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Abstract—Now a day, wireless communication becomes a trend 

in many ways such as mobile online games, high quality online 

video calling and mobile multimedia transmissions, etc. So, the 

requirements of radio spectrum also increase, which makes radio 

spectrum more and more expensive]. A number of techniques 

utilize for the radio spectrums and also provide better Efficiency 

in MIMO communication system. In parallel, MIMO system is one 

of the promising technology of 5G, which predominance in 

boosting Spectrum Efficiency and Energy Efficient with low 

complexity. In MIMO structures, though the multiplexing gain can 

be obtained with an equal power allocation method , power 

control among users can help to gain all the benefits brought by 

antenna arrays Generally, MIMO Provides two types of gain to 

achieve fair power allocation: one is the spatial multiplexing (SM) 

gain and other is the diversity gain. In this paper, we present a 

novel computationally efficient algorithm for detecting QR-OSIC 

architectures with respect to the MMSE criterion. The QR –OSIC 

algorithm estimates the BER,  this will be minimized by providing 

the PA scheme at transmitter end and this algorithm improves the 

SINR. An improved detection ordering for MIMO System an 

ordered successive interference cancellation detector is 

determined under the bit error rate minimization. From the 

convexity of the Q -function, we derive the ordering strategy that 

makes the channel gains converge to their geometric mean. Based 

on the approach of this, first we designed the fixed ordering 

algorithm,  for which the geometric mean is used for a constant 

threshold. Later to improve the performance of the system like 

SNR, the modified new scheme employing adaptive thresholds is 

developed using the correlation among ordering results. 

Comparison of Theoretical analysis and simulation results shows 

that proposed ordering schemes using QR-decomposition requires 

reduced computational complexity and improved error 

performance and  SINR 

 

Index Terms—Detection ordering, MIMO, OSIC, power 

allocation, QR-decomposition. 

 
    

 

I.INTRODUCTION 

  

Multiple Input Multiple Output (MIMO) technology means 

that multiple antennas are used at the transmitter and 

receiver sides, has been increases the signal coverage area 

and also increases spectral efficiency and reliability. The 

MIMO systems has been an active area of research in 

wireless communications, as well as practical transceiver 

implementations of their great potential of enhancing the 

system’s performance [1], [2]. The Vertical-BLAST 

architecture proposed in this system [3] and [4], also 

referred to as the BLAST-ordered successive interference 

cancellation (B-OSIC) detector, is regarded as an attractive 

and improved solution that exploits this potential. In this 

BLAST-OSIC (B-OSIC) receiver, the data stream with the 

strongest signal-to-interference-noise ratio (SINR) is 

selected first after that it is subtracted from the received 

signal, and this procedures successively performed for all 

remaining multiple data streams. For allocating the equal 

power (power allocation –PA) across all the transmitting 

antennas, it is optimal in terms of bit error rate (BER) or 

equivalently minimum-mean-square error (MMSE) [5].At 

the Transmitter end if the knowledge of the channel is 

available, a further performance improvement can be 

achieved using appropriate Power allocation schemes. 

Based on the PA schemes that the data stream with the 

smallest SINR degrades the overall error performance, 

Power allocating schemes for the B-OSIC have been 

suggested in [6] and [7] which reduces the computational 

complexity and the feedback overhead by adopting a 

diagonal precoding matrix for the PA. Most of the PA 

schemes for the closed-loop systems mainly focus on the 

transmitter-side processing strategies, while attempts for 

the joint optimization for the Power Allocation at the 

transmitter and the OSIC detection ordering scheme at the 

receiver has not been fully investigated. 

In this paper, to reduce the BER and increasing the 

SINR we derive a new detection ordering strategy and 

ordering schemes from joint transceiver design, which is a 

distinct from previous study. To obtain a closed-form 

solution, a QR-factorization based approach will be 

employed in our study [6]. In this we extend the ZF-SQRD 

algorithm to the MMSE solution called MMSE-SQRD and 

we provide the BER minimization condition, and it is 

derived from the convexity of the Q-function in the PA 

scheme. It is demonstrated that the ordering strategy, which 

makes the channel gains converge to their geometric 

average, achieves the improved error performance. Based 

on this observation, we develop the two ordering 

algorithms, which are identical except for the threshold 

adaptation. The basic algorithm is used to determine the 

detection-order using the geometric mean as a constant 

threshold, whereas the modified ordering scheme is for 

robust convergence adaptively updates the threshold by 

taking into an account the previous ordering results. The 

comparison of the cumulative distribution is conducted to 

confirm the superiority of the adaptive design. It is also 

shown that proposed ordering schemes using QR-

decomposition obtain not only lower implementation 

complexity but also better BER performance and good 

SINR when compared to the conventional BLAST-OSIC 

algorithm. 

 

II. SYSTEM MODEL 

 

Let us consider a MIMO system with 𝑁𝑡no of transmitting 

antennas and 𝑁𝑟  receiving antennas. The flat-fading MIMO 
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system, channel is expressed by the𝑁𝑟  X𝑁𝑡  matrix H with 

the element ℎ𝑗𝑖 representingthe channel gain from                  

i th  transmitting antenna to j th receiving antenna. The 

      𝑁𝑟X  1 received signal vector y   =  [𝑦1,………. , 𝑦𝑁𝑟 ]𝑇  is 

written as 

y = 
𝐸𝑠

𝑁𝑡
𝐻𝑃X + n              (1) 

where X   =  [𝑥1,………. , 𝑥𝑁𝑡]𝑇denotes the 𝑁𝑟  X  1  

transmitted signal vector, and n   =  [𝑛1,………. , 𝑛𝑁𝑟 ]𝑇is the 

𝑁𝑟  dimensionalnoise vector with elements following 

complex zero 𝜍𝑛
2 mean Gaussian distribution with variance  

of 𝜍𝑛
2.   𝐸𝑠is thetotal transmitted signal energy on  

𝑁𝑡  transmitting antennas and P  =   𝑁𝑡 . 

diag[𝑃1,𝑃2,, …… . . , 𝑃𝑁𝑡] denotes the diagonal PA precoding 

matrix. To express the signal model for the MMSE-QR 

detector, an (𝑁𝑟+𝑁𝑡  )  X𝑁𝑡augmented channel matrix𝑯 , an    

( 𝑁𝑟   + 𝑁𝑡  )  X 1  extended receive vector𝒚     and an 𝑁𝑡  X  1  

zero matrix 0𝑁𝑡 ,1canbe written as [8]–[10] 

𝑯 = 
𝑯

𝝈𝒏𝑰𝑁𝑡

 → 𝑂𝑟𝑑𝑒𝑟𝑖𝑛𝑔𝑸 𝑹 and  𝒚 =  
𝒚

0𝑁𝑡 ,1
 .      (2) 

 

 
Fig. 1.MIMO transmission model with QR-OSIC detector. 

 

In above equation Q represents the upper 

triangular matrix , which is differently defined by the 

detection-order, determines the SINR [9], and the post 

detection SINR𝜌𝑘  of the𝑘𝑡ℎ  data stream is given as [2] 

  (3) 

The QR-decomposition scheme based OSIC detection for 

BER-minimized transmission can be performed using the 

architecture shown in Fig. 1. Based on the feedback 

information of the diagonal elements𝑅 𝑘 ,𝑘 , the transmission 

power 𝑃𝑘 is assigned to eachdata stream at transmitting end. 

The independently encoded symbols are processed through 

a diagonal PA matrix and then transmitted from 

𝑁𝑡datastreams. The QR-OSIC receiver detects the transmit 

symbols sequentiallyin accordance with the designated 

detection-order. 

 

III. PROPOSED DETECTION ORDERING 

ALGORITHMS 

 

In Section III-A,MMSE detection is described to 

extend the MMSE criterion and in section III-B,  MMSE 

Sorted QR Decomposition scheme provided to obtain the  

optimal  detection  order. In section III-C , a theoretical 

approach for BER performance is described. As in the 

derivation of the post-detection SINR, the error rate is also 

affected by the channel gains and the transmission power. 

From the properties of the -function and ordering results, 

the proposed ordering strategy is derived and the efficient 

ordering algorithms for the QR-OSIC receiver are 

presented in Section III-D 

A. MMSE QR Detection 

In order to extend the QR based detection with 

respect  to the MMSE criterion, we can apply the similarity 

of ZF and MMSE detection noted in Section III-B. We 

introduce the QR decomposition of the extended channel 

matrix (17) 

𝑯 =   
𝑯

𝝈𝒏𝑰𝑁𝑡

    =   𝑸 𝑹 =  
𝑸𝟏

𝑸𝟐
 𝑅 =   

𝑸𝟏𝑅 

𝑸𝟐𝑅 
  

                              (4) 

where the    ( 𝑁𝑟   + 𝑁𝑡  )  X𝑁𝑡 matrix 𝑸    with orthogonal 

columns was partitioned into the an   𝑁𝑟   X𝑁𝑡matrix 𝑸𝟏 

and the 𝑁𝑡   X𝑁𝑡matrix Q2. Obviously, 

𝑸 𝑯𝑯   =𝑸𝟏
𝑯  +  𝝈𝒏

𝟐𝑸𝟐
𝑯    =   𝑹 (5)        

holds and from the relation𝝈𝒏𝑰𝑁𝑡
=  𝑸𝟐𝑅  it follows that 

𝑅 −1   =
1

𝝈𝒏
𝑸𝟐(6) 

i.e. the inverse 𝑅 −1 is a byproduct of the QR 

decompositionand Q2 is an upper triangular matrix. This 

relation will be useful for the post-sorting algorithm Using 

(13) and (14), the filtered receive vector becomes𝒔  =𝑸 𝑯𝒚   

=𝑸𝟏
𝑯 y  = 𝑹 𝑠 − 𝝈𝒏𝑸𝟐

𝑯 s + 𝑸𝟏
𝑯   (7)The second term on the 

right hand side of (15) including the lower triangular matrix 

𝑸𝟐
𝑯 constitutes the remaining interference that cannot be 

removed by the successive interference cancellation 

procedure. This point out the trade-off between noise 

amplification and  interference suppression. 

The optimum detection sequence now maximizes 

the signal-to-interference-and-noise ratio (SINR) for each 

layer, leading to minimal estimation error for the 

corresponding detection step. The estimation errors of the 

different layers in the first detection step correspond to the 

diagonal elements of  the error covariance matrix (11) 

∅=   𝝈𝒏
𝟐 𝑯 𝑯𝑯  −𝟏   =  𝝈𝒏

𝟐𝑹 −𝟏𝑹 −𝑯       (8) 

The estimation error after perfect interference cancellations 

given by𝝈𝒏
𝟐  / 𝒓 𝒌,𝒌 

𝟐
. Thus, it is again optimal to choose the 

permutation that maximizes  𝒓 𝒌,𝒌 in each detection 

step.The algorithm proposed in the next section determines 

anoptimized detection sequence within a single sorted QR 

decomposition and thereby significantly reduces the 

computational complexity in comparison to standard 

MMSE-BLAST algorithms. 

A. MMSE Sorted QR Decomposition (MMSE-SQRD) 

In order to obtain the optimal detection order, first |rnT 

,nT | has to be maximized over all possible permutations of 

the  𝒓 𝒏𝑻,𝒏𝑻
 has to be maximized over all possible 

permutations of the columns of the extended channel 

matrix 𝑯 , followed by 𝒓 𝒏𝑻−𝟏,𝒏𝑻−𝟏
 and so on. Unfortunately, 

using standard algorithmsfor the QR decomposition, the 

diagonal elements of𝑹 are calculated just in the opposite 

order, starting with 𝒓 𝟏,𝟏 . This makes finding the optimal 

order of detection a difficult task. 
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A heuristic approach of arranging the order of 

detection into the QR decomposition for the ZF detection 

was presented in [4], [5]. This sorted QR decomposition 

algorithm is basically an extension to the modified Gram-

Schmidt procedure by reordering the columns of the 

channel matrix prior to each orthogonalization step. In the 

sequel we present an adapted version of this algorithm for 

MMSE detection. 

The fundamental idea is that 𝒓 𝒌,𝒌is minimized in the 

orderit is computed (1, . . . , 𝑁𝑡) instead of being maximized 

in the order of detection (𝑁𝑡 , . . . , 1). This is motivated by 

the fact that the layers detected last affect only few other 

layers through error propagation and may therefore have 

rather small SINR’s, which increases the probability of 

large SINR’s in the first layers. Now, 𝒓 𝟏,𝟏 is simply the 

norm of the column vector𝒉 𝟏, so the first optimization in 

the SQRD algorithm consistsmerely of permuting the 

column of 𝑯     with minimum norm to this position. During 

the following orthogonalization of the vectors𝒉 𝟐 ,  𝒉 𝟑 , 

……𝒉 𝒏𝑻
, with respect to the normalized vector𝒉 𝟏, the first 

row of𝑹 is obtained. Next, 𝒓 𝟐,,𝟐  is determined ina similar 

fashion from the remaining 𝒏𝑻 − 𝟏orthogonalizedvectors, 

etc. Thereby, the extended channel matrix𝑯 issuccessively 

transformed into the matrix 𝑸    associated with the desired 

ordering, while the corresponding 𝑹  is calculated row by 

row. Note that the column norms have to be calculated only 

once in the beginning and can be easily updated afterwards. 

Hence, the computational overhead due to sorting is 

negligible. 

It should be emphasized that MMSE-SQRD does not 

always lead to the perfect detection sequence, but in many 

cases of interest the performance degradation is small 

compared to the reduced complexity. Furthermore, 

whenever MMSE-SQRD fails to find the optimal order, the 

post-sorting algorithm described in the sequel may be 

applied. It assures the optimal sorting and thereby achieves 

the same performance as MMSEBLAST. 

In order to introduce the Post-Sorting-Algorithm 

(PSA), we investigate the structure of the error covariance 

matrix in case of optimal sorting in more detail. Due to the 

relation (14) the error covariance matrix (16) is given by 

∅ =  𝑸𝟐𝑸𝟐
𝑯                             (9) 

and𝑸𝟐is a square root of ∅. As 𝑸𝟐 is upper triangular ,the k-

th diagonal element of ∅ is proportional to the norm of the 

k-th row of 𝑸𝟐. Recalling the optimal ordering criterion, the 

last row of 𝑸𝟐  must have minimum norm of all rows. 

Assume that this condition is fulfilled, then the last row of 

the upper left 𝒏𝑻−𝟏𝑿𝒏𝑻−𝟏  submatrix of 𝑸𝟐 must have 

minimum norm of all rows of this sub matrix. In case of the 

correct sorting this condition is accomplished by all upper 

left sub matrices. 

B. Description of the BER Performance 

 A PA scheme for the average BER minimization 

under the assumption of the QR-decomposition of the 

channel matrix and no error propagation in successive 

cancellation of the data streams has been proposed in [6]. 

The PA scheme for BPSK modulation can be expressed as 

minimize 

1

𝑁𝑡

 𝑄( 2 

𝑁𝑡

𝑘=1

𝛾𝑠𝑃𝑘𝑅 𝑘 ,𝑘) ≈
1

𝑁𝑡

 𝑄( 2 𝜌𝑘

𝑁𝑡

𝑘=1

) 

    s.t         𝑃𝑘
2𝑁𝑡

𝑘=1   =1 ,      0 <𝑃𝑘 < 1, 

 𝑅 𝑘 ,𝑘 ≥ 0,     k∈ {1,2, …… . , 𝑁𝑡}(10) 

where   Q(x) =  1/2𝜋  𝑒−(
𝑡2

2
)∞

𝑥
𝑑𝑡and 𝛾𝑠=  

𝐸𝑠

𝜍𝑛
2. 

We assume𝑅 𝑘 ,𝑘 ≥ 0 because it is defined as the norm of 

the𝑘𝑡ℎ column of the augmented channel matrix [8]. For 

generalconstellations, the average BER of the PA can be 

approximatedwith a constellation-specific constant [7], 

[11]. 

 

 

 
 

Fig. 2. Graph of∅ 𝑅 1,1 . 

 

As can be observed in (4), the average BER as well as the 

post-detection SINR is determined by the allocated power 

and the channel gain . Because of the convexity property of 

the -function, the resulting BER is minimized by (i)the 

detection ordering of the QR-OSIC receiver such that all 

diagonal elements of the matrix are equal to their 

geometrical average 𝜇 =    det(𝑅)   
𝑁𝑡

=  
𝑁𝑡

 𝑅 𝑘 ,𝑘
𝑁𝑡
𝑘=1 , and 

alternatively(ii) the PA scheme at the transmitter which 

makes the product of two variables 𝑃𝐾and𝑅 𝑘 ,𝑘  identical for 

all data streams. Asthe real MIMO channel is characterized 

by several spatio –temporal properties, the condition (i) is 

not practical in spite of its optimality. On the other hand, in 

(ii), different detection-order leads to different𝑅 𝑘 ,𝑘  , and 

hence𝑃𝐾should be also differently assigned. This indicates 

that an appropriate detection ordering strategy incorporates 

with the PA scheme can achieve the improved BER 

performance. 

 

D. Proposed Ordering Strategy and Algorithms 

Since the Q–function has convex and decreasing 

properties, the average BER minimization problem (4) can 

be simplified to maximize the product of two variables 

𝑃𝐾and𝑅 𝑘 ,𝑘  

Maximize    𝑃1𝑅 1,1 

s. t.  𝑃1𝑅 1,1  =𝑃2𝑅 2,2  =……….  =𝑃𝑁𝑡
𝑅 𝑁𝑡 ,𝑁𝑡

 

 𝑃𝑘
2𝑁𝑡

𝑘=1        ,         0 < 𝑃𝑘 < 1         (11) 

Using the following properties of . 

𝑃1𝑅 1,1  =𝑃2𝑅 2,2 = 1 − 𝑃1
2 (det(𝑅)    /𝑅 1,1)  

𝑃1
2

 = (𝑑𝑒𝑡2(𝑅)    / (𝑅 1,1
4  +  det(𝑅)   ))  and  max 𝑃1𝑅 1,1 ≅

𝑚𝑎𝑥𝑃1
2𝑅 1,1

2 , the problem for two transmit antennas can be 

written as 



 

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  
p-ISSN: 2348-795X  

Volume 04 Issue-17 
December 2017 

 

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e  | 3093 
 

Maximize 
𝑅 1,1

2 𝑑𝑒𝑡 2(𝑅)    

𝑅 1,1
4 +𝑑𝑒𝑡 2(𝑅)      = ∅ 𝑅 1,1 .(12) 

s . t   𝑃1𝑅 1,1  =𝑃2𝑅 2,2,  𝑃1
2

+ 𝑃2
2

=1    
To find the direction of increasing, a plot of the 

objective function∅ 𝑅 1,1 versus𝑅 1,1 is given in Fig. 2. It is 

observed that ∅ 𝑅 1,1 increases as 𝑅 1,1 tends to 𝜇 . When 

differential calculusis applied to ∅ 𝑅 1,1 , we also obtain 

2𝑅 1,1(𝑅 1,1
4 + 𝑑𝑒𝑡2(𝑅)    ) =0 

𝑅 1,1 =    det(𝑅)   =  𝜇(𝟏𝟑) 

Note that ,𝜌𝐾 ∝ 𝑃𝐾
2𝑅 𝑘 ,𝑘

2  and therefore the above 

consideration simply that 𝜌𝐾 is gradually increasing as 

𝑅 𝑘 ,𝑘approaches to 𝜇. In other words, the ordering strategy 

that makes 𝑅 𝑘 ,𝑘 converge to 𝜇 achieves higher post-

detection SINR, which also further improves the overall 

BER performance. From (18), it can be extended to the 

system with transmit antennas. To satisfy the derived 

strategy, we establish the fixed ordering algorithm, the 

architecture of which arranges the channel gains to 

minimize 𝑅 𝑘 ,𝑘 − 𝜇 for all  k.      

𝑘𝑙  = arg min 𝑅 𝑤 ,𝑤 − 𝜇  

s ,t  w∈ {𝑘1, ……… . 𝑘𝑙−1} 

𝜇 =    det(𝑅)   
𝑁𝑡

(14) 

where the list of 𝑁𝑡 elements {1,2,….,are rearranged with 

the parenthesized subscript implying the reverse order in 

which the elements are to be detected and the ordered 

set𝑘 =  𝑘1, ……… . 𝑘𝑁𝑡
 is a permuted sequence of them [8], 

[10]. 

 

 
Fig. 3. Comparison of cumulative distribution of 𝑅 𝑘 ,𝑘 − 𝜇 

 

Using the correlation among ordering results, the modified 

ordering algorithm employing adaptive criteria can be 

developed for robust convergence. For instance, in 𝑁𝑡 =
3 system, selectingan element 1 as 𝑘1will, in general, result 

in a different𝑅 1,1than if element 2 or 3 was selected. It also 

affects the remainingsets which decide  

𝑘2, 𝑘3   . Moreover, channel gains are constrained via 𝜇 =  

 
𝑁𝑡

 𝑅 𝑘𝑙 ,𝑘𝑙

𝑁𝑡
𝑘=1  Motivated by the aboveproperties, we 

propose the adaptive ordering design which continually 

renews the thresholds by controlling the weights with 

reference to previously determined channel gains. 

Substituting the variable thresholds into the fixed method, 

we get𝑘𝑙  = arg min 𝑅 𝑤 ,𝑤 − 𝜇𝑙  

s . t 𝜇1=𝜇;    𝜇𝑙+1 =  
𝑁𝑡−𝑙+1 

𝑁𝑡−𝑙  
𝜇 𝑙

𝑅 𝑙 ,𝑙
𝑁𝑡−𝑙+1 

(15) 

Where 𝜇𝑙  denotes the threshold for  𝑘𝑙  . The adaptive 

ordering algorithm can be considered as the reduced-sized 

fixed ordering process extracting the already decided gains 

thus it plays a large part in balancing among ordering 

results. If the sign of𝑅 𝑘 ,𝑘 − 𝜇 is distributed to one side 

serially, the adaptive ordering algorithm enables the 

following channel gain to be on the opposite side by 

adjusting 𝜇𝑙+1. This allows more channel gains to converge 

to . To identify it, the cumulative distributions of𝑅 𝑘 ,𝑘 −
𝜇with four transmit/receive antennas are drawn in Fig. 3. 

Thesmall gap between two similar schemes is noticeable 

because the adaptive algorithm is equivalent to the fixed 

one for slight differences in . 𝑅 𝑘 ,𝑘 − 𝜇 . 
The complexity comparison between the B-OSIC and the 

QR-OSIC receiver is not discussed in this paper. 

Fortunately, the efficiency of the QR-OSIC receiver which 

reduces the computational complexity by an order of 

magnitude is proven in [5].In a B-OSIC detector with 𝑁𝑡 =
 𝑁𝑟 , the total numbers of multiplicationsand additions are 

(43/12)𝑁𝑡
4 +(22/3)𝑁𝑡

3 +𝜗 𝑁𝑡
2 ,and   (43/12)𝑁𝑡

4  +(20/3)𝑁𝑡
3 

+𝜗 𝑁𝑡
2 , respectively. On theother hand, the OSIC receiver 

using QR-factorization requires are (2/3) 𝑁𝑡
3  +7 𝑁𝑡

2𝑁𝑟 +
 2𝑁𝑟

2𝑁𝑡 + 𝜗 𝑁𝑡
2  multiplications and additions. Because of 

the multiple calculations of pseudo-inverse for nulling and 

ordering, the B-OSIC requires higher computational cost 

[10]. When ,𝑁𝑡 =  𝑁𝑟  the numbers of multiplications and 

additions are given with the complex floating point 

operations(flops). 

(43/6)𝑁𝑡
4 +14𝑁𝑡

3 +𝜗 𝑁𝑡
2 ,     for B-OSIC ; 

 (29/3)𝑁𝑡
3 +𝜗 𝑁𝑡

2 ,           for QR-OSIC ;(16) 

IV. SIMULATION RESULTS 

We consider an un coded MIMO system with 3 X 3,             

4 X 4transmit/receive antenna configurations and BPSK 

modulation. The effects of error propagation are not 

ignored, an d simulations are used to obtain the actual 

performance. For each of the MIMO systems and for a 

specific value of SNR, a quasi-static channel is assumed for 

the performance evaluation, for which the channel gain is 

constant over a frame and changed independently from 

frame to frame. To concentrate our point on comparing 

ordering algorithms, we postulate the perfect channel 

estimation at the receiver and error-free PA information at 

the transmitter. 

 
 

Fig. 4. Average BER performance of MIMO systems with three 

transmit/receive antennas. 
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Fig. 4. Average BER performance of MIMO systems with four 

transmit/receive antennas. 

 

Fig. 4 shows the average BER performance comparison for 

MIMO systems with three transmit/receive antennas and 

the simulation results of four transmit/receive antennas are 

depicted in Fig. 5. Here, the dashed line indicates a system 

with the BER-minimized PA scheme, whereas the solid line 

represents a system without the PA. The QR receiver with 

the PA but no ordering, denoted as QR-SIC w/ PA, has 

similar performance to the open-loop OSIC systems 

without the PA. This demonstrates the importance of the 

detection-order for successive detection. As expected, 

without the PA, the B-OSIC outperforms the QR-OSIC 

receiver. Despite the reduced complexity, however, power 

controlled MIMO systems employing the proposed 

ordering strategy achieve the improved error performance 

compared to those with the B-OSIC algorithm. It is 

sufficient to confirm the superiority of the proposed design 

because the ordering algorithms of previous studies comply 

with the strategy of the B-OSIC [5]–[8]. A further 

performance improvement in the high SNR region can be 

explained in terms of the error propagation, 

since the PA scheme as well as the proposed QR-OSIC 

receiver is designed under the assumption of the error-free 

decision in previous detection stages. 

 

V. CONCLUSION 

 

In this study, we investigate the QR-OSIC receiver design 

for the transmitter-side power allocated MIMO system. 

Based on the properties of the Q -function and ordering 

results, we develop the efficient ordering algorithms in 

combination with the PA scheme. In spite of less 

computational effort, the proposed ordering schemes 

decrease the overall BER in comparison with the 

previously derived B-OSIC scheme. Because of the post-

detection SINR increment, the coded systems with the 

derived approach can also be expected to achieve the 

performance improvement. 
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