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Abstract:  

In computer science, an AVL tree (Georgy 
Adelson-Velsky and Landis' tree, named after 
the inventors) is a self-balancing binary search 
tree. It was the first such data structure to be 
invented. In an AVL tree, the heights of the 
two child subtrees of any node differ by at most 
one; if at any time they differ by more than one, 
rebalancing is done to restore this property. 
Lookup, insertion, and deletion all take O(log n) 
time in both the average and worst cases, 
where n is the number of nodes in the tree prior 
to the operation. Insertions and deletions may 
require the tree to be rebalanced by one or 
more tree rotations. 
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1. Introduction 

Binary search trees are an excellent data 
structure to implement associative 
Arrays, maps, sets, and similar interfaces. The 
main difficulty, as discussed in last lecture, is 
that they are efficient only when they are 
balanced. Straight forward sequences of 
insertions can lead to highly unbalanced trees 
with poor asymptotic complexity and 
unacceptable practical efficiency In this paper 
we use AVL trees, which is a simple and 
efficient data structure to maintain balance, and 
is also the first that has been proposed. It is 
named after its inventors, G.M. Adelson-Velskii 
and E.M. Landis, who described it in 1962. 

 
 

2. Operations 

Basic operations of an AVL tree involve 
carrying out the same actions as would be 
carried out on an unbalanced binary search tree, 
but modifications are followed by zero or more 
operations called tree rotations, which help to 
restore the height balance of the subtrees. 

2.1 Searching 

Searching in an AVL tree is done as in 
any binary search tree. The special thing about 
AVL trees is that the number of comparisons 
required, i.e. the AVL tree's height, is 
guaranteed never to exceed log(n). Searching for 
a key in an AVL tree is identical to searching for 
it in a plain Binary search tree as described in 
The reason is that we only Need the ordering 
invariant to find the element; the height invariant 
is only Relevant for inserting an element. To 
describe AVL trees we need the concept of tree 
height, which we define as the maximal length 
of a path from the root to a leaf. So the empty 
tree has height 0, the tree with one node has 
height 1, a balanced tree with three nodes has 
height 2. If we add one more node to this last 
tree is will have height 3. Alternatively, we can 
define it recursively by saying that the 
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empty tree has height 0, and the height of any 
node is one greater than the maximal height of 
its two children. AVL trees maintain a height 
invariant (also sometimes called a balance 
invariant). 
2.2 Traversal 

Once a node has been found in a balanced tree, 
the next or previous nodes can be explored 
in amortized constant time. Some instances of 
exploring these "nearby" nodes require 
traversing up to log(n) links (particularly when 
moving from the rightmost leaf of the root's left 
subtree to the root or from the root to the 
leftmost leaf of the root's right subtree; in the 
example AVL tree, moving from node 14 to 
the next but one node 19 takes 4 steps). 
However, exploring all n nodes of the tree in this 
manner would use each link exactly twice: one 
traversal to enter the subtree rooted at that node, 
another to leave that node's subtree after having 
explored it. And since there are n−1 links in any 
tree, the amortized cost is found to be 2×(n−1)/n, 
or approximately 2. 

3.Insertion ;- The basic recursive structure of 
inserting an element is the same as for searching 
for an element. We compare the element’s key 
with the keys associated with the nodes of the 
trees, inserting recursively into the left or right 
subtree. When we find an element with the exact 
key we overwrite the element in that node. If we 
encounter a null tree, we construct a new tree 
with the element to be inserted and no children 
and then return it. As we return the new subtrees 
(with the inserted element) towards the root, we 
check if we violate the height invariant. If so, we 
rebalance to restore the invariant and then 
continue up the tree to the root. The main 
cleverness of the algorithm lies in analyzing the 
situations when we have to rebalance and 
applying the appropriate rotations to restore the 
height invariant. It turns out that one or two 
rotations on the whole tree always suffice for 
each insert operation, which is a very elegant 
result. First, we keep in mind that the left and 
right subtrees’ heights before the insertion can 
differ by at most one. Once we insert an element 

into one of the subtrees, they can differ by at 
most two. We now draw the trees in such a way 
that the height of a node is indicated by the 
height that we are drawing it at. The first 
situation we describe is where we insert into the 
right subtree, which is already of height h + 1 
where the left subtree has height h. If we are 
unlucky, the result of inserting into the right 
subtree will give us a new right subtree of height 
h + 2 which raises the height of the overall tree 
to h + 3, violating the height invariant. In the 
new right subtree has height h+2, either its right 
or the left subtree must be of height h+1 (and 
only one of them; think about why). If it is the 
right subtree we are in the situation depicted 
below on the left. The code for inserting an 
element into the tree is mostly identical with the 
code for plain binary search trees. The 
difference is that after we insert into the left or 
right subtree, we call a function rebalance_left 
or rebalance_right, respectively, to restore the 
invariant if necessary and calculate the new 
height. 3. 1Rotation in insertion operation In 
case of insertion, we have following rotations.  
LL Rotation When a node X is inserted in the 
left sub tree of left sub tree of node N.  

 RR Rotation When a 
node X is inserted in the right sub tree of right 

sub tree of node N.  LR 
Rotation When a node X is inserted in the right 
sub tree of left sub tree of node N. 
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 RL Rotation When a 
node X is inserted in the left sub tree of right sub 

tree of node N.  LL 
rotation and RR rotation are mirror image of 
each other. Similarly LR rotation and RL 
rotation are mirror image of each other.  4. 
Rotation in deletion operation In case of 
deletion, we have following rotations. 4.1 Let 
the deletion is being performed into right sub 
tree then we have three types of rotations R(0) 
rotation ,R(-1) rotation and R(+1) rotation. 4.2 
Let the deletion is being performed into left sub 
tree then we have three types of rotations L(0) 
rotation ,L(-1) rotation and L(+1) rotation. 

 5. ALGORITHM 1-Traverse the BST into in 
order and count the total number of nodes m. 2-
if m==3 3-The mid node of the in order traversal 
will be the root node, its predecessor will be the 
left node and successor will be the right node. 4-
if m is even then 5-Introduce virtual node into 
the list at (m/2 +1)th index. 6-Make this virtual 
node root. Keep the first m/2 nodes of original 
list into left sub tree and m/2+1 to m nodes into 
right sub tree. 7-Repeat step 5th and 6th until 
each node contains only one key. 8- Delete the 
virtual nodes. 9- Else (if m is odd) 10-Make the 
(m/2)th index node as root node. 11-put the first 

m/2 nodes into left sub tree and (m/2 +1)th to m 
index nodes into right sub tree. That is left sub 
tree and right sub tree has even number of 
nodes. 12-Repeat step 5, 6, 7. 13-Delete the 
virtual nodes. 14-Stop This algorithm will be 
used into both the cases i.e. insertion as well as 
in deletion.  U = unbalanced node C = child of 
unbalanced node G = grandchild of unbalanced 
node N = target value that was just inserted T = 
pointer to new root of balanced subtree T = U 
U.height = U.height - 2 
if N > U 
  if N < U.right 
    U.right = Right Rotation on U.right 
(U.right.left++) 
  T = Left Rotation on U 
else 
  if N > U.left 
    U.left = Left Rotation on U.left 
(U.left.right++) 
  T = Right Rotation on U 
return T 
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