

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3562

Effects of Developer Experience on Learning and Applying

Unit Test-Driven Development
K.Rizwana Khanam & P.Viswanatha Reddy

1 M.Tech Student (SED), Sir Vishveshwaraiah Institute Of Science & Technology Hyderabad

Email: rizwanakhanam.cse@gmail.com

2Sr. Assistant Professor, Department of CSE, Sir Vishveshwaraiah Institute Of Science & Technology Hyderabad

ABSTRACT:

 Unit test-driven development (UTDD) is a software

development practice where unit test cases are specified

iteratively and incrementally before production code. In the last

years, researchers have conducted several studies within

academia and industry on the effectiveness of this software

development practice. They have investigated its utility as

compared to other development techniques, focusing mainly on

code quality and productivity. This quasi-experiment analyzes

the influence of the developers’ experience level on the ability

to learn and apply UTDD. The ability to apply UTDD is

measured in terms of process conformance and development

time. From the research point of view, our goal is to evaluate

how difficult is learning UTDD by professionals without any

prior experience in this technique. From the industrial point of

view, the goal is to evaluate the possibility of using this

software development practice as an effective solution to take

into account in real projects. Our results suggest that skilled

developers are able to quickly learn the UTDD concepts and,

after practicing them for a short while, become as effective in

performing small programming tasks as compared to more

traditional test-last development techniques. Junior

programmers differ only in their ability to discover the best

design, and this translates into a performance penalty since

they need to revise their design choices more frequently than

senior programmers.

INTRODUCTION:

 TEST-DRIVEN development (TDD) is a technique

to incrementally develop software where test cases are

specified before functional code. Originally, TDD

referred to creating unit tests before production code.

However, recently, another technique applying a test-

driven development strategy at the acceptance test level

is gaining attention. In this sense, in the last years, it is

usual to distinguish between unit test-driven development

(UTDD), which targets unit tests to ensure the system is

performing correctly; and acceptance test-driven

development (ATDD), a technique focused on the

business level. Here we aim our attention at

UTDD.Despite its name, UTDD is not a testing

technique, but a programming/design practice. In the last

years, several studies and experiments have analyzed the

influence of this practice on software in terms of software

quality and productivity within academia and industry. In

literature, UTDD sometimes appears as one of the most

efficient software development techniques to write clean

and flexible code on time. Nevertheless, these studies

report conflicting results (positive, negative and neutral

about the use of UTDD) depending on several factors.

Thus, no definite conclusions can be drawn, which limits

the industrial adoption of this development practice. One

of the main problems with UTDD is the difficulty in

isolating its effects from other context variables. So, the

influence of these context variables must be analyzed in

detail to determine the real benefits and cost of adopting

UTDD. For example identified seven possible factors

limiting the industrial adoption of this development

technique. One of these factors is the programmers’

experience. Nevertheless, as far as we know, just a few

empirical studies investigate directly or indirectly the

effect of developer experience on applying UTDD. In the

context of these studies, experience (or knowledge)

usually refers to the degree of practice or theoretical

insights in UTDD, and the qualification of the

participants ranges between UTDD novices and UTDD

experts, where novices are often students. These studies,

for example, analyze the correlation between

programming experience and code quality highlight some

aspects contributing to the adoption of a TDD strategy in

an industrial project or compare the characteristics of

experts’ and novices’ UTDD development process.

Results here are conflicting again.

LITURATURE SURVEY:

mailto:rizwanakhanam.cse@gmail.com

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3563

An Initial Investigation of Test Driven Development

in Industry: - Cu wire is increasing in usage in

semiconductors due to continuous package cost

reduction. Raising bar for reliability requirements,

especially customers in automotive industry, has posted

numerous challenges for Cu wire in meeting stringent

quality requirements. This study is triggered by customer

to development Grade 0 temperature cycles (TC)

reliability with lower cost. Current package is running

with Au wire Grade 1 TC reliability. In order to have

better profit margin, internal decision was targeted on

bare Cu wire to run with Grade 0 TC reliability at the

initial stage. The focus of this paper is development of

Cu wire for QFP robust wire necking prevention in Grade

0 temperature cycling (TC) reliability. Wire necking is

one the major reliability concern in Grade 0 TC. The first

failure of Grade 0 TC is observed with massive open

failure after TC500X Grade 0 stress test. Further FA

confirmed that wire is rapture due to wire necking. At the

same time, the FA expert zooming into the each comer to

quantify & classify the failure mode. The failure is

localized at north/west of the wire bonded area this area

is where the lead frame is not symmetry in design. Other

area showed minor or no crack line no broken wire

observed. In order to meet the Grade 0 TC, the

investigation is streaming into 3 directions: First, process

driven weaknesses for bare Cu wire. Second,

comprehensive simulation was done in order to foster the

development understanding and lastly, Cu wire material

understanding. In process driven weaknesses, after series

of wire bond & moulding process provocation, only two

key indicators showed influence: vibration control during

wire bond with different clamper design & symmetry

lead frame design influence to stress distribution. Wire

bond clamper with reduced vibration on lead finger

(spring loaded design) had significantly improved the

zero hour on first bond with no micro line or surface

dislocation. Despite also improve the second bond wedge

peeling significantly. However, after TS 1000X, crack

line is observed again on pin 86 & 92 (which is the bad

corner). While in symmetry lead frame design, minor

crack line is observed after TS 1000X. However, the bad

comer effect was deleted as all location observed certain

degree of minor crack line.

A Structured Experiment of Test Driven

Development: - Utilization solar panels to generate

electricity were increased all over the world including

Indonesia. Generally, solar panels mounted on permanent

structure which the angle of sunlight direction is fixed.

This installation method will reduce the efficiency of

electrical energy generated by solar panels due the angle

of sun direction changes every time. There are needs

equipment that used to steer solar panels toward the sun,

namely solar tracking. In this study, we proposed

development a prototype of two-axis solar tracking using

five photodiodes. Overall, solar tracking system consists

of two DC motors, five photodiodes, microcontroller

system, and mechanical structure. DC motors are used to

driving toward azimuth and elevation, photodiode act as

sun-sensor functioned to measure the angle of sunlight

direction, microcontroller system functioned to process

data and give signal to DC motors. The five photodiodes

usage are intended to reduce the cost purchasing of sun-

sensor which relatively expensive on the market. Solar

tracking prototype has been tested using artificial light

with an intensity is closer to the sunlight. Experiment

result has shown that this solar tracking is able work very

well and can follow the sun movement.

SYSTEM ANALYSIS:

Existing system:- The main goal of our study, this is

an interesting result that suggests that UTDD

performance in the industrial environment could be

similar to the performance with other traditional

techniques.

Junior programmers in the same way as intermediates

and seniors were able to quickly learn and apply the

UTDD concepts but in general they had limitations

regarding the design decisions they made in each UTDD

cycle. Therefore, although they could properly use

UTDD, in general they had a worse performance due to

the time needed to modify and/or correct the existing

code.

Advantage:-The efficiency of the learning process is

measured as tradeoffs between the correct application of

the UTDD concepts and the additional time for the

development due to the learning curves with UTDD. We

analyze the evolution during the experiment of the

development process conformance to UTDD and the

effective development time and the self-training needed

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3564

to completely implement a set of requirements. In our

analysis, we first verify that the functional code produced

during the experiment satisfies the requirements and has

the expected behaviour.

Proposed system:- UTDD changes, the changes

satisfying that unit tests were written before related

pieces of the application code. We include in UTDD

changes those cases where the subject does not validate

that the test fails after a test code change (weak UTDD

change). To identify UTDD changes we apply the same

rules proposed By.Refactorings, the changes in the

structure of the code that do not alter its observable

behaviour.

Disadvantage:-We defined the study to be able to

compare from different perspectives the learning curves

with UTDD of professional developers with different

levels of experience, but all of them inexperienced in

test-first practices. The collected data include, between

others, all the changes made to the functional and test

code during the learning process and the time stamp and

the result of each unit test invocation. These data allow

us to analyze the effort required for adapting the

programmer’s mindset to UTDD.

SYSTEM SPECIFICATION:

Hardware Requirements:-

• System : Pentium IV 2.4 GHz.

• Hard Disk : 40 GB.

• Floppy Drive : 1.44 Mb.

• Monitor : 15 VGA Colour.

• Mouse : Logitech.

• RAM : 256 Mb.

Software Requirements:-

• Operating system : Windows 7.

• Front End : Dot net

• Database : SQL SERVER 2008

• Tools : Visual Studio 2010

 SYSTEM STUDY:

Feasibility study:- The feasibility of the project is

analyzed in this phase and business proposal is put forth

with a very general plan for the project and some cost

estimates. During system analysis the feasibility study of

the proposed system is to be carried out. This is to ensure

that the proposed system is not a burden to the company.

For feasibility analysis, some understanding of the major

requirements for the system is essential

Three key considerations involved in the feasibility

analysis are

 Economical feasibility

 Technical feasibility

 Social feasibility

Economical feasibility:-This study is carried out to

check the economic impact that the system will have on

the organization. The amount of fund that the company

can pour into the research and development of the system

is limited. The expenditures must be justified. Thus the

developed system as well within the budget and this was

achieved because most of the technologies used are freely

available. Only the customized products had to be

purchased.

Technical feasibility:-This study is carried out to check

the technical feasibility, that is, the technical

requirements of the system. Any system developed must

not have a high demand on the available technical

resources. This will lead to high demands on the

available technical resources. This will lead to high

demands being placed on the client. The developed

system must have a modest requirement, as only minimal

or null changes are required for implementing this

system.

Social feasibility:-The aspect of study is to check the

level of acceptance of the system by the user. This

includes the process of training the user to use the system

efficiently. The user must not feel threatened by the

system, instead must accept it as a necessity. The level of

acceptance by the users solely depends on the methods

that are employed to educate the user about the system

and to make him familiar with it. His level of confidence

must be raised so that he is also able to make some

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3565

constructive criticism, which is welcomed, as he is the

final user of the system.

SYSTEM TESTING:

 The purpose of testing is to discover errors. Testing is

the process of trying to discover every conceivable fault

or weakness in a work product. It provides a way to

check the functionality of components, sub assemblies,

assemblies and/or a finished product It is the process of

exercising software with the intent of ensuring that the

Software system meets its requirements and user

expectations and does not fail in an unacceptable manner.

There are various types of test. Each test type addresses a

specific testing requirement.
Types of tests:-

Unit testing:-Unit testing involves the design of test

cases that validate that the internal program logic is

functioning properly, and that program inputs produce

valid outputs. All decision branches and internal code

flow should be validated. It is the testing of individual

software units of the application .it is done after the

completion of an individual unit before integration. This

is a structural testing, that relies on knowledge of its

construction and is invasive. Unit tests perform basic

tests at component level and test a specific business

process, application, and/or system configuration. Unit

tests ensure that each unique path of a business process

performs accurately to the documented specifications and

contains clearly defined inputs and expected results.

Integration testing: - Integration tests are designed to

test integrated software components to determine if they

actually run as one program. Testing is event driven and

is more concerned with the basic outcome of screens or

fields.

Functional test:- Functional tests provide systematic

demonstrations that functions tested are available as

specified by the business and technical requirements,

system documentation, and user manuals. Functional

testing is centered on the following items:

Organization and preparation of functional tests is

focused on requirements, key functions, or special test

cases. In addition, systematic coverage pertaining to

identify Business process flows; data fields, predefined

processes, and successive processes must be considered

for testing. Before functional testing is complete,

additional tests are identified and the effective value of

current tests is determined.

System Test: - System testing ensures that the entire

integrated software system meets requirements. It tests a

configuration to ensure known and predictable results.

An example of system testing is the configuration

oriented system integration test. System testing is based

on process descriptions and flows, emphasizing pre-

driven process links and integration points.

White Box Testing:-White Box Testing is a testing in

which in which the software tester has knowledge of the

inner workings, structure and language of the software, or

at least its purpose. It is purpose. It is used to test areas

that cannot be reached from a black box level.

Black Box Testing: - Black Box Testing is testing the

software without any knowledge of the inner workings,

structure or language of the module being tested. Black

box tests, as most other kinds of tests, must be written

from a definitive source document, such as specification

or requirements document, such as specification or

requirements document. It is a testing in which the

software under test is treated, as a black box .you cannot

“see” into it. The test provides inputs and responds to

outputs without considering how the software works.

UML DIGRAMS:

Use Case Diagram:-

Sequence Diagram:-

user

database server

register or login

upload data

process conformance

programmer productivity

reusability

respons to results

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3566

Collaboration Diagram:-

SOFTWARE ENVIRONMENT:

Features OF. Net:- Microsoft .NET is a set of Microsoft

software technologies for rapidly building and integrating

XML Web services, Microsoft Windows-based

applications, and Web solutions. The .NET Framework is

a language-neutral platform for writing programs that can

easily and securely interoperate. There’s no language

barrier with .NET: there are numerous languages

available to the developer including Managed C++, C#,

Visual Basic and Java Script. The .NET framework

provides the foundation for components to interact

seamlessly, whether locally or remotely on different

platforms. It standardizes common data types and

communications protocols so that components created in

different languages can easily interoperate. “.NET” is

also the collective name given to various software

components built upon the .NET platform. These will be

both products (Visual Studio.NET and Windows.NET

Server, for instance) and services (like Passport, .NET

My Services, and so on).

The .net framework:-The .NET Framework has two

main parts:

1. The Common Language Runtime (CLR).

2. A hierarchical set of class libraries.

The CLR is described as the “execution engine” of .NET.

It provides the environment within which programs run.

 ASP.NET

 XML WEB

SERVICES

Windows Forms

 Base Class Libraries

 Common Language Runtime

 Operating System

.Net Framework

Languages supported by .net:- The multi-language

capability of the .NET Framework and Visual Studio

.NET enables developers to use their existing

programming skills to build all types of applications and

XML Web services. The .NET framework supports new

versions of Microsoft’s old favourites Visual Basic and

C++ (as VB.NET and Managed C++), but there are also a

number of new additions to the family. Visual Basic

.NET has been updated to include many new and

improved language features that make it a powerful

object-oriented programming language. These features

include inheritance, interfaces, and overloading, among

others. Visual Basic also now supports structured

exception handling, custom attributes and also supports

multi-threading. Visual Basic .NET is also CLS

compliant, which means that any CLS-compliant

language can use the classes, objects, and components

you create in Visual Basic .NET. Managed Extensions

for C++ and attributed programming are just some of the

enhancements made to the C++ language. Managed

Extensions simplify the task of migrating existing C++

applications to the new .NET Framework’s# is

Microsoft’s new language. It’s a C-style language that is

essentially “C++ for Rapid Application Development”.

Unlike other languages, its specification is just the

grammar of the language. It has no standard library of its

own, and instead has been designed with the intention of

using the .NET libraries as its own. Microsoft Visual J#

useruser register or loginregister or login upload dataupload data programmer

productivity

programmer

productivity

Test-driven

developmentn

Test-driven

developmentn

respons to

results

respons to

results

database serverdatabase server

software development practice

conducted several studies

quasi-experiment analyzes

test-last development techniques

software engineering process

software construction

user

register

or login

upload

data

programmer

productivity

Test-driven

developmentn

respons to

results

database

server

1: software development practice

2: conducted several studies

3: quasi-experiment analyzes

4: test-last development techniques

5: software engineering process

6: software construction

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3567

.NET provides the easiest transition for Java-language

developers into the world of XML Web Services and

dramatically improves the interoperability of Java-

language programs with existing software written in a

variety of other programming languages. Active State has

created Visual Perl and Visual Python, which enable

.NET-aware applications to be built in either Perl or

Python. Both products can be integrated into the Visual

Studio .NET environment. Visual Perl includes support

for Active State’s Perl Dev Kit.

Other languages for which .NET compilers are available

include

 FORTRAN

 COBOL

 EIFFEL

Features of SQL-SERVERT:-he OLAP Services

feature available in SQL Server version 7.0 is now called

SQL Server 2000 Analysis Services. The term OLAP

Services has been replaced with the term Analysis

Services. Analysis Services also includes a new data

mining component. The Repository component available

in SQL Server version 7.0 is now called Microsoft SQL

Server 2000 Meta Data Services. References to the

component now use the term Meta Data Services. The

term repository is used only in reference to the repository

engine within Meta Data Services-SERVER database

consist of six type of objects, they are,

 1. TABLE

 2. QUERY

 3. FORM

 4. REPORT

 5. MACRO

MODULE DESCRIPTION:

Test-driven development:-The study were industrial

developers with computing degrees and several years of

experience using traditional methodologies based on test-

last development strategies. However, since our main

goal was to compare their learning curves with UTDD,

not having a previous experience with test-driven

development strategies was mandatory. The subjects

belonged to three different companies and voluntarily

participated in the study because of a personal invitation.

In an experiment with students classified the difficulties

the subjects find with the adoption of UTDD in three

categories: UTDD approach difficulties, designing of test

problems and technical difficulties.

Software engineering process:-The ratios of changes

tended to stabilize in a nearly constant value as the study

progressed. the ratio of UTDD changes grew; while the

ratio of other changes dropped. This result confirms that

self-training during the development of the initial sets of

requirements translated into a better knowledge in

UTDD. In average, the number of UTDD changes was

larger and similar for intermediate and senior

programmers than for junior developers. The ratio of

refactoring for seniors was nearly constant during the

whole experiment; but, at the end, juniors made more

refactoring.

Software construction:-We evaluate the subjects’

efficiency during the learning process in order to

investigate if the learning curves generated additional

time for the development. Performance is analyzed based

on the effective time taken to develop a group of three

requirements. The possible performance penalties may be

a consequence of self-training and/or of the developer’s

learning curve with UTDD. To quantitatively assess the

real effort required by the subjects to properly use this

development technique, we compare their performance

with UTDD and a non-UTDD development strategy.

Processconformance:Developmentprocessconformance,

programmingefficiency mainly depended on the

programmer’s experience level. Both intermediate and

senior programmers were able to efficiently use UTDD

with a similar performance to more traditional test-last

techniques with just a little practice. In these cases, the

use of UTDD had a minimal impact on productivity.

Although this is not the main goal of our study, this is an

interesting result that suggests that UTDD performance

in the industrial environment could be similar to the

performance with other traditional techniques.

CONCLUSION:

 The principal conclusion drawn from our study is that

skilled developers with the appropriate knowledge and

without any prior experience in test-first development

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3568

can quickly learn the UTDD rules and, after practicing

them for a short while, properly apply them in small

programming tasks. Interestingly, there even existed

some subjects whose development process conformed to

UTDD from the beginning of the experiment. In other

words, they did not need training or learning period to

apply UTDD in the right way. Furthermore, it also seems

that the research subjects were able to retain the UTDD

knowledge and even use it in their companies within the

industrial environment.

REFERENCES

[1] K. Beck, Test Driven Development: By Example.

Addison-Wesley Professional, 2003.

[2] D. Astels, Test Driven Development: A Practical

Guide. Prentice Hall Professional Technical Reference,

2003.

[3] H. Erdogmus, G. Melnik, and R. Jeffries, “Test-

Driven Development,”Encyclopedia of Software

Engineering, pp. 1211-1229,Taylor & Francis,

http://www.informatik.unitrier.de/~%20ley/db/reference/

se/se2010.html, 2010.

[4] L. Koskela, Test Driven: Practical Tdd and

Acceptance Tdd for Java Developers. Manning

Publications Co., 2007.

[5] E. Hendrickson’s, “Acceptance Test Driven

Development (Atdd):An Overview,” Proc. Seventh

SoftwareTestingAustralia/NewZealand(STANZ).Welling

ton, 2008.

[6] K. Beck, “Aim, Fire,” IEEE Software, vol. 18, no. 5,

pp. 87-89, Sept./Oct. 2001.

[7] D. Janzen and H. Saiedian, “Test-Driven

Development: Concepts, Taxonomy, and Future

Direction,” Computer, vol. 38, no. 9, pp. 43-

50, Sept. 2005.

[8] D. Janzen and H. Saiedian, “Does Test-Driven

Development Really Improve Software Design Quality?”

IEEE Software, vol. 25,no. 2, pp. 77-84, Mar./Apr. 2008.

[9] E.M. Maxim lien and L.A. Williams, “Assessing

Test-Driven Development at IBM,” Proc. 25th Int’l Conf.

Software Eng. (ICSE),pp. 564-569, 2003.

[10] H. Erdogmus, M. Morisio, and M. Torchiano, “On

the Effectiveness of the Test-First Approach to

Programming,” IEEE Trans.Software Eng., vol. 31, no. 3,

pp. 226-237, Mar. 2005.

[11] T. Bhat and N. Nagappan, “Evaluating the Efficacy

of Test-Driven Development: Industrial Case Studies,”

Proc. ACM/IEEE Int’l Symp. Empirical Software Eng.

(ISESE ’06), pp. 356-

363, 2006.

[12] N. Nagappan, E.M. Maxim lien, T. Bhat, and L.

Williams, “Realizing Quality Improvement through Test

Driven Development:

Results and Experiences of Four Industrial Teams,”

Empirical Software Eng., vol. 13, no. 3, pp. 289-302,

June. 2008.

[13] B. George and L. Williams, “An Initial Investigation

of Test Driven Development in Industry,” Proc. ACM

Symp. Applied Computing

(SAC ’03), pp. 1135-1139, 2003.

[14] B. George and L. Williams, “A Structured

Experiment of Test-Driven Development,” Information

and Software Technology, vol. 46,

No. 5, pp. 337-342, 2004.

[15] L. Crispin, “Driving Software Quality: How Test-

Driven Development Impacts Software Quality,” IEEE

Software, vol. 23, no. 6,pp. 70-71, Nov./Dec. 2006.

[16] R. Jeffries and G. Melnik, “Guest Editors’

Introduction: Tdd–theArt of Fearless Programming,”

IEEE Software, vol. 24, no. 3,pp. 24-30, May 2007.

[17] A. Causerie, D. Sundmark, and S. Punnekkat,

“Factors Limiting Industrial Adoption of Test Driven

Development: A Systematic Review,” Proc. IEEE Fourth

Int’l Conf. Software Testing, Verification

And Validation (ICST), pp. 337-346, 2011.

[18] M. M€uller and F. Padberg, “An Empirical Study

About the Feelgood

Factor in Pair Programming,” Proc. 10th Int’l Symp.

SoftwareMetrics, pp. 151-158, 2004.

[19] R. Latorre, “A Successful Application of a Test-

Driven Development Strategy in the Industrial

Environment,” Empirical Software.

