

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3556

A Component Model for Model Transformations
 K. M .Shazmeen Banu & P.Viswanatha Reddy

1 M.Tech Student (SED), Sir Vishveshwaraiah Institute Of Science & Technology Hyderabad

Email: shazmeentaj542@gmail.com

2Sr. Assistant Professor, Department of CSE, Sir Vishveshwaraiah Institute of Science & Technology Hyderabad

ABSTRACT

Model-driven engineering promotes an active use of models

to conduct the software development process. In this way

models are used to specify, simulate, verify, test and generate

code for the final systems. Model transformations are key

enablers for this approach, being used to manipulate instance

models of a certain modelling language. However, while

other development paradigms make available techniques to

increase productivity through reutilization, there are few

proposals for the reuse of model transformations across

different modelling languages. As a result, transformations

have to be developed from scratch even if other similar ones

exist. In this paper, we propose a technique for the flexible

reutilization of model transformations. Our proposal is based

on generic programming for the definition and instantiation

of transformation templates, and on component-based

development for the encapsulation and composition of

transformations. We have designed a component model for

model transformations, supported by an implementation

currently targeting the Atlas Transformation Language (ATL).

To evaluate its reusability potential, we report on a generic

transformation component to analyse workflow models

through their transformation into Petri nets, which we have

reused for eight workflow languages, including UML Activity

Diagrams, YAWL and two versions of BPMN.

INTRODUCTION:

MODEL transformations are programs that take one or

more models as input, and produce a number of output

models. The aim of transformations is automating

model manipulation when possible, while reducing the

number of errors in this manipulation. This technology

is key in model-driven engineering (MDE) [1], where it

is used to implement model refactoring, model

refinements, model synchronization mechanisms, and

translators of models into other formalisms for analysis,

among other tasks. The increasing adoption of MDE is

leading to the construction of model transformations of

raising complexity. However, building new

transformations from scratch is costly, error prone, and

requires specialized skills. Hence, transformation

developers would benefit from mechanisms enabling

the construction of new transformations by reusing

proven, existing ones, adapted to the particular problem

to be solved. In current MDE practice, there is a

proliferation of metamodel variants for the same

languages. This is partially caused by the focus of MDE

on domain-specific languages and due to

simplifications or variations introduced in large meta-

models (like UML class diagrams and BPMN-like

process modelling languages) to make them fit for the

project purpose. For instance, the ATL meta-model

includes different meta-models for Petri nets meta-

models describing conference organization systems,

and six variations of the Java meta-model. This variety

hampers reuse because transformations are developed

for a particular meta-model and cannot be reused for

other related ones. Appropriate mechanisms for

transformation reutilization would alleviate this

problem, and we claim that they are essential for the

success of the MDE paradigm at industrial scale.

LITURATURE SURVEY:

Automaticallydiscoveringhidden transformation

chaining constraints:-In this work, we propose a

framework that automatically discovers dialect-specific

phonetic rules. These rules characterize when certain

phonetic or acoustic transformations occur across

dialects. To explicitly characterize these dialect-specific

rules, we adapt the conventional hidden Markov model

to handle insertion and deletion transformations. The

proposed framework is able to convert pronunciation of

one dialect to another using learned rules, recognize

dialects using learned rules, retrieve dialect-specific

regions, and refine linguistic rules. Potential

applications of our proposed framework include

computer-assisted language learning, sociolinguistics,

and diagnosis tools for phonological disorders.

Componentsandgenerativeprogramming:-

Generative and component approaches are

revolutionizing software development just as

automation and componentization revolutionized

manufacturing. Key technologies for automating

program development are Generative Programming for

program synthesis, Component Engineering for

modularity. In this paper we show the contribution of

mailto:shazmeentaj542@gmail.com

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3557

these two approaches in the implementation of a multi-

target learning management system generator adaptable

to different target runtime environment. This article

introduces the basics of a new programming method of

virtual learning environments. This approach is based

on generative programming that integrates the user

specifications (abstract models) and technologies

desired in order to produce bricks software, then put

them together to produce a solution adapted to area and

users' needs. This idea is used at different levels in the

design and implementation of our system

LMSGENERATOR,

Feature-based survey of model transformation

approaches:-Model transformations are touted to play

a key role in Model Driven Development™. Although

well-established standards for creating met models such

as the Meta-Object Facility exist, there is currently no

mature foundation for specifying transformations

among models. We propose a framework for the

classification of several existing and proposed model

transformation approaches. The classification

framework is given as a feature model that makes

explicit the different design choices for model

transformations. Based on our analysis of model

transformation approaches, we propose a few major

categories in which most approaches fit.

SYSTEM ANALYSIS:

EXISTING SYSTEM:-

Transformations are tight to concrete meta-models, and

it is not possible to reuse them for semantically related

meta-models lack of meta-information and missing

repositories, which makes it difficult to search and find

transformations challenging and limited specialization

of existing transformations, which limits the adaptation

of a transformation to unforeseen contexts insufficient

integration support. Thus, the most used approach in

MDE is code scavenging. Developers typically search

for related transformations pick some rules and adapt

them to the meta-models at hand.

Advantages:-we provide an alternative with three main

advantages: there is no need to generate an intermediate

instance model of the pivot, but the template gets

adapted to the new meta-model, being more efficient in

terms of performance and memory footprint,

traceability between the source and target models of the

transformation is automatic because there is no

intermediate step, and there is support to bind meta-

models and concepts, which is normally simpler than

using a full-fledged transformation language.

Proposed system:-Once a component is created, tested

and deployed, its evolution is similar to the case of

regular transformations. However the components with

a large degree of variability may profit from

modularization techniques like the ones proposed in a

related technique applicable to MDE and ATL is

proposed in and product lines techniques applied to

model transformations. our components include a

version number to allow several versions of the same

component to coexist. We have framed this component

model into the four dimensions of reuse proposed by

Krueger abstraction, specialization, selection and

integration. We use them to present the details of our

model in the rest of the paper but first we briefly

introduce them with respect to the metamodel presented

above.

Disadvantage:-reusable transformations are defined

over concepts making them simpler to define;

transformations can be adapted to specific

metamodelsthroughbindings,promotingtheirreutilization

in a black-box manner; bindings induce a

transformation adaptation, which results in an efficient

reutilization approach; (iv) transformations are

encapsulated in generic components, which promotes

compos ability of transformations; and

Components expose features, helping in the definition

of transformation variants.

SYSTEM SPECIFICATION:

Hardware Requirements:-

• System : Pentium IV 2.4 GHz.

• Hard Disk : 40 GB.

• Floppy Drive : 1.44 Mb.

• Monitor : 15 VGA Colour.

• Mouse : Logitech.

• RAM : 256 Mb.

Software Requirements:

• Operating system : Windows 7.

• Front End : Dot net

• Database : SQL SERVER2008

• Tools : Visual Studio 2010

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3558

SYSTEM TESTING:-

The purpose of testing is to discover errors. Testing is

the process of trying to discover every conceivable fault

or weakness in a work product. It provides a way to

check the functionality of components, sub assemblies,

assemblies and/or a finished product It is the process of

exercising software with the intent of ensuring that the

Software system meets its requirements and user

expectations and does not fail in an unacceptable

manner. There are various types of test. Each test type

addresses a specific testing requirement.
Types of tests:-

Unit testing: - Unit testing involves the design of test

cases that validate that the internal program logic is

functioning properly, and that program inputs produce

valid outputs. All decision branches and internal code

flow should be validated. It is the testing of individual

software units of the application .it is done after the

completion of an individual unit before integration.

This is a structural testing, that relies on knowledge of

its construction and is invasive. Unit tests perform basic

tests at component level and test a specific business

process, application, and/or system configuration. Unit

tests ensure that each unique path of a business process

performs accurately to the documented specifications

and contains clearly defined inputs and expected

results.

Integration testing: - Integration tests are designed to

test integrated software components to determine if they

actually run as one program. Testing is event driven

and is more concerned with the basic outcome of

screens or fields. Integration tests demonstrate that

although the components were individually satisfaction,

as shown by successfully unit testing, the combination

of components is correct and consistent. Integration

testing is specifically aimed at exposing the problems

that arise from the combination of components.

Functionaltest:-Functionaltests provide systematic

demonstrations that functions tested are available as

specified by the business and technical requirements,

system documentation, and user manuals. Functional

testing is centered on the following items:

System Test: - System testing ensures that the entire

integrated software system meets requirements. It tests

a configuration to ensure known and predictable results.

An example of system testing is the configuration

oriented system integration test. System testing is based

on process descriptions and flows, emphasizing pre-

driven process links and integration points.

White Box Testing:-White Box Testing is a testing in

which in which the software tester has knowledge of the

inner workings, structure and language of the software,

or at least its purpose. It is purpose. It is used to test

areas that cannot be reached from a black box level.

Black Box Testing:-Black Box Testing is testing the

software without any knowledge of the inner workings,

structure or language of the module being tested. Black

box tests, as most other kinds of tests, must be written

from a definitive source document, such as

specification or requirements document, such as

specification or requirements document. It is a testing in

which the software under test is treated, as a black box

.you cannot “see” into it. The test provides inputs and

responds to outputs without considering how the

software works.

SYSTEM STUDY

Feasibility study:-The feasibility of the project is

analyzed in this phase and business proposal is put forth

with a very general plan for the project and some cost

estimates. During system analysis the feasibility study

of the proposed system is to be carried out. This is to

ensure that the proposed system is not a burden to the

company. For feasibility analysis, some understanding

of the major requirements for the system is essential

Three key considerations involved in the feasibility

analysis are

 ECONOMICAL FEASIBILITY

 TECHNICAL FEASIBILITY

 SOCIAL FEASIBILITY

Economical feasibility:-This study is carried out to

check the economic impact that the system will have on

the organization. The amount of fund that the company

can pour into the research and development of the

system is limited. The expenditures must be justified.

Thus the developed system as well within the budget

and this was achieved because most of the technologies

used are freely available. Only the customized products

had to be purchased.

Technical feasibility: - This study is carried out to

check the technical feasibility, that is, the technical

requirements of the system. Any system developed

must not have a high demand on the available technical

resources. This will lead to high demands on the

available technical resources. This will lead to high

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3559

demands being placed on the client. The developed

system must have a modest requirement, as only

minimal or null changes are required for implementing

this system.

SOCIAL FEASIBILITY:-The aspect of study is to

check the level of acceptance of the system by the user.

This includes the process of training the user to use the

system efficiently. The user must not feel threatened by

the system, instead must accept it as a necessity. The

level of acceptance by the users solely depends on the

methods that are employed to educate the user about the

system and to make him familiar with it. His level of

confidence must be raised so that he is also able to

make some constructive criticism, which is welcomed,

as he is the final user of the system.

MODULE DESCRIPTION:

Modeldrivenengineering:Theaimoftransformations is

automating model manipulation when possible, while

reducing the number of errors in this manipulation. This

technology is key in model-driven engineering (MDE)

where it is used to implement model refactoring, model

refinements, model synchronization mechanisms, and

translators of models into other formalisms for analysis,

among other tasks. The increasing adoption of MDE is

leading to the construction of model transformations of

raising complexity. However, building new

transformations from scratch is costly, error prone, and

requires specialized skills. Hence, transformation

developers would benefit from mechanisms enabling

the construction of new transformations by reusing

proven, existing ones, adapted to the particular problem

to be solved.

Model transformation:-we improve our binding DSL

to consider more complex adaptations, and propose a

component model for model transformations based on

the notion of generic transformation. The model

supports both simple and composite components, which

are treated in a unified way by using concepts as their

interfaces. Simple components encapsulate a

transformation template and expose one or more

concepts specifying the requirements that meta-models

need to fulfil to apply the component. Components may

also expose features which can be used to configure the

behaviour of the transformation template, or to select

between different executions paths in a composite

component.

Component-based development:-We would also like

to capitalize on existing meta-model evolution and

differencing techniques, to semi-automatically derive a

first version of the binding. We believe these techniques

would help in transferring the approach into practice,

for which initiatives for open component repositories

(similar to the ATL zoo) are also necessary. Finally, it

would be interesting to empirically evaluate how well

developers are able to specify concepts and how well

the text-based documentation, contracts, and tagged

components allow other developers to identify reusable

transformations.

UML DIGRAMS:

Use Case Diagram:-

Sequence Diagram:-

Collaboration Diagram:-

user

database server

register or login

upload data

process conformance

programmer productivity

reusability

respons to results

useruser register or loginregister or login upload dataupload data programmer

productivity

programmer

productivity

Test-driven

developmentn

Test-driven

developmentn

respons to

results

respons to

results

database serverdatabase server

software development practice

conducted several studies

quasi-experiment analyzes

test-last development techniques

software engineering process

software construction

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3560

SOFTWARE ENVIRONMENT:

Features OF. Net:- Microsoft .NET is a set of

Microsoft software technologies for rapidly building

and integrating XML Web services, Microsoft

Windows-based applications, and Web solutions. The

.NET Framework is a language-neutral platform for

writing programs that can easily and securely

interoperate. There’s no language barrier with .NET:

there are numerous languages available to the developer

including Managed C++, C#, Visual Basic and Java

Script. The .NET framework provides the foundation

for components to interact seamlessly, whether locally

or remotely on different platforms. It standardizes

common data types and communications protocols so

that components created in different languages can

easily interoperate. “.NET” is also the collective name

given to various software components built upon the

.NET platform. These will be both products (Visual

Studio.NET and Windows.NET Server, for instance)

and services (like Passport, .NET My Services, and so

on).

The .net framework:-The .NET Framework has two

main parts:

1. The Common Language Runtime (CLR).

2. A hierarchical set of class libraries.

The CLR is described as the “execution engine” of

.NET. It provides the environment within which

programs run.

 ASP.NET

 XML WEB

SERVICES

Windows Forms

 Base Class Libraries

 Common Language Runtime

 Operating System

.Net Framework

Languages supported by .net:- The multi-language

capability of the .NET Framework and Visual Studio

.NET enables developers to use their existing

programming skills to build all types of applications

and XML Web services. The .NET framework supports

new versions of Microsoft’s old favourites Visual Basic

and C++ (as VB.NET and Managed C++), but there are

also a number of new additions to the family. Visual

Basic .NET has been updated to include many new and

improved language features that make it a powerful

object-oriented programming language. These features

include inheritance, interfaces, and overloading, among

others. Visual Basic also now supports structured

exception handling, custom attributes and also supports

multi-threading. Visual Basic .NET is also CLS

compliant, which means that any CLS-compliant

language can use the classes, objects, and components

you create in Visual Basic .NET. Managed Extensions

for C++ and attributed programming are just some of

the enhancements made to the C++ language. Managed

Extensions simplify the task of migrating existing C++

applications to the new .NET Framework’s# is

Microsoft’s new language. It’s a C-style language that

is essentially “C++ for Rapid Application

Development”. Unlike other languages, its specification

is just the grammar of the language. It has no standard

library of its own, and instead has been designed with

the intention of using the .NET libraries as its own.

Microsoft Visual J# .NET provides the easiest transition

for Java-language developers into the world of XML

Web Services and dramatically improves the

interoperability of Java-language programs with

existing software written in a variety of other

programming languages. Active State has created

Visual Perl and Visual Python, which enable .NET-

aware applications to be built in either Perl or Python.

Both products can be integrated into the Visual Studio

.NET environment. Visual Perl includes support for

Active State’s Perl Dev Kit.

Other languages for which .NET compilers are

available include

user

register

or login

upload

data

programmer

productivity

Test-driven

developmentn

respons to

results

database

server

1: software development practice

2: conducted several studies

3: quasi-experiment analyzes

4: test-last development techniques

5: software engineering process

6: software construction

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3561

 FORTRAN

 COBOL

 EIFFEL

Features of SQL-SERVERT:-he OLAP Services

feature available in SQL Server version 7.0 is now

called SQL Server 2000 Analysis Services. The term

OLAP Services has been replaced with the term

Analysis Services. Analysis Services also includes a

new data mining component. The Repository

component available in SQL Server version 7.0 is now

called Microsoft SQL Server 2000 Meta Data Services.

References to the component now use the term Meta

Data Services. The term repository is used only in

reference to the repository engine within Meta Data

Services-SERVER database consist of six type of

objects, they are,

 1. TABLE

 2. QUERY

 3. FORM

 4. REPORT

 5. MACRO

CONCLUSION

We have presented a novel reutilization approach for

model transformations based on the definition of

generic transformation templates over concepts, which

can be bound to different meta-models. Transformation

templates are encapsulated into components, which can

be configured through features, and composed to form

composite components. We have developed a tool that

supports our approach. Moreover, we have evaluated

our proposal with respect to flexibility of reuse and

concept abstraction power using several realistic

scenarios.

REFERENCES:

[1] M. Brambilla, J. Cabot, and M. Wilmer, Model-

Driven SoftwareEngineering in Practice, series

Synthesis Lectures on Software Engineering. an Rafael,

CA, USA: Morgan & Claypool Publishers,2012.

[2] A. Kusel, J. Sch€onb€ock, M. Wilmer, G. Keppel,

W. Retschitzegger, and W. Schwinger, “Reuse in

model-to-model transformation languages: Are we there

yet?” Soft. Syst. Model., vol. 13, 2013.

[3] K.-K. Lau and Z. Wang, “Software component

models,” IEEETrans. Soft. Eng., vol. 33, no. 10, pp.

709–724, Oct. 2007.

[4] K. Saks. (2009). JSR 318: Enterprise java beans,

version 3.1[Online]. Available:

http://download.oracle.com/otndocs/jcp/ejb-3.1-mrel-

evalu-oth-JSpec/

[5] R. van Immersing, F. van deer Linden, J. Kramer,

and J. Magee, “The Koala component model for

consumer electronics software,” Computer, vol. 33, no.

3, pp. 78–85, Mar. 2000.

[6] J. Sanchez Cuadrado, E. Guerra, and J. de Lara,

“Generic model transformations: Write once, reuse

everywhere,” in Proc. 4th Int. Conf.Theory Practice

Model Transformations, 2011, pp. 62–77.

[7] J. Sanchez Cuadrado, E. Guerra, and J. de Lara,

“Flexible modelto-model transformation templates: An

application to ATL,” JOT,vol. 11, no. 2, pp. 4:1–28,

2012.

[8] J. de Lara and E. Guerra, “From types to type

requirements: Genericity for model-driven

engineering,” Soft. Syst. Model.,vol. 12, no. 3, pp. 453–

474, 2013.

[9] D. Gregory, J. Java, J. G. Sick, B. Stroustrup, G. D.

Reis, and A.Lumsdaine, “Concepts: Linguistic support

for generic programming in C++,” in Proc. 21st Innu.

ACM SIGPLAN Conf. Object-Oriented Program. Syst.,

Languages, Appl., 2006, pp. 291–310.

[10] A. Stepanov and P. McJones, Elements of

Programming. Reading, A, USA: Addison Wesley,

2009.

[11] R. Chenouard and F. Rouault, “Automatically

discovering hidden transformation chaining

constraints,” in Proc. 12th Int. Conf. Model Driven Eng.

Languages Syst., 2009, pp. 92–106.

