of

VLFUs is described, and based on its structure,

the average latency of tree structures is

improved. Multispeculative Functional Units

(MSFUs) are arithmetic Functional Units that

operate using several predictors for the carry

signal. In spite of utilizing more than a

predictor, none or only one additional very short

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3009

cycle is enough for producing the correct result

in the majority of the cases. In this paper our

proposal takes advantage of multispeculation in

order to increase the performance of tree

structures with a negligible area penalty. By

judiciously introducing these structures into

computation trees, it will only be necessary to

predict the carry signals in certain selected

nodes, thus minimizing the total number of

predictions and the number of operations that

can potentially mispredict. Hence, the average

latency will be diminished and thus performance

will be increased.

[3] The selective use of carry-save

arithmetic, where appropriate, can accelerate a

variety of arithmetic-dominated circuits. Carry-

save arithmetic occurs naturally in a variety of

DSP applications, and further opportunities to

exploit it can be exposed through systematic

data flow transformations that can be applied by

a hardware compiler. Field-programmable gate

arrays (FPGAs), however, are not particularly

well suited to carry-save arithmetic. To address

this concern, we introduce the ―field

programmable counter array‖ (FPCA), an

accelerator for carry-save arithmetic intended

for integration into an FPGA alternative to DSP

blocks. In addition to multiplication and

multiply accumulation, the FPCA can accelerate

more general carry-save operations, such as

multi-input addition (e.g., add K>2 integers) and

multipliers that have been fused with other

adders. Our experiments show that the FPCA

accelerates a wider variety of applications than

DSP blocks and improves performance, area

utilization, and energy consumption compared

with soft FPGA logic.

One of the ways that custom instruction

set extensions can improve over software

execution is through the use of hardware

structures that have been optimized at the

arithmetic level. Arithmetic hardware, in many

cases, can be partitioned into networks of full-

adders, separated by other logic that is better

expressed using other types of logic gates. In

this paper we present a novel logic synthesis

technique that optimizes networks of full adders

and is intended for use in the context of custom

instruction set synthesis. Unlike earlier work

(e.g., Three Greedy Approach) our approach

does not require any prior knowledge about the

functionality of the circuit. The aimed technique

automatically infers the use of carry-save

arithmetic, when appropriate, and suppresses its

use when unfavorable. Our approach reduces the

critical path delay through networks of full

adders, when compared to the Three Greedy

Approach, and in some cases, reduces the cell

area as well.

On the exemplary vehicle of a Viterbi

decoder as frequently used in communication

systems we show which costs in terms of ATE

complexity arise implementing typical

components on different types of architecture

blocks. A factor of about seven orders of

magnitude spans between a physically

optimized implementation and an

implementation on a programmable DSP kernel.

An implementation on an embedded FPGA

kernel is in between these two representing an

attractive compromise with high flexibility and

low power consumption. Extending this

comparison to further components, it is shown

quantitatively that the cost ratio between

different implementation alternatives is closely

related to the operation to be performed. This

information is essential for the appropriate

partitioning of heterogeneous systems.

III. Carry-Save Arithmetic: Motivational

Observations and Limitations

Arithmetically-oriented logic synthesis

technique for ISEs that focuses on networks of

full adders (FA) and half adders(HA). An FA

(HA) is a circuit having three (two) input bits,

that counts the number of input bits set to1and

outputs the result as an unsigned two-bit binary

number. Many arithmetic circuits, including

multi-input adders and the partial product

reduction trees of parallel multipliers, employ

some rudimentary form of counting, and are

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3010

built from networks of FAs and HAs. The most

common way of computing a multi-input

addition is through compressor tree introduced

by Wallace and Dadda. A compressor tree takes

a set of n integers and reduces them to two

output values sum (S) and carry (C).

 CS representation has been widely used

to design fast arithmetic circuits due to its

inherent advantage of eliminating the large

carry-propagation chains. CS arithmetic

optimizations rearrange the application‘s DFG

and reveal multiple input additive operations

(i.e., chained additions in the initial DFG),

which can be mapped onto CS compressors. The

goal is to maximize the range that a CS

computation is performed within the DFG.

However, whenever a multiplication node is

interleaved in the DFG, either a CS to binary

conversion is invoked or the DFG is

transformed using the distributive property.

Thus, the aforementioned CS optimization

approaches have limited impact on DFGs

dominated by multiplications, e.g., filtering DSP

applications.

 In this brief, we tackle the

aforementioned limitation by exploiting the CS

to modified Booth (MB) recoding each time a

multiplication needs to be performed within a

CS-optimized data path. Thus, the computations

throughout the multiplications are processed

using CS arithmetic and the operations in the

targeted data path are carried out without using

any intermediate carry-propagate adder for CS

to binary conversion, thus improving

performance.

IV. Flexible Accelerator

 The flexible accelerator architecture is

shown in Fig. 1. Each FCU operates directly on

CS operands and produces data in the same

form1 for direct reuse of intermediate results.

Each FCU operates on 16-bit operands. Such a

bit-length is adequate for the most DSP data

paths, but the architectural concept of the FCU

can be straightforwardly adapted for smaller or

larger bit-lengths. The number of FCUs is

determined at design time based on the ILP and

area constraints imposed by the designer. The

CStoBin module is a ripple-carry adder and

converts the CS form to the two‘s complement

one.

The register bank consists of scratch registers

and is used for storing intermediate results and

sharing operands among the FCUs. Different

DSP kernels (i.e., different register allocation

and data communication patterns per kernel) can

be mapped onto the proposed architecture using

post-RTL data path interconnection sharing

techniques.

 The control unit drives the overall

architecture (i.e., communication between the

data port and the register bank, configuration

words of the FCUs and selection signals for the

multiplexers) in each clock cycle.

Fig. 1. Abstract form of the flexible data path

A. Structure of the Flexible Computational Unit

 The structure of the FCU (Fig. 2) has

been designed to enable high-performance

flexible operation chaining based on a library of

operation templates. Each FCU can be

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3011

configured to any of the T1–T5 operation

templates shown in Fig. 3. The FCU enables

intra template operation chaining by fusing the

additions performed before/after the

multiplication &performs any partial operation

template of the following complex operations:

W* = A × (X* + Y*) + K* (1)

W* = A × K* + (X* + Y*) (2)

Fig. 2. FCU

 The following relation holds for all CS

data: X* = { XC, XS} = XC + XS. The operand A

is a two‘s complement number. The alternative

execution paths in each FCU are specified after

properly setting the control signals of the

multiplexers MUX1 and MUX2 (Fig. 2). The

multiplexer MUX0 outputs Y* when CL0 = 0

(i.e., X* + Y* is carried out) or Y* when X* −

Y* is required and CL0 = 1. The two‘s

complement 4:2 CS adder produces the N* = X*

+ Y* when the input carry equals 0 or the N* =

X* − Y* when the input carry equals 1. The

MUX1 determines if N* (1) or K* (2) is

multiplied with A. The MUX2 specifies if K*

(1) or N* (2) is added with the multiplication

product. The multiplexer MUX3 accepts the

output of MUX2 and its 1‘s complement and

outputs the former one when an addition with

the multiplication product is required (i.e., CL3

= 0) or the later one when a subtraction is

carried out (i.e., CL3 = 1). The 1-bit ace for the

subtraction is added in the CS adder tree.

 The multiplier comprises a CS-to-MB

module, which adopts a recently designed

technique to recode the 17-bit P* in its

respective MB digits with minimal carry

propagation. The multiplier‘s product consists

of 17 bits. The multiplier includes a

compensation method for reducing the error

imposed at the product‘s accuracy by the

truncation technique. However, since all the

FCU inputs consist of 16 bits and provided that

there are no overflows, the 16 most significant

bits of the 17-bit W* (i.e., the output of the

Carry-Save Adder (CSA) tree, and thus, of the

FCU) are inserted in the appropriate FCU when

requested.

B. DFG Mapping Onto the FCU-Based

Architecture

 In order to efficiently map DSP kernels

onto the FCU-based accelerator, the

semiautomatic synthesis methodology has been

adapted. At first, a CS-aware transformation is

performed onto the original DFG, merging

nodes of multiple chained additions/subtractions

to 4:2 compressors. A pattern generation on the

transformed DFG clusters the CS nodes with the

multiplication operations to form FCU template

operations (Fig. 3). The designer selects the

FCU operations covering the DFG for

minimized latency. Given that the number of

FCUs is fixed, a resource-constrained

scheduling is considered with the available

FCUs and CStoBin modules determining the

resource constraint set. The clustered DFG is

scheduled, so that each FCU operation is

assigned to a specific control step. A list-based

scheduler has been adopted considering the

mobility2 of FCU operations. The FCU

operations are scheduled according to

descending mobility. The scheduled FCU

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3012

operations are bound onto FCU instances and

proper configuration bits are generated. After

completing register allocation, a FSM is

generated in order to implement the control unit

of the overall architecture.

(A) (B)

Fig.3. Typical chaining of addition–

multiplication–addition operations reflecting

T1 template of Fig. 3. Its design is based on (A)

CS optimizations with multiplication

distribution (B) incorporating the CS-to-MB

recoding concept.

V. EXTENSION

The Dadda multiplier is a hardware

multiplier design, invented by computer

scientist Luigi Dadda in 1965. It is slightly

faster (for all operand sizes) and requires fewer

gates (for all but the smallest operand sizes)

than array multiplier. Dadda multipliers have the

same 3 steps: 1. Multiply (that is - AND) each

bit of one of the arguments, by each bit of the

other, yielding N2 results. Depending on

position of the multiplied bits, the wires carry

different weights, for example wire of bit

carrying result of a2b3 is 32. 2. Reduce the

number of partial products to two layers of full

and half adders. 3. Group the wires in two

numbers, and add them with a conventional

adder.

Dadda multipliers perform few

reductions only when compared to Wallace

multiplier. Because of this, Dadda multipliers

have less expensive reduction phase, but the

numbers may be a few bits longer, thus

requiring slightly bigger adders To achieve this,

the structure of the second step is governed by

slightly more complex rules than in the wallace

multipliers. The reduction rules however are as

follows: Take any 3 wires with the same

weights and input them into a full adder. The

result will be an output wire of the same weight

and an output wire with a higher weight for each

3 input wires. If there are 2 wires of the same

weight left, and the current number of output

wires with that weight is equal to 2 (modulo 3),

input them into a half adder. Otherwise, pass

them through to the next layer.

If there is just 1 wire left, connect it to

the next layer. This step does only as many adds

as necessary, so that the number of output

weights stays close to a multiple of 3, which is

the ideal number of weights when using full

adders as (3, 2) counters.

However, when a layer carries at most 3

input wires for any weight, that layer will be the

last one. In this case, the Dadda tree will use

half adder more aggressively to ensure that there

are only two outputs for any weight. Then, the

second rule is above changes as follows If there

are 2 wires of the same weight left, and the

current number of output wires with that weight

is equal to 1 or 2 (modulo 3), input them into a

half adder. Otherwise, pass them through to the

next layer. III Implementation of multiplier In

order to make the most effective use of the

processing elements, the multiplier was

implemented as a linear pipeline. It was

important to ensure that the delay of each

processing stage in the pipeline was

approximately equal so that a ‗bottleneck‘ was

not introduced by any individual processing

stage.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3013

The multiplication of an M-bit

multiplicand by an N-bit multiplier yields an N

by M matrix of partial products. The reduction

of this partial product matrix through the

parallel application of (3, 2) and (2, 2) counters

results in a matrix with a height of two. Each (3,

2) counter (full adder) accepts three inputs from

a given column and produces a sum bit which

remains in that column and a carry bit which

goes into the next more significant column. A

(2, 2) counter (half adder) accepts two inputs

from a column and produces a sum bit in the

same column and a carry bit in the next more

significant column. The implemented 16 × 16

Dadda multiplier with the help of dot diagram is

shown in Fig 2 (The notation is taken from

[8][10] in which the outputs from a full adder

are joined by a solid line, and those from half

adders are joined by a line with a dash through

the centre). The Dadda scheme essentially

minimizes the number of adder stages required

to perform the summation of the partial

products. This is achieved by using full and half

adders to reduce the number of rows in the

matrix of bits at each summation stage by a

factor of 3/2.

Fig.4 Dadda Multiplier

VI. SIMULATION RESULTS

FCU Simulation.

Design Utilization Summary.

Extension Simulation.

Design Utilization Summary.

VII. CONCLUSION

 In this brief, we introduced a flexible

accelerator architecture that exploits the

incorporation of CS arithmetic optimizations to

enable fast chaining of additive and

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3014

multiplicative operations. The flexible

accelerator architecture is able to operate on

both conventional two‘s complement and CS-

formatted data operands, thus enabling high

degrees of computational density to be achieved.

Theoretical and experimental analyses have

shown that the solution forms an efficient design

tradeoff point delivering optimized latency/area

and energy implementations. The extension for

the above project is Dadda Multiplier.

Experimental results are seen by using Xilinx

ISE 13.2. Results when compared with the

extension are more better with the flexible

accelerator.

Future Scope.

The project here is done for operation in

which a number is either multiplied or added. In

the Future this can be extended for a polynomial

equation which is used in Elliptical Curve

Cryptography ECC in which the multiplication

process is done for a polynomial equation.

REFERENCES

[1] Kostas Tsoumanis, Sotirios Xydis,

GeorgiosZervakis, and Kiamal Pekmestzi‖

Flexible DSP Accelerator Architecture

Exploiting Carry-Save Arithmetic‖.

[2] P. Ienne and R. Leupers, Customizable

Embedded Processors: Design Technologies and

Applications. San Francisco, CA, USA: Morgan

Kaufmann, 2007.

[3] P. M. Heysters, G. J. M. Smit, and E.

Molenkamp, ―A flexible and energy-efficient

coarse-grained reconfigurable architecture for

mobile systems,‖ J. Supercomput., vol. 26, no.

3, pp. 283–308, 2003.

[4] B. Mei, S. Vernalde, D. Verkest, H. D. Man,

and R. Lauwereins, ―ADRES: An architecture

with tightly coupled VLIW processor and

coarse-grained reconfigurable matrix,‖ in Proc.

13th Int. Conf. Field Program. Logic Appl., vol.

2778. 2003, pp. 61–70.

[5] M. D. Galanis, G. Theodoridis, S.

Tragoudas, and C. E. Goutis, ―A high-

performance data path for synthesizing DSP

kernels,‖ IEEE Trans. Comput.-Aided Design

Integr. Circuits Syst., vol. 25, no. 6, pp. 1154–

1162, Jun. 2006.

[6] K. Compton and S. Hauck, ―Automatic

design of reconfigurable domainspecific flexible

cores,‖ IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 16, no. 5, pp. 493–503, May

2008.

[7] S. Xydis, G. Economakos, and K. Pekmestzi,

―Designing coarse-grain reconfigurable

architectures by inlining flexibility into custom

arithmetic data-paths,―Integr., VLSI J., vol. 42,

no. 4, pp. 486–503, Sep. 2009.

[8] S. Xydis, G. Economakos, D. Soudris, and

K. Pekmestzi, ―High performance and area

efficient flexible DSP datapath synthesis,‖ IEEE

Trans. Very Large Scale Integr. (VLSI) Syst.,

vol. 19, no. 3, pp. 429–442, Mar. 2011.

[9] G. Ansaloni, P. Bonzini, and L. Pozzi,

―EGRA: A coarse grained reconfigurable

architectural template,‖ IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 19, no. 6, pp.

1062–1074, Jun. 2011.

[10] M. Stojilovic, D. Novo, L. Saranovac, P.

Brisk, and P. Ienne, ―Selective flexibility:

Creating domain-specific reconfigurable

arrays,‖ IEEE Trans. Comput.-Aided Design

Integr. Circuits Syst., vol. 32, no. 5, pp. 681–

694, May 2013.

[11] T. Kim and J. Um, ―A practical approach to

the synthesis of arithmetic circuits using carry-

save-adders,‖ IEEE Trans. Comput.- Aided

Design Integr. Circuits Syst., vol. 19, no. 5, pp.

615–624, May 2000.

[12] A. Hosangadi, F. Fallah, and R. Kastner,

―Optimizing high speed arithmetic circuits using

three-term extraction,‖ in Proc. Design, Autom.

Test Eur. (DATE), vol. 1. Mar. 2006, pp. 1–6.

[13] A. K. Verma, P. Brisk, and P. Ienne, ―Data-

flow transformations to maximize the use of

carry-save representation in arithmetic circuits,‖

IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 27, no. 10, pp. 1761–1774,

Oct. 2008.

