

CherryPy: Common Programmer Issues with Solutions: Prof.S.A.Shinde & Mr. Kushal S.
Patel 874

 International Journal of Research (IJR) Vol-1, Issue-4, May 2014, ISSN 2348-6848

Open Access to this Paper at www.internationaljournalofresearch.com

CherryPy: Common Programmer Issues with Solutions
Prof.S.A.Shinde1 & Mr. Kushal S. Patel2

ABSTRACT—
Python is rich with a large number of web libraries and frameworks. CherryPy has its
own web (HTTP) server previously. Now it can be accessible from any browser. The web
server is the gateway to a CherryPy application through which all traffic of HTTP
requests and responses has to go. CherryPy Engine is responsible for the controlling,
managing, and to monitor of CherryPy process. Even though CherryPy is a rich module of
python, it has some issues with some lower versions of python. Earlier version than python
2.5 had issues with this module. This paper proposes some common problem and their
solutions in this regard. Experimental results are also shown for the convenience of
Python programmer to deal with these solved issues. This paper covers server and client
errors along with channel errors associated with CherryPy and Python2.5.

KEYWORDS-
Python, CherryPy, Engine, Channel Allocation, Ports.

1 Vidya Pratishthan’s College of Engg. Maharashtra, India
Meetsan_shinde@yahoo.com

2 Vidya Pratishthan’s College of Engg Baramati, Maharashtra
Patelkushal4444@gmail.com

CherryPy: Common Programmer Issues with Solutions: Prof.S.A.Shinde & Mr. Kushal S.
Patel 875

 International Journal of Research (IJR) Vol-1, Issue-4, May 2014, ISSN 2348-6848

Open Access to this Paper at www.internationaljournalofresearch.com

INTRODUCTION
Now days, World Wide Web is growing

exponentially, and has become a key
component of the way people live. There
are several languages which supports client
server architecture. Python language is an
emerging scripting language in the field of
automation. To have python client server
architectural support; some necessary
modules are need to be installed. One of
those modules is CherryPy. CherryPy is a
Python library providing a user friendly
interface to the HTTP protocol. Web
applications have grown exponentially in
the last few years. Due to this it becomes
necessity to have web interaction in
python. This explosion is helpful to a large
number of toolkits, libraries, and
frameworks released. CherryPy has started
using Python's strengths as a dynamic
language to model and bind the HTTP
protocol into an API that follows Python
idioms.

Python is rich with a large number of

web libraries and frameworks. Some of the
features of CherryPy are described ahead:
Simplicity: To use CherryPy is very
simple. The narrow scope covered by the
library, the developers have been able to
concentrate on the API and community
feedback. Self-contained: From the very
beginning, The core of CherryPy would
not require any third-party Python
packages to work. This is pure and
independent module designed by
developers.
Not intrusive: This is a critical aspect of
the library; the idea was to provide a set of
tools to any developer making no
assumptions about the way in which user
may choose to use them.

CherryPy has its own web (HTTP)
server previously. Now it can be accessible
from any browser. The web server is the
gateway to a CherryPy application through

which all traffic of HTTP requests and
responses has to go. Therefore it is up to
lower ISO-OSI layer to handle the low-
level TCP sockets. These low-level TCP
sockets are used to convey the information
from the client to the server and vice versa.
The internal CherryPy engine is
responsible for Creating and managing
Request and Response objects in
communication. The Response object
constructs response by internal
computations and validates the response
before providing it to the server. Another
main important work of engine is to
control, manage, and monitor the CherryPy
process.

Caching is an important side of any web
application. It reduces the load and stress
of the different servers in action. Servers in
the system can be—HTTP, application,
and database servers. Generic caching is
provided by this module which can help in
achieving decent improvements in
application's overall performance. The
CherryPy caching module works at
application level i.e. at the HTTP server
level. It will cache the generated output to
be sent to the destination and will retrieve
a cached resource based on a predefined
key. The cache data is stored at the server
memory and is therefore it may lose when
stopping the server. We can also pass own
caching class to handle the underlying
process differently while keeping the same
high-level interface.

At the time of building an application
using CherryPy; it is useful to understand
the path taken by the application based on
the input it processes. This helps to
determine potential bottlenecks in the
systems and also application runs in
expected mode. The coverage module in
CherryPy does this and provides a
browseable output i.e. output can be taken
directly in browser during application run.

CherryPy: Common Programmer Issues with Solutions: Prof.S.A.Shinde & Mr. Kushal S.
Patel 876

 International Journal of Research (IJR) Vol-1, Issue-4, May 2014, ISSN 2348-6848

Open Access to this Paper at www.internationaljournalofresearch.com

SERVER AND CLIENT ERROR

CherryPy returns an HTTP error code
500 when it catches an error that is not
handled otherwise by the application
developer. The HTTP specification defines
two sets of error codes, client errors in the
4xx range and server errors in the 5xx
range. The client errors indicate that the
user agent has sent an invalid request (e.g.
missing authentication credentials,
requested resource not found or gone, etc.).
If you got error message as 50X where X
can be any integer from 0 to 9; it means
that either CherryPy
serv

er has not found method or most probably
there is any error in parameters of
methods. In CherryPy, each method has to
be explored independently. If method is
not exposed then it is treated as private
method and CherryPy server cannot import
that directly. Below snapshot is an example
of common server error.

The Cherrypy Server can be
accessed by different HTTP methods.
GET: This returns the representation of the
requested resource depending on the
Accept header. Our application allows
application/xml, application/atom+xml,
text/json, or text/x-json. We use a function
called accept, which returns the acceptable
header found or raises a

cherrypy.HTTPError (406, 'Not
Acceptable') error immediately to inform
the user agent that our application cannot
deal with its request. Then we verify if the
resource still exists; if not, we raise a
cherrypy.NotFound error, which is a
shortcut to cherrypy. HTTPError(404, 'Not
Found'). Once we have our pre-conditions
checked, we return the requested
representation of the resource. Note that
this is equivalent to the index() method
with the default dispatcher. Bear in mind
though that there is no equivalent to the
default() method when using the method
dispatcher. POST: The HTTP POST
method allows a user agent to create a new
resource. The first step is to check if the
photoblog that will handle that resource
exists. Then we create the resource and we
return a status code 201 Created along with
the Location header indicating the URI to
retrieve the newly created resource. PUT:
The HTTP PUT method allows the user
agent to replace a resource with the one
provided in the request body. It is often
considered as an update operation.
Although RFC 2616 does not forbid PUT
to also create a new resource, we will not
use it that way in our application as we will
explain later.

Like CherrPy server error; client side

error can also be happen with this model.

In this type of errors; the sources can be at
client side probably. Client side issues

CherryPy: Common Programmer Issues with Solutions: Prof.S.A.Shinde & Mr. Kushal S.
Patel 877

 International Journal of Research (IJR) Vol-1, Issue-4, May 2014, ISSN 2348-6848

Open Access to this Paper at www.internationaljournalofresearch.com

consist of invalid URL
requested. If user produces an invalid URL
request then CherryPy interpreter at server
end detects that URL is invalid and client
gets response as Error 40X where X is any
integer between 0 to 9. Another source of
error can be invalid parameters in actions.
This can include insufficient or variable
parameter lists provided to HTML server
by client. Mismatching of sequence of
parameters can also raise error in
execution.

CHANNEL BUS ALLOCATION

Above figure shows how Engine

Bus allocation is done by CherryPy. In this
starting process; all the CherryPy variables
are initialized. These variables are used to
get and set the system environment. Main
thread is started at this stage and as per
requests sub threads are created and
maintained. Main thread is killed by
operating system at the time of application
closing process. If there are some error in
application close by CherryPy then the
channel allocation fault is occurred which
is explained in detail at later part of this
paper.

CherryPy uses the concept of
channel allocation at protocol level. In this
concept of channel allocation, one
dedicated virtual data pipe is allocated to

each application. In this when cherrypy
server started execution, it determines on
which channel it has to establish
connection. Once the channel pipe is
detected, a virtual channel is created using
IP address and port number. If it is not
mentioned in server’s python script then
the default allocation is done using virtual
channel of IP address as ‘loaclhost’ or
“127.0.0.1” and default port as 8080.

This channel allocation has several
advantages when security of cherrypy is
considered. Channel system is very much
useful in multiprogramming environment.
Every application has different channel,
due to this number of applications can be
run successfully on same machine without
interference to each other. Ideally infinitle
allocations can be done but due to some
practical issues the channel and ultimately
applications of cherrypy are limited to 65K
i.e. 65535. This method is also known as
Engine Bus system as different data
follows different bus to travel.

This method has some problems
associated with it. Some of problems are
illustrated in later part of this paper. Once
the application of cherrypy server closed, it
is expected that it should relese all the
channels allocated to it. If Python code
associated with application is dependent on
older version than Py 2.7, unfortunately
Python code not allwed to return all the
channel resources to the underlying
operating system. Due to this, new
application cannot use this channel for data
communication even though it is not used
by any other application. If this happens
repetedly, number of dead resources
increases and it may cause some problem
with server machine.

CherryPy: Common Programmer Issues with Solutions: Prof.S.A.Shinde & Mr. Kushal S.
Patel 878

 International Journal of Research (IJR) Vol-1, Issue-4, May 2014, ISSN 2348-6848

Open Access to this Paper at www.internationaljournalofresearch.com

This problem mostly observed by
cherrypy programmer as intermediate
runnig causing error of channel is already
allocated. This problem has a simple
solution of restarting the server machine. It

works well with dedicated server
environment or virtual server envonment.
This solution is very much less effective
when cherrypy programmer is concern.
Programmer cannot restart his machine on
every run.

On the Windows platform, netstat

information can be retrieved by calling the
GetTcpTable and GetUdpTable
functions. These functions are present in
the IP Helper API, or IPHLPAPI.DLL.
Returned Information includes local and
remote IP addresses, local and remote
ports, and (for GetTcpTable) status codes
of TCP . In addition to the command-line
netstat.exe tool that ships with Windows,
GUI -based netstat programs are also
available. netstat command is available
only if the Internet Protocol is installed as
a component in the properties of a network
adapter in Network Connections. This
command is useful to see the allocation of
channel. Programmer knows that his
program is allocating which IP address and
port number. Using this he can get the
channel details. Here import channel detail
is process number of that cherrypy
application. Once the application is closed,
if it is visible in netstat, then this process

CherryPy: Common Programmer Issues with Solutions: Prof.S.A.Shinde & Mr. Kushal S.
Patel 879

 International Journal of Research (IJR) Vol-1, Issue-4, May 2014, ISSN 2348-6848

Open Access to this Paper at www.internationaljournalofresearch.com

has to be deleted. On
deletion of this task, the channel is relesed
forcefully and be available for next
application. Snapshots shows detail
explaiation of this story.

CONCLUSIONS
Once these steps are done, the

channel is now free. Port is also free. This
logical port is now added in free pool of
operating system and online for allocation.
This will add a more functionality in
CherryPy module. This concept is already
reported to Python.org. Due to this, new
versions of python are overcome with this
problem.

REFERENCES

[1] Lindstrom, G., “Programming with Python,” Journal of IT Professional Sept.-Oct.
2005

[2] Courtwright E., Chuan Yue, Haining Wang,“Efficient resource management on
template-based web servers,” Dependable Systems & Networks, 2009. DSN '09.
IEEE/IFIP International Conference June - July 2009

[3] Edwards, Stephen H.“Adding software testing to programming assignments ,“ 2013
IEEE 26th Conference on
Digital Object Identifier: 2013

[4] Xu, Zhaogui, Qian, Ju, Chen, Lin, Chen, Zhifei, Xu, Baowen,“Static Slicing for
Python First-Class Objects,” 13th International Conference on Digital Object
Identifier: 2013

[5] Begosso, L.C. ; Begosso, L.R. ; Goncalves, E.M. ; Goncalves, J.R.,"An approach for
teaching algorithms and computer programming using Greenfoot and
Python,”Frontiers in Education Conference (FIE), 2012
Digital Object Identifier, 2012

[6] Villar, J.I., Juan, J., Bellido, M.J., Viejo, J., Guerrero, D., Decaluwe, J. ,”Python as a
hardware description language: A case study,” Digital Object Identifier, 2011

