

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3827

Low Power Test Pattern Generator using LFSR for Speed up

the ATP Process
D.Rekha

& B.Siva Kumar

1. D.Rekha, M.Tech Student, Dept of Ece, Ellenki Institute of Engineering & Technology, Patelguda,

Patancheru, Sangareddy (Dist),TS, India.

2. B.Siva Kumar, Assistant Professor, Dept of Ece, Ellenki Institute of Engineering & Technology,

Patelguda, Patancheru, Sangareddy (Dist),TS, India.

Abstract: A new test generation methodology is proposed

that takes advantage of shared memory multi-core systems.

Appropriate parallelization of the main steps of ATPG

allocates resources in order to minimize workload

duplication and multithreading race contention, often

encountered in parallel implementations. The proposed

approach ensures that the obtained acceleration grows

linearly with the number of processing cores and, at the

same time, keeps the test set size close to that obtained by

serial ATPG. The experimental results demonstrate that

the proposed methodology achieves higher degree of

speed-up than comparable state-of-the-art multi-core

based tools, while maintains similar test set sizes.

I.INTRODUCTION

Technology shrinking in the integrated circuit

manufacturing process allowed the implementation of

multiple processing units (cores) on a single chip as well as

large amounts of on chip memory. These developments

offer extensive processing power that can be used in

various computationally intensive problems including

popular electronic design automation processes. However,

the distributed fashion of this processing power guides

towards the development of parallel methodologies that

scale well as the number of cores per chip are expected to

increase beyond two dozens to hundreds. Automatic

Test Pattern Generation (ATPG), a well-known NP-hard

problem, becomes more demanding as devices

under test are becoming larger and more complicated and

as emerging defects require new fault models of higher

complexity. While previously proposed procedures are

very effective, see the recent works in[1]-[3], among many

others, they are inherently non-parallel and thus, cannot

rely on automatic parallelization using sophisticated

compilers. Proper problem decomposition, workload

distribution and final test set recomposition are essential to

guarantee the quality of the results while maintaining fault

coverage. Since, typically, each core does not consider the

entire search space, parallel approaches tend to choose

local optimal solutions resulting in test set increase[4],

known as the test inflation problem. Parallel ATPG has

been studied before the on-chip multicore era, by either

applying bit level parallelism or distributing ATPG

components among multiple processing units, not

physically on the same chip [4,5]. These approaches were

designed to avoid/minimize communication overhead and

were constrained by the machine’s word size. In current on

chip multi-core architectures with shared memory, on-chip

communication is much faster, significantly reducing the

cost of inter-core communication. Furthermore, high level

of memory coherency is guaranteed and the number of

available cores keeps increasing. These new developments

and trends motivate towards the investigation of parallel

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3828

ATPG approaches capable of achieving speed-up

scalability as the number of on-chip cores increases, while

overcoming new challenges such as shared memory

contention, as well as efficient workload distribution

parallel threads. Recent works on ATPG parallelization for

on-chip multicore environments exploit a variety and, often

mixture, of parallelism dimensions such as fault

parallelism, structural (circuit) parallelism, and algorithmic

(including search-space) parallelism. Moreover, the goal of

utilizing parallelism often varies. For example, [6] exploits

algorithmic parallelism via SAT solver parallelism for

maximizing fault coverage with limited speed-up with

respect to the corresponding serial process. Similarly, [7]

applies bit-level parallelism to generate multiple test

patterns concurrently that meet different quality metrics to

achieve higher physical-aware n-detect coverage. Static

fault parallelism is explicitly considered in [8] using a

master-slave architecture to reduce inter-process

communication which achieves sub-linear speedup up to 8

cores but suffers from increased test set sizes (test

inflation).

Parallelization speed-up rates and test set inflation are

investigated in the recent work of [9] which also considers

a shared memory architecture model. Shared memory is

utilized as an extremely low latency communication mean

with high capacity to leverage synchronization and

communication of the process. The work in [10] proposes a

low communication circular pipeline parallel ATPG

procedure which emulates the deterministic execution of a

serial ATPG in order to be able to reproduce the same test

set every time the parallel algorithm is executed. This leads

to limitations in speedup scalability. The series of works in

[11]-[13] target both parallelization speedup and test

inflation minimization strategies, incorporated in state-of

the art commercial tools. In particular, [11] achieves high

speed-up by applying dynamic fault partitioning and depth-

first-search based compaction in a shared memory

architecture. [12] extends [11] to be used in distributed

multicore hybrid architectures, while [13] incorporates a

copy-on write technique for private data protection in order

to reduce memory locking when the same part of the

memory is used currently by more than one cores.

Similarly to the above approaches, the work proposed here

is targeted towards achieving high degree of speed-up, as

the number of available cores increases, and at the same

time limiting test set inflation. Some parallel approaches

have also been proposed targeting Graphic Processing

Units (GPUs) based architectures. In contrast to the fault

simulation problem where the GPU model can be very

effective due to its concurrent nature which can directly

adopt the single instruction multiple data (SIMD) approach

of GPUs [14,15], GPU-based ATPG has received limited

attention [16,17]. This is mainly attributed to the

architecture’s memory limitation which leads to

unacceptable test set size increase. In this work we propose

a parallel ATPG methodology for shared-memory systems

geared towards high speed-up and test inflation

containment. The methodology takes advantage of fast and

low cost shared memory communication inherent in the

underlying architecture in order to coordinate the main

steps of the ATPG to avoid redundant work and

dynamically allocate the workload while minimizing

memory contention caused by multiple cores (threads)

when accessing shared data. A test generation flow is

proposed in which hard-to-detect

faults are targeted first, followed by a parallel fault

simulation based merging process to maximize fault

coverage. This process employs a series of newly proposed

parallelization heuristics to explicitly avoid simultaneous

consideration of the same faults by two or more cores, in

order to minimize extra work and thread idle time. Any

remaining undetected faults

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3829

are targeted during a following phase, in a similar manner.

The obtained experimental results demonstrate the

effectiveness of the proposed approach in speeding-up the

ATPG process

and provide comparisons with relevant recent work.

The rest of the paper is organized as follows. Section II

presents a high level description of the proposed parallel

ATPG while Section III focuses on particular parallel

optimizations used to reduce the test inflation problem and

favor speedup. Section IV presents and discusses the

experimental results and Section V concludes the paper.

II. PROPOSED HIGH-LEVEL ATPG

A common parallelization procedure consists of three

steps: (i) decomposition (domain or functional), (ii)

parallel execution, and (iii) final result assembly. Step (ii)

can result in significant compromise of the quality of the

obtained results and, at the same time, not offer the

expected speed-up. An efficient parallel algorithm should

effectively overcome challenges such as memory

contention and imbalanced workload distribution. The

proposed ATPG method appropriately designs all three

steps to ensure that these challenges are treated efficiently.

Specifically, two conceptual approaches are adopted: (i)

problem partitioning to avoid executing the same work

concurrently in different cores and (ii) fine-grained

granularity of each step to provide dynamic distribution of

work. Various parallel optimization heuristics based on

these concepts are discussed in Section III; this section

presents the test generation flow of the proposed

methodology which is based on the rationale of these two

concepts. The proposed

Fig: High level flow of the main Test Generation (TG)

processes

single fault ATPG process, provides the desired granularity

that allows mutually exclusive is attribution of work in the

different cores. Such distribution benefits the exploration

of different parallelization directions, including dynamic

partitioning and adaptive decision making for test merging.

However,

an approach with high granularity may perform large

amount of unnecessary work when not taking advantage of

fault dropping. Fault dropping plays a critical role in test

generation anyway, as it can significantly affect test set

size. In parallel test generation, inefficient dropping of

faults can also restrict speed-up, regardless from the fact

that the main process for identifying faults to be dropped

(fault simulation) can be implemented very efficiently in

parallel environments [14,15]. A fair trade-off between

high granularity and fault dropping consideration is to

develop a methodology based on distinct test epochs, one

targeting hard-to-detect faults and a following one

targeting the remaining undetected faults. Fig.1 presents

the high level description of the proposed methodology.

Firstly, the circuit netlist is analyzed to obtain a collapsed

fault list F for the underlying fault model M.

Consequently, the fault list is sorted in a depth-first-search

(DFS) order (based on their location in the netlist) in an

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3830

attempt to implicitly group faults with structural

similarities in F. This fault locality property of the input

fault list benefits fault dropping after F is partitioned to the

available cores. The next step identifies hard-to-detect

faults to be targeted by the first test epoch (Epoch I) of the

methodology. We use random test pattern generation,

which is a simple, quick and acceptable way to classify

faults; however, other more sophisticated methods can be

incorporated. Hard-to-detect faults are identified using a

multiple detection approach where 10% (set by

experimental exploration) of the faults in F with the fewer

detections are considered as hard and used as the input

fault list of test Epoch I (FH). Epoch I performs explicit

test generation for each fault in FH while also considering

faults in F−FH during fault simulation to identify faults

detected coincidentally (FC). A merging process to reduce

the number of tests obtained follows, and the final output is

a set of test patterns TH detecting all faults in FH ∪ FC. A

second test epoch(Epoch II), similar to the first one, is

invoked to target the remaining faults, i.e. FR = F – (FH ∪

FC) producing a set of tests TR such that T = TH ∪ TR

detects all faults in F. Detailed description of the

individual steps taken during a test epoch is

provided in Section III.A.

III.PARALLELIZATION METHODOLOGY

AND OPTIMIZATIONS

This section describes in further detail how the test

generation process is partitioned and discusses the

decisions taken to address the main parallelization

challenges presented in Section II. Section III.A describes

the major steps undertaken during a test epoch, discussing

dynamic fault partitioning and

core synchronization, while Section III.B describes a

number of optimizations proposed to overcome

parallelization issues.

A. Test-Epoch Parallelization :Fig.2 presents a flowchart

illustrating the basic steps of the parallel Test Generation

(TG) methodology followed during a test epoch, namely

seed-based TG and dynamic test merging and restricted

TG. An epoch explicitly targets on a fault-by fault basis,

only a small subset of the fault list F (FH for Epoch I and

FR for Epoch II). Note that FC = F – (FH ∪ FR) typically

constitutes the overwhelming majority of the faults which

are easily detectable in an implicit manner (i.e., via fault

simulation). The faults in a fault list are sorted based on

structural similarities of fault locations (netlist), in order to

increase the probability of proximate faults to be detected

by the same test. During the first step (seed-based TG in

Fig. 2), each available core performs test seed generation

(TG with maximal don’t care bits) for the next undetected

fault fi in the list using a PODEM-based process optimized

to identify tests with a large number of unspecified bits.

The order of the selection of the next fault(s) is not

important here, as the partitioning is designed to work in

an independent manner and produce standalone results.

The system shared memory holds the updated fault list

indicating faults not yet targeted) and, therefore,

duplication of work is avoided as each core works on a

distinct fault. For each test seed tigenerated during this step

parallel fault simulation is performed and all faults

detected (including those in F -FH) are stored in a list di.

Faults in di are not immediately dropped as this

information is used during the following step. Also, the

input necessary assignments (NA) of tiare stored, along

with di, to be exploited in the next step. This first step

terminates when all faults in FH have been targeted,

constituting a synchronization barrier in the process. TPF

contains the test seeds and DPF contains the corresponding

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3831

fault simulation results which are both kept in the shared

memory. Upon completion of the first step, the next step is

invoked (dynamic test merging & restricted TG in Fig. 2)

in order to merge compatible tests and reduce the size of

TPF. Each core selects its primary test target tifrom TPF

to be the test seed with the larger detection list di (test with

the highest number of coincidental detections) and

immediately marks it so that other cores cannot select it.

Tests are selected in an iterative manner until no further

merging is possible. A detailed description of this

selection is given in Section III.B under detection-based

test selection. This merging step is dynamic due to the

efficient communication of the merged tests through the

shared memory. Thus, in each iteration, the number of

candidate tests for merging is reduced at a fast rate. Fig.3

shows the merging process undertaken by each core while

the shared memory accommodates information about faults

detected and tests discarded. The faults detected by the

primary test ti(kept in di)

Fig: A test epoch targeting hard-to-detect faults (Epoch I).

Same steps are repeated in Epoch II, with input fault list

FR and resulting test set TR.

are immediate dropped from further consideration. Then,

pair wise compatibilities of the primary test tiwith each

remaining test tjof TPF are calculated and ranked based on

increasing Hamming distance. The test pair (ti, tj) with the

smallest Hamming distance is thereafter selected to be

merged. Upon merging, tiis updated and tjis discarded

from TPF. Also, all faults in the corresponding list djare

dropped from the shared fault list. When no further

merging is possible, restricted TG for tiis performed based

on the necessary assignments (NAs) on primary inputs

collected during the first step. NAs are used as hard

constraints for test generation, yet only for faults

corresponding to tests not already marked and having

identical NAs as ti. This iterative step terminates when no

more tests with identical NAs exist that could lead to

further test discarding.

As a final step, the remaining unspecified bits of tiare

assigned specified values and the test is fault simulated to

identify any further coincidental detection of faults. All the

tests obtained by the process of Fig.3 are appended at the

output of the corresponding test epoch, i.e., TH for Epoch I

and TR for Epoch II.

B. Parallelization Optimizations: Detection-Based

Primary Test Selection. In the merging step of Fig.3, test

selection is very important for the efficient

evolution of merging since it sets the constraints and

outcomes of consequent merging iterations, restricted TG,

and fault simulation. Practice in ATPG suggests that early

fault dropping plays a more important role than having

fewer constraints (more unspecified bits) in the test seed.

For this reason, the primary test tiduring dynamic merging

(merging seed) is selected based on its number of detected

faults in di. Recall that the fault simulation process

performed at the end of the first step of the test epoch

(Fig.2) does not drop faults;

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3832

Fig: Dynamic Test merging and Restricted TG processes

per core

instead, it is used for providing a more precise metric for

this selection during the second step. Tests to be merged

(with the primary test) are then selected based on their

Hamming distance to the primary test. The Hamming

distance based merging produces merged tests with a

smaller number of specified bits and, hence, fewer

constraints in the following

iterations of the merging process. In the (often common)

case where more than one tests have the same Hamming

distance to the primary test, their fault detection metric is

used to decide which test will be merged. This

optimization greatly assists in dynamic workload balancing

and minimization of unnecessary work since high amount

of early fault dropping reduces the faults for which explicit

test generation is needed. Test Set Private Consideration.

The search for the best candidate tests to be merged (either

the primary or the ones to follow) involves high interaction

of each core with the shared memory. Specifically,

selecting the primary test, as well as computing the pair-

wise compatibilities with the remaining tests in TPF,

inherently involves memory contention since all cores are

searching TPF. This issue is addressed by dynamically

partitioning TPF in n private subsets (n being the number

of available cores), one for each core. Each core can only

select tests from its own private subset of TPF (and the

corresponding DPF) which can be safely moved to its own

private cache. This implicitly minimizes concurrent

memory access requests from different cores that can result

in inefficient memory utilization due to memory

contention. Moreover, it implicitly minimizes duplication

of work as each core considers a distinct part in TPF.

When a core finishes with the merging process within its

private part of TPF, it is allowed to work on the entire set

in order to ensure workload balancing by avoiding idle

periods in cores. At this point, concurrent memory

accesses can occur, however, their impact is minimal as the

bulk of the merging process has already occurred during

the private consideration, and, hence, the size of TPF is by

this point significantly reduced. Test Provisional Marking.

During compatibility merging, the list Pi which holds pair-

wise compatibilities between tests, requires updating after

each merging. This updating is highly demanding in

processing resources as it is of cubic complexity in the

worst case. To avoid this issue the proposed methodology

calculates and ranks compatibilities only once for each test

ti. If a test tjis selected to be merged with ti, it is

provisionally marked in TPF so that it is not merged in

another core, explicitly avoiding imposing unnecessary

constraints in another thread that performs merging. If

compatibility between tiand a test tjin Pi is invalidated by a

previous merging, merging between tiand tjis not

completed and the provisional marking is cleared.

Otherwise, provisional marking indicates permanent

discarding of tjfrom TPF. Balanced Workload

Distribution. Distribution of workload to the available

cores can significantly impact the speed-up of a parallel

methodology. Test generation and fault simulation

processes have unpredictable execution times due to the

nature of the problems and fault dropping. Core idle time is

minimized by dynamically selecting: (i) the next fault to be

targeted in seed-based test generation in each epoch

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3833

(Fig.2), (ii) the next test to be used as primary in test

merging (Fig.2), (iii) the tests to be merged with the

primary test seed (Fig.3), and (iv) the next fault to be

targeted in restricted TG based on necessary assignments

(Fig.3). Since, data is stored in shared memory (fault list

and test seeds), and thus, is easily accessible by all cores,

provides a punctual way of determining how the workload

will be selected at each step and by each optimization

mechanism of the approach.

IV.RESULTS

V.CONCLUSION

We propose a parallel test pattern methodology for shared

memory multi-core environments. A number of newly

proposed heuristics attempt to avoid assigning the same

workload to multiple cores, while the distribution of work

in the available resources to minimize core idle time.

Experimental results demonstrate high speed-up rates that

keep increasing as the number of the available cores

increases. Test set size increase is limited and comparable

to other state-of-the-art parallel approaches.

VI.FUTURE SCOPE

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3834

For very large designs and when testing at-speed fault

models removes ATPG from the critical path for taping out

a Design.

Multicore processorsare now widely available, but require

additional tool support to maximize the compute power of

these platforms.

This support extends the runtime benefits of distributed

processing to multicore platforms, while significantly

reducing the memory consumed compared to distributed

processing.

The memory consumed by multicoreprocessingis less than

half of the total memory required compared to an

equivalent distributed processing run.

REFERENCES

[1] K. Scheibler, D. Erb and B. Becker, "Improving test

pattern generation in presence of unknown values beyond

restricted symbolic logic," in Proc. of ETS, pp. 1-6, 2015

[2] S. Eggersglub, K. Schmitz, R. Krenz-Baath and R.

Drechsler, "Optimization-based multiple target test

generation for highly compacted test sets," in Proc. of ETS,

pp. 1-6, 2014. [3] I. Pomeranz, "Generation of compact

multi-cycle diagnostic test sets," in Proc. of ETS, pp. 1-1,

2013. [4] S. Patil and P. Banerjee, “Fault partitioning

issues in an integrated parallel test generation/fault

simulation environment,” in Proc. of ITC, pp. 718–726,

1989.

[5] J. Wolf, L. Kaufman, R. Klenke, J. H. Aylor, and R.

Waxman, “An analysis of fault partitioned parallel test

generation,” IEEE Trans. on CAD, vol. 15, no. 5, pp. 517–

534, 1996.

[6] A. Czutro, I. Polian, M. Lewis, P. Engelke, S. M.

Reddy and B. Becker, "Thread-parallel integrated test

pattern generator utilizing satisfiability analysis,"

International Journal of Parallel Programming, vol. 38,

pp. 185-202, 2010.

[7] K-Y. Liao, C-Y. Chang and JC-M Li "A parallel test

pattern generation algorithm to meet multiple quality

objectives," IEEE Trans. on CAD, vol.30, no. 11, pp. 1767-

1772, 2011.

[8] K.-W. Yeh, M.-F. Wu and J.-L. Huang, “A low

communication overhead and load balanced parallel ATPG

with improved static fault partition method,” in Proc. of

Intl. Conf. on Algorithms and Architectures for Parallel

Processing, pp. 362-371, 2009.

[9] JC-Y. Ku, RH-M. Huang, LY-Z. Lin and CH-P.

Wen,"Suppressing test inflation in shared-memory parallel

Automatic Test Pattern Generation," in Proc. of ASP-DAC,

pp. 664-669, 2014.

[10] K-W. Yeh, J-L. Huang, H-J. Chao and L-T. Wang "A

circular pipeline processing based deterministic parallel

test pattern generator," in Proc. of ITC, pp. 1-8, 2013.

Author Profile’s:

Ms.D.Rekha has completed her B.Tech in ECE

Department from DVR College of Engineering

&Technology, JNTU Hyderabad. Presently she is pursuing

her Masters in VLSI System Design in, Ellenki Institute of

Engineering and Technology, Patelguda(v), near BHEL,

Hyderabad, India.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 04 Issue-17
December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3835

MrB.Siva Kumar has completed BTech (ECE) from Hi-

Tech College of Engineering& Technology from JNTUH

University and M.Tech (VLSI) from Sree Venkateshwara

Perumal College of Engineering &Technology from

JNTUA University. He is having 6 years of experience in

Academic, Currently working as Associate Prof at Ellenki

Institute of Engineering and Technology, Patelguda(v),

near BHEL, Hyderabad, India.

