

A BRIEF STUDY OF BALANCING OF AVL TREE Shivani Chauhan ,ShashankThakur, Sheetal Rana, Saurav

Sharma
P a g e | 406

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

A brief Study of Balancing of AVL Tree
Shivani Chauhan , ShashankThakur, Sheetal Rana, Saurav Sharma

Department of Computer Science Engineering, Dronacharya college of Engineering, Gurgaon
(Haryana) INDIA

Email: shivanichauhan2011@gmail.com

Abstract:

In computer science, an AVL tree (Georgy
Adelson-Velsky and Landis' tree, named after
the inventors) is a self-balancing binary search
tree. It was the first such data structure to be
invented. In an AVL tree, the heights of the
two child subtrees of any node differ by at most
one; if at any time they differ by more than one,
rebalancing is done to restore this property.
Lookup, insertion, and deletion all take O(log n)
time in both the average and worst cases,
where n is the number of nodes in the tree prior
to the operation. Insertions and deletions may
require the tree to be rebalanced by one or
more tree rotations.

Keywords: AVL, insertion, deletion.

1. Introduction

Binary search trees are an excellent data
structure to implement associative
Arrays, maps, sets, and similar interfaces. The
main difficulty, as discussed in last lecture, is
that they are efficient only when they are
balanced. Straight forward sequences of
insertions can lead to highly unbalanced trees
with poor asymptotic complexity and
unacceptable practical efficiency In this paper
we use AVL trees, which is a simple and
efficient data structure to maintain balance, and
is also the first that has been proposed. It is
named after its inventors, G.M. Adelson-Velskii
and E.M. Landis, who described it in 1962.

2. Operations

Basic operations of an AVL tree involve
carrying out the same actions as would be
carried out on an unbalanced binary search tree,
but modifications are followed by zero or more
operations called tree rotations, which help to
restore the height balance of the subtrees.

2.1 Searching

Searching in an AVL tree is done as in
any binary search tree. The special thing about
AVL trees is that the number of comparisons
required, i.e. the AVL tree's height, is
guaranteed never to exceed log(n). Searching for
a key in an AVL tree is identical to searching for
it in a plain Binary search tree as described in
The reason is that we only Need the ordering
invariant to find the element; the height invariant
is only Relevant for inserting an element. To
describe AVL trees we need the concept of tree
height, which we define as the maximal length
of a path from the root to a leaf. So the empty
tree has height 0, the tree with one node has
height 1, a balanced tree with three nodes has
height 2. If we add one more node to this last
tree is will have height 3. Alternatively, we can
define it recursively by saying that the

A BRIEF STUDY OF BALANCING OF AVL TREE Shivani Chauhan ,ShashankThakur, Sheetal Rana, Saurav

Sharma
P a g e | 407

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

empty tree has height 0, and the height of any
node is one greater than the maximal height of
its two children. AVL trees maintain a height
invariant (also sometimes called a balance
invariant).
2.2 Traversal

Once a node has been found in a balanced tree,
the next or previous nodes can be explored
in amortized constant time. Some instances of
exploring these "nearby" nodes require
traversing up to log(n) links (particularly when
moving from the rightmost leaf of the root's left
subtree to the root or from the root to the
leftmost leaf of the root's right subtree; in the
example AVL tree, moving from node 14 to
the next but one node 19 takes 4 steps).
However, exploring all n nodes of the tree in this
manner would use each link exactly twice: one
traversal to enter the subtree rooted at that node,
another to leave that node's subtree after having
explored it. And since there are n−1 links in any
tree, the amortized cost is found to be 2×(n−1)/n,
or approximately 2.

3.Insertion ;- The basic recursive structure of
inserting an element is the same as for searching
for an element. We compare the element’s key
with the keys associated with the nodes of the
trees, inserting recursively into the left or right
subtree. When we find an element with the exact
key we overwrite the element in that node. If we
encounter a null tree, we construct a new tree
with the element to be inserted and no children
and then return it. As we return the new subtrees
(with the inserted element) towards the root, we
check if we violate the height invariant. If so, we
rebalance to restore the invariant and then
continue up the tree to the root. The main
cleverness of the algorithm lies in analyzing the
situations when we have to rebalance and
applying the appropriate rotations to restore the
height invariant. It turns out that one or two
rotations on the whole tree always suffice for
each insert operation, which is a very elegant
result. First, we keep in mind that the left and
right subtrees’ heights before the insertion can
differ by at most one. Once we insert an element

into one of the subtrees, they can differ by at
most two. We now draw the trees in such a way
that the height of a node is indicated by the
height that we are drawing it at. The first
situation we describe is where we insert into the
right subtree, which is already of height h + 1
where the left subtree has height h. If we are
unlucky, the result of inserting into the right
subtree will give us a new right subtree of height
h + 2 which raises the height of the overall tree
to h + 3, violating the height invariant. In the
new right subtree has height h+2, either its right
or the left subtree must be of height h+1 (and
only one of them; think about why). If it is the
right subtree we are in the situation depicted
below on the left. The code for inserting an
element into the tree is mostly identical with the
code for plain binary search trees. The
difference is that after we insert into the left or
right subtree, we call a function rebalance_left
or rebalance_right, respectively, to restore the
invariant if necessary and calculate the new
height. 3. 1Rotation in insertion operation In
case of insertion, we have following rotations.
LL Rotation When a node X is inserted in the
left sub tree of left sub tree of node N.

 RR Rotation When a
node X is inserted in the right sub tree of right

sub tree of node N. LR
Rotation When a node X is inserted in the right
sub tree of left sub tree of node N.

A BRIEF STUDY OF BALANCING OF AVL TREE Shivani Chauhan ,ShashankThakur, Sheetal Rana, Saurav

Sharma
P a g e | 408

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

 RL Rotation When a
node X is inserted in the left sub tree of right sub

tree of node N. LL
rotation and RR rotation are mirror image of
each other. Similarly LR rotation and RL
rotation are mirror image of each other. 4.
Rotation in deletion operation In case of
deletion, we have following rotations. 4.1 Let
the deletion is being performed into right sub
tree then we have three types of rotations R(0)
rotation ,R(-1) rotation and R(+1) rotation. 4.2
Let the deletion is being performed into left sub
tree then we have three types of rotations L(0)
rotation ,L(-1) rotation and L(+1) rotation.

 5. ALGORITHM 1-Traverse the BST into in
order and count the total number of nodes m. 2-
if m==3 3-The mid node of the in order traversal
will be the root node, its predecessor will be the
left node and successor will be the right node. 4-
if m is even then 5-Introduce virtual node into
the list at (m/2 +1)th index. 6-Make this virtual
node root. Keep the first m/2 nodes of original
list into left sub tree and m/2+1 to m nodes into
right sub tree. 7-Repeat step 5th and 6th until
each node contains only one key. 8- Delete the
virtual nodes. 9- Else (if m is odd) 10-Make the
(m/2)th index node as root node. 11-put the first

m/2 nodes into left sub tree and (m/2 +1)th to m
index nodes into right sub tree. That is left sub
tree and right sub tree has even number of
nodes. 12-Repeat step 5, 6, 7. 13-Delete the
virtual nodes. 14-Stop This algorithm will be
used into both the cases i.e. insertion as well as
in deletion. U = unbalanced node C = child of
unbalanced node G = grandchild of unbalanced
node N = target value that was just inserted T =
pointer to new root of balanced subtree T = U
U.height = U.height - 2
if N > U
 if N < U.right
 U.right = Right Rotation on U.right
(U.right.left++)
 T = Left Rotation on U
else
 if N > U.left
 U.left = Left Rotation on U.left
(U.left.right++)
 T = Right Rotation on U
return T

6. References [1] A. V. Aho, J. E. Hopcroft, and
J. D. Ullman, Data structures and algorithms.
Reading, Mass: .Addison-Wesley, 1983. [2]
www.agner.org/random/theory/. [3] J. Bentley,
“Programming Pearl: How to sort”, Com.. ACM,
Vol. 27 Issue 4, April 1984. [4] J. L.
BENTLEY, M. D. McILROY, “Engineering a
Sort Function” SOFTWARE—PRACTICE AND
EXPERIENCE, Vol. 23(11), Nov. 1993, pp 249
– 1265 . [5] J. L. Bentley and R. Sedgewick,
“Fast algorithms for sorting and searching
strings”, In Proc. 8th annual ACM-SIAM
symposium on Discrete algorithms, New
Orleans, Louisiana, USA, 1997, pp 360 - 369 .
[6] R. Chaudhuri and A. C. Dempster, “A note
on slowing Quicksort”, SIGCSE Vol . 25, No . 2,
Jane 1993. [7] E. W. Dijkstra, A discipline of
programming., Englewood Cliffs, NJ Prentice-
Hall, 1976. [8] W. Dobosiewicz, “Sorting by
distributive partitioning,” Information
Processing Letters 7, 1 – 5., 1978. [9] C.A.R.
Hoare, “Algorithm 64: Quicksort,” Comm. ACM
4, 7 , 321, July 1961. [10] C. A. R. Hoare,
“Quicksort,” Computer Journal, 5, pp 10 - 15
1962.

