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Abstract: A new test generation methodology is proposed 

that takes advantage of shared memory multi-core systems. 

Appropriate parallelization of the main steps of ATPG 

allocates resources in order to minimize workload 

duplication and multithreading race contention, often 

encountered in parallel implementations. The proposed 

approach ensures that the obtained acceleration grows 

linearly with the number of processing cores and, at the 

same time, keeps the test set size close to that obtained by 

serial ATPG. The experimental results demonstrate that 

the proposed methodology achieves higher degree of 

speed-up than comparable state-of-the-art multi-core 

based tools, while maintains similar test set sizes. 

 

I.INTRODUCTION 

Technology shrinking in the integrated circuit 

manufacturing process allowed the implementation of 

multiple processing units (cores) on a single chip as well as 

large amounts of on chip memory. These developments 

offer extensive processing power that can be used in 

various computationally intensive problems including 

popular electronic design automation processes. However, 

the distributed fashion of this processing power guides 

towards the development of parallel methodologies that 

scale well as the number of cores per chip are expected to 

increase beyond two dozens to hundreds. Automatic  

Test Pattern Generation (ATPG), a well-known NP-hard 

problem, becomes more demanding as devices  

under test are becoming larger and more complicated and 

as emerging defects require new fault models of higher 

complexity. While previously proposed procedures are 

very effective, see the recent works in[1]-[3], among many 

others, they are inherently non-parallel and thus, cannot 

rely on automatic parallelization using sophisticated 

compilers. Proper problem decomposition, workload 

distribution and final test set recomposition are essential to 

guarantee the quality of the results while maintaining fault 

coverage. Since, typically, each core does not consider the 

entire search space, parallel approaches tend to choose 

local optimal solutions resulting in test set increase[4], 

known as the test inflation problem. Parallel ATPG has 

been studied before the on-chip multicore era, by either 

applying bit level parallelism or distributing ATPG 

components among multiple processing units, not 

physically on the same chip [4,5]. These approaches were 

designed to avoid/minimize communication overhead and 

were constrained by the machine’s word size. In current on 

chip multi-core architectures with shared memory, on-chip 

communication is much faster, significantly reducing the 

cost of inter-core communication. Furthermore, high level 

of memory coherency is guaranteed and the number of 

available cores keeps increasing. These new developments 

and trends motivate towards the investigation of parallel 
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ATPG approaches capable of achieving speed-up 

scalability as the number of on-chip cores increases, while 

overcoming new challenges such as shared memory 

contention, as well as efficient workload distribution 

parallel threads. Recent works on ATPG parallelization for 

on-chip multicore environments exploit a variety and, often 

mixture, of parallelism dimensions such as fault 

parallelism, structural (circuit) parallelism, and algorithmic 

(including search-space) parallelism. Moreover, the goal of 

utilizing parallelism often varies. For example, [6] exploits 

algorithmic parallelism via SAT solver parallelism for 

maximizing fault coverage with limited speed-up with 

respect to the corresponding serial process. Similarly, [7] 

applies bit-level parallelism to generate multiple test 

patterns concurrently that meet different quality metrics to 

achieve higher physical-aware n-detect coverage. Static 

fault parallelism is explicitly considered in [8] using a 

master-slave architecture to reduce inter-process 

communication which achieves sub-linear speedup up to 8 

cores but suffers from increased test set sizes (test 

inflation). 

Parallelization speed-up rates and test set inflation are 

investigated in the recent work of [9] which also considers 

a shared memory architecture model. Shared memory is 

utilized as an extremely low latency communication mean 

with high capacity to leverage synchronization and 

communication of the process. The work in [10] proposes a 

low communication circular pipeline parallel ATPG 

procedure which emulates the deterministic execution of a 

serial ATPG in order to be able to reproduce the same test 

set every time the parallel algorithm is executed. This leads 

to limitations in speedup scalability. The series of works in 

[11]-[13] target both parallelization speedup and test 

inflation minimization strategies, incorporated in state-of 

the art commercial tools. In particular, [11] achieves high 

speed-up by applying dynamic fault partitioning and depth-

first-search based compaction in a shared memory 

architecture. [12] extends [11] to be used in distributed 

multicore hybrid architectures, while [13] incorporates a 

copy-on write technique for private data protection in order 

to reduce memory locking when the same part of the 

memory is used  currently by more than one cores. 

Similarly to the above approaches, the work proposed here 

is targeted towards achieving high degree of speed-up, as 

the number of available cores increases, and at the same 

time limiting test set inflation. Some parallel approaches 

have also been proposed targeting Graphic Processing 

Units (GPUs) based architectures. In contrast to the fault 

simulation problem where the GPU model can be very 

effective due to its concurrent nature which can directly 

adopt the single instruction multiple data (SIMD) approach 

of GPUs [14,15], GPU-based ATPG has received limited 

attention [16,17]. This is mainly attributed to the 

architecture’s memory limitation which leads to 

unacceptable test set size increase. In this work we propose 

a parallel ATPG methodology for shared-memory systems 

geared towards high speed-up and test inflation 

containment. The methodology takes advantage of fast and 

low cost shared memory communication inherent in the 

underlying  architecture in order to coordinate the main 

steps of the ATPG to avoid redundant work and 

dynamically allocate the workload while minimizing 

memory contention caused by multiple cores (threads) 

when accessing shared data. A test generation flow is 

proposed in which hard-to-detect 

faults are targeted first, followed by a parallel fault 

simulation based  merging process to maximize fault 

coverage. This process employs a series of newly proposed 

parallelization heuristics to explicitly avoid simultaneous 

consideration of the same faults by two or more cores, in 

order to minimize extra work and thread idle time. Any 

remaining undetected faults 
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are targeted during a following phase, in a similar manner. 

The obtained experimental results demonstrate the 

effectiveness of the proposed approach in speeding-up the 

ATPG process 

and provide comparisons with relevant recent work. 

The rest of the paper is organized as follows. Section II 

presents a high level description of the proposed parallel 

ATPG while Section III focuses on particular parallel 

optimizations used to reduce the test inflation problem and 

favor speedup. Section IV presents and discusses the 

experimental results and Section V concludes the paper.  

 

II. PROPOSED HIGH-LEVEL ATPG  

A common parallelization procedure consists of three 

steps: (i) decomposition (domain or functional), (ii) 

parallel execution, and (iii) final result assembly. Step (ii) 

can result in significant compromise of the quality of the 

obtained results and, at the same time, not offer the 

expected speed-up. An efficient parallel algorithm should 

effectively overcome challenges such as memory 

contention and imbalanced workload distribution. The 

proposed ATPG method appropriately designs all three 

steps to ensure that these challenges are treated efficiently. 

Specifically, two conceptual approaches are adopted: (i) 

problem partitioning to avoid executing the same work 

concurrently in different cores and (ii) fine-grained 

granularity of each step to provide dynamic distribution of 

work. Various parallel optimization heuristics based on 

these concepts are discussed in Section III; this section 

presents the test generation flow of the proposed 

methodology which is based on the rationale of these two 

concepts. The proposed   

 

Fig: High level flow of the main Test Generation (TG) 

processes          

single fault ATPG process, provides the desired granularity 

that allows mutually exclusive is attribution of work in the 

different cores. Such distribution benefits the exploration 

of different parallelization directions, including dynamic 

partitioning and adaptive decision making for test merging. 

However, 

an approach with high granularity may perform large 

amount of unnecessary work when not taking advantage of 

fault dropping. Fault dropping plays a critical role in test 

generation anyway, as it can significantly affect test set 

size. In parallel test generation, inefficient dropping of 

faults can also restrict speed-up, regardless from the fact 

that the main process for identifying faults to be dropped 

(fault simulation) can be implemented very efficiently in 

parallel environments [14,15]. A fair trade-off between 

high granularity and fault dropping consideration is to 

develop a methodology based on distinct test epochs, one 

targeting hard-to-detect faults and a following one 

targeting the remaining undetected faults. Fig.1 presents 

the high level description of the proposed methodology. 

Firstly, the circuit netlist is analyzed to obtain a collapsed 

fault list F for the underlying fault model M. 

Consequently, the fault list is sorted in a depth-first-search 

(DFS) order (based on their location in the netlist) in an 
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attempt to implicitly group faults with structural 

similarities in F. This fault locality property of the input 

fault list benefits fault dropping after F is partitioned to the 

available cores. The next step identifies hard-to-detect 

faults to be targeted by the first test epoch (Epoch I) of the 

methodology. We use random test pattern generation, 

which is a simple, quick and acceptable way to classify 

faults; however, other more sophisticated methods can be 

incorporated. Hard-to-detect faults are identified using a 

multiple detection approach where 10% (set by 

experimental exploration) of the faults in F with the fewer 

detections are considered as hard and used as the input 

fault list of test Epoch I (FH). Epoch I performs explicit 

test generation for each fault in FH while also considering 

faults in F−FH during fault simulation to identify faults 

detected coincidentally (FC). A merging process to reduce 

the number of tests obtained follows, and the final output is 

a set of test patterns TH detecting all faults in FH ∪ FC. A 

second test epoch(Epoch II), similar to the first one, is 

invoked to target the remaining faults, i.e. FR = F – (FH ∪ 

FC) producing a set of tests TR such that T = TH ∪ TR 

detects all faults in F. Detailed description of the 

individual steps taken during a test epoch is 

provided in Section III.A. 

III.PARALLELIZATION METHODOLOGY 

AND OPTIMIZATIONS 

This section describes in further detail how the test 

generation process is partitioned and discusses the 

decisions taken to address the main parallelization 

challenges presented in Section II. Section III.A describes 

the major steps undertaken during a test epoch, discussing 

dynamic fault partitioning and 

core synchronization, while Section III.B describes a 

number of optimizations proposed to overcome 

parallelization issues.   

A. Test-Epoch Parallelization :Fig.2 presents a flowchart 

illustrating the basic steps of the parallel Test Generation 

(TG) methodology followed during a test epoch, namely 

seed-based TG and dynamic test merging and restricted 

TG. An epoch explicitly targets on a fault-by fault basis, 

only a small subset of the fault list F (FH for Epoch I and 

FR for Epoch II). Note that FC = F – (FH ∪ FR) typically 

constitutes the overwhelming majority of the faults which 

are easily detectable in an implicit manner (i.e., via fault 

simulation). The faults in a fault list are sorted based on 

structural similarities of fault locations (netlist), in order to 

increase the probability of proximate faults to be detected 

by the same test. During the first step (seed-based TG in 

Fig. 2), each available core performs test seed generation 

(TG with maximal don’t care bits) for the next undetected 

fault fi in the list using a PODEM-based process optimized 

to identify tests with a large number of unspecified bits. 

The order of the selection of the next fault(s) is not 

important here, as the partitioning is designed to work in 

an independent manner and produce standalone results. 

The system shared memory holds the updated fault list 

indicating faults not yet targeted) and, therefore, 

duplication of work is avoided as each core works on a 

distinct fault. For each test seed tigenerated during this step 

parallel fault simulation is performed and all faults 

detected (including those in F -FH) are stored in a list di. 

Faults in di are not immediately dropped as this 

information is used during the following step. Also, the 

input necessary assignments (NA) of tiare stored, along 

with di, to be exploited in the next step. This first step 

terminates when all faults in FH have been targeted, 

constituting a synchronization barrier in the process. TPF 

contains the test seeds and DPF contains the corresponding 
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fault simulation results which are both kept in the shared 

memory. Upon completion of the first step, the next step is 

invoked (dynamic test merging & restricted TG in Fig. 2) 

in order to merge compatible tests and reduce the size of 

TPF. Each core selects its primary test target tifrom TPF 

to be the test seed with the larger detection list di (test with 

the highest number of coincidental detections) and 

immediately marks it so that other cores cannot select it. 

Tests are selected in an iterative manner until no further 

merging is possible. A detailed description of  this 

selection is given in Section III.B under detection-based 

test selection. This merging step is dynamic due to the 

efficient communication of the merged tests through the 

shared memory. Thus, in each iteration, the number of 

candidate tests for merging is reduced at a fast rate. Fig.3 

shows the merging process undertaken by each core while 

the shared memory accommodates information about faults 

detected and tests discarded. The faults detected by the 

primary test ti(kept in di) 

 

Fig: A test epoch targeting hard-to-detect faults (Epoch I). 

Same steps are repeated in Epoch II, with input fault list 

FR and resulting test set TR. 

 

are immediate dropped from further consideration. Then, 

pair wise compatibilities of the primary test tiwith each 

remaining test tjof TPF are calculated and ranked based on 

increasing Hamming distance. The test pair (ti, tj) with the 

smallest Hamming distance is thereafter selected to be 

merged. Upon merging, tiis updated and tjis discarded 

from TPF. Also, all faults in the corresponding list djare 

dropped from the shared fault list. When no further 

merging is possible, restricted TG for tiis performed based 

on the necessary assignments (NAs) on primary inputs 

collected during the first step. NAs are used as hard 

constraints for test generation, yet only for faults 

corresponding to tests not already marked and having 

identical NAs as ti. This iterative step terminates when no 

more tests with identical NAs exist that could lead to 

further test discarding. 

As a final step, the remaining unspecified bits of tiare 

assigned specified values and the test is fault simulated to 

identify any further coincidental detection of faults. All the 

tests obtained by the process of Fig.3 are appended at the 

output of the corresponding test epoch, i.e., TH for Epoch I 

and TR for Epoch II.  

B. Parallelization Optimizations: Detection-Based 

Primary Test Selection. In the merging step of Fig.3, test 

selection is very important for the efficient 

evolution of merging since it sets the constraints and 

outcomes of consequent merging iterations, restricted TG, 

and fault simulation. Practice in ATPG suggests that early 

fault dropping plays a more important role than having 

fewer constraints (more unspecified bits) in the test seed. 

For this reason, the primary test tiduring dynamic merging 

(merging seed) is selected based on its number of detected 

faults in di. Recall that the fault simulation process 

performed at the end of the first step of the test epoch 

(Fig.2) does not drop faults;  
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Fig: Dynamic Test merging and Restricted TG processes 

per core 

instead, it is used for providing a more precise metric for 

this selection during the second step. Tests to be merged 

(with the primary test) are then selected based on their 

Hamming distance to the primary test. The Hamming 

distance based merging produces merged tests with a 

smaller number of specified bits and, hence, fewer 

constraints in the following 

iterations of the merging process. In the (often common) 

case where more than one tests have the same Hamming 

distance to the primary test, their fault detection metric is 

used to decide which test will be merged. This 

optimization greatly assists in dynamic workload balancing 

and minimization of unnecessary work since high amount 

of early fault dropping reduces the faults for which explicit 

test generation is needed. Test Set Private Consideration. 

The search for the best candidate tests to be merged (either 

the primary or the ones to follow) involves high interaction 

of each core with the shared memory. Specifically, 

selecting the primary test, as well as computing the pair-

wise compatibilities with the remaining tests in TPF, 

inherently involves memory contention since all cores are 

searching TPF. This issue is addressed by dynamically 

partitioning TPF in n private subsets (n being the number 

of available cores), one for each core. Each core can only 

select tests from its own private subset of TPF (and the 

corresponding DPF) which can be safely moved to its own 

private cache. This implicitly minimizes concurrent 

memory access requests from different cores that can result 

in inefficient memory utilization due to memory 

contention. Moreover, it implicitly minimizes duplication 

of work as each core considers a distinct part in TPF. 

When a core finishes with the merging process within its 

private part of TPF, it is allowed to work on the entire set 

in order to ensure workload balancing by avoiding idle 

periods in cores. At this point, concurrent memory 

accesses can occur, however, their impact is minimal as the 

bulk of the merging process has already occurred during 

the private consideration, and, hence, the size of TPF is by 

this point significantly reduced. Test Provisional Marking. 

During compatibility merging, the list Pi which holds pair-

wise compatibilities between tests, requires updating after 

each merging. This updating is highly demanding in 

processing resources as it is of cubic complexity in the 

worst case. To avoid this issue the proposed methodology 

calculates and ranks compatibilities only once for each test 

ti. If a test tjis selected to be merged with ti, it is 

provisionally marked in TPF so that it is not merged in 

another core, explicitly avoiding imposing unnecessary 

constraints in another thread that performs merging. If 

compatibility between tiand a test tjin Pi is invalidated by a 

previous merging, merging between tiand tjis not 

completed and the provisional marking is cleared. 

Otherwise, provisional marking indicates permanent 

discarding of tjfrom TPF. Balanced Workload 

Distribution. Distribution of workload to the available 

cores can significantly impact the speed-up of a parallel 

methodology. Test generation and fault simulation 

processes have unpredictable execution times due to the 

nature of the problems and fault dropping. Core idle time is 

minimized by dynamically selecting: (i) the next fault to be 

targeted in seed-based test generation in each epoch 
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(Fig.2), (ii) the next test to be used as primary in test 

merging (Fig.2), (iii) the tests to be merged with the 

primary test seed (Fig.3), and (iv) the next fault to be 

targeted in restricted TG based on necessary assignments 

(Fig.3). Since, data is stored in shared memory (fault list 

and test seeds), and thus, is easily accessible by all cores, 

provides a punctual way of determining how the workload 

will be selected at each step and by each optimization 

mechanism of the approach. 

 

IV.RESULTS 

 

 

 

 

 

 

V.CONCLUSION 

We propose a parallel test pattern methodology for shared 

memory multi-core environments. A number of newly 

proposed heuristics attempt to avoid assigning the same 

workload to multiple cores, while the distribution of work 

in the available resources to minimize core idle time. 

Experimental results demonstrate high speed-up rates that 

keep increasing as the number of the available cores 

increases. Test set size increase is limited and comparable 

to other state-of-the-art parallel approaches. 

 

VI.FUTURE SCOPE 
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For very large designs and when testing at-speed fault 

models removes ATPG from the critical path for taping out 

a Design. 

Multicore processorsare now widely available, but require 

additional tool support to maximize the compute power of 

these platforms.  

 

This support extends the runtime benefits of distributed 

processing to multicore platforms, while significantly 

reducing the memory consumed compared to distributed 

processing.  

The memory consumed by multicoreprocessingis less than 

half of the total memory required compared to an 

equivalent distributed processing run. 
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