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Abstract: A high speed word level finite field 

multiplier in F2 m using redundant representation 

is proposed. For the class of finite field that there 

exists a type I optimal normal basis, the new 

architecture has sign can  higher speed compared 

to previously proposed architectures using either 

normal basis or redundant representation at the 

expense of moderately higher area complexity . 

One of the unique features of the proposed 

multiplier is that the critical path delay is not a 

function of the eld size nor the word size. It is 

shown that the new multiplier out-performs all the 

other multipliers in comparison when considering 

the product of area and delay as a measure of 

performance. VLSI implementation of the 

proposed multiplier in a 0:18m CMOS process is 

also presented. 

I Introduction 

Finite fields have important applications 

in error control coding and cryptography [1]. 

Finite fields of characteristic two are most 

commonly used because they are inherently 

suitable for VLSI implementation. In practice, 

finite field multiplier is the key arithmetic unit for 

many systems based on finite field computations 

since more complicated finite field operations such 

like division and in version can be broken down 

into a series of consecutive multiplication 

operations. Efficiency of finite field multiplication 

depends on the choice of the basis to represent 

finite field elements. 

Bases that have been used for realizing finite field 

multipliers include polynomial basis, normal basis 

(NB), dual bases, triangular basis, redundant 

representation or redundant basis, and their 

variations (i.e., shifted polynomial basis) [2], [3], 

[7], [8], [9], [10], [11]. Redundant representation 

is especially interesting because it not only offers 

almost free squaring as NB does but also 

eliminates modular operation for multiplication. 

The main drawback for the redundant 

representation is that it uses more bits to represent 

a finite field element, where the number of 

representation bits depends on the size of the 

cyclostomes ring in which the underlying eld is 

embedded. 

Efficient computations in finite fields and 

their architectures are important in many 

applications including coding theory, computer 

algebra systems and public-key cryptosystems 

(e.g., elliptic curve cryptosystems). Although all 

finite fields of the same cardinality are isomorphic, 

their arithmetic efficiency depends greatly on the 

choice of bases for field element representations. 

The most commonly used bases are polynomial 

bases (PB) and normal bases (NB), sometimes 

combined with dual bases (DB)[15]. A major 

advantage of normal bases in the fields of 

characteristic two is that the squaring operation 

inNBis simply a cyclic shift of the coordinates of 

elements, so these are useful for computing large 

exponentiations and multiplicative inverses [13, 

11, 1]. Also, the multiplication table of a normal 

basis is symmetric, so suitable for hardware 

implementation. 

We are mainly interested in finite fields of 

characteristic two, i.e.F2m, which are one of the 

two types of fields used most commonly in 
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practice (the other one is Fp where p is a prime). 

We show how to find the smallest cyclostomes 

ring in which F2 m can be embedded. Since 

“embedding” is not unique, each element in the 

ring can be represented in more than one way, 

i.e.,the representation contains certain amount of 

redundancy. In this article, we also discuss how 

this redundant representation of a field element 

can be efficiently converted to a normal basis and 

vice versa. 

II.Literature Survey 

A representation of finite fields that has 

proved useful when implementing finite field 

arithmetic in hardware is based on an isomorphism 

between subrings and fields. In this paper, we 

present an unified formulation for multiplication in 

cyclotomic rings and cyclotomic fields in that 

most arithmetic operations are done on vectors. 

From this formulation we can generate optimized 

algorithms for multiplication. F or example, one of 

the proposed algorithms requires approximately 

half the number of coordinate-level multiplications 

at the expense of extra coordinate-level additions. 

Our method is then applied to the finite fields 

GF(q m ) to further reduce the number of 

operations. We then present optimized algorithms 

for multiplication in finite fields with type-I and 

type-II optimal normal bases. 

This article presents simple and highly 

regular architectures for finite field multipliers 

using a redundant representation. The basic idea is 

to embed a finite field into a cyclotomic ring 

which has a basis with the elegant multiplicative 

structure of a cyclic group. One important feature 

of our architectures is that they provide area-time 

trade-offs which enable us to implement the 

multipliers in a partial-parallel/hybrid fashion. 

This hybrid architecture has great significance in 

its VLSI implementation in very large fields. The 

squaring operation using the redundant 

representation is simply a permutation of the 

coordinates. It is shown that when there is an 

optimal normal basis, the proposed bit-serial and 

hybrid multiplier architectures have very low 

space complexity. Constant multiplication is also 

considered and is shown to have advantage in 

using the redundant representation. The elements 

of -point DCT matrix are given by: 

A new GF (2 n) redundant representation 

is presented. Squaring in the representation is 

almost cost-free. Based on the representation, two 

multipliers are proposed. The XOR gate 

complexity of the first multiplier is lower than a 

recently proposed normal basis multiplier when 

CN (the complexity of the basis) is larger than 3n-

1.  

III. Scalable and Reconfigurable Architecture 

for DCT Computation 

we discuss the proposed scalable architecture 

for the computation of approximate DCT of and 

32. We have derived the theoretical estimate of its 

hardware complexity and discuss the recon 

figuration scheme. 

 

A. Proposed Scalable Design 

The basic computational block of algorithm 

for the proposed DCT approximation, is given in 

[6]. The block diagram of the computation of DCT 

based on is shown in Fig. 1. For a given input 

sequence , 

the approximate DCT coefficients are obtained by 

F=CN
^
.X

t  
. 

An example of the block diagram of is 

illustrated in Fig. 2, where two units for the 

computation of are used along with an input adder 

unit and output permutation unit. The functions of 

these two blocks are shown respectively in (8) and 

(6). Note that structures of 16-point DCT of Fig. 2 

could be extended to obtain the DCT of higher 

sizes. For example, the structure for the 

computation of 32-point DCT could be obtained 

by combining a pair of 16-point DCTs with an 

input adder block and output permutation block. 
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Fig. 1. Signal flow graph (SFG) of (C
8
 ). Dashed 

arrows represent multiplications by 1 

 

FIG.2.block diagram of proposed DCT for 

N=16(c
^
16) 

B.Complexity Comparison 

To assess the computational complexity of 

proposed –point approximate DCT, we need to 

determine the computational cost of matrices 

quoted in (9). As shown in Fig. 1 the approximate 

8-point DCT involves 22 additions. Since has no 

computational cost and requires additions for –

point DCT, the overall arithmetic complexity of 

16-point, 32-point,And 64-point DCT 

approximations are 60, 152, and 368 additions, 

respectively. More generally, the arithmetic 

complexity of -point DCT is equal to additions. 

C.Proposed reconfiguration scheme 

 

Fig. 3. Proposed recon figurable architecture for 

approximate DCT of lengths N=8 and 16 
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As specified in the recently adopted HEVC [10], 

DCT of different lengths such as, 16,32 are 

required to be used in video coding applications. 

Therefore, a given DCT architecture should be 

potentially reused for the DCT of different lengths 

instead of using separate structures for different 

lengths. We propose here such reconfigurable 

DCT structures which could be reused for the 

computation of DCT of different lengths. The 

reconfigurable architecture for the implementation 

of approximated 16-point DCT is shown in Fig. 3. 

It consists of three computing units, namely two 8-

point approximated DCT units and a 16-point 

input adder unit that generates a(i) and b(i) he 

input to the first 8-point DCT approximation unit 

is fed through 8 MUXes that select 

either[a(0)…a(7)] or ,[x(0)….x(7)] depending on 

whether it is used for 16-point DCT calculation or 

8-point DCT calculation. Similarly, the input to 

the second 8-point DCT unit (Fig. 3) is fed 

through 8 MUXes that select either [b(0)…b(7)] or 

, depending on whether it is used for 16-point 

DCT calculation or 8-point DCT calculation. On 

the other hand, the output permutation unit uses 14 

MUXes to select and re-order the output 

depending on the size of the selected DCT. is used 

as control input of the MUXes to select inputs and 

to perform permutation according to the size of the 

DCT to be computed. Specifically sel16=1 enables 

the computation of 16-point DCT and sel16=0 

enables the computation of a pair of 8-point DCTs 

in parallel. Consequently, the architecture of Fig. 3 

allows the calculation of a 16-point DCT or two 8-

point DCTs in parallel.

 

Fig. 4. Proposed recon figurable architecture for 

approximate DCT of lengths , 16 and 32 

A reconfigurable design for the 

computation of 32-, 16-, and 8-point DCTs is 

presented in Fig. 4. It performs the calculation of 

a 32-point DCT or two 16-point DCTs in 

parallel or four 8-point DCTs in parallel. The 

architecture is composed of 32-point input adder 

unit, two 16-point input adder units, and four 8-

point DCT units. The reconfigurability is 

achieved by three control blocks composed of 64 

2:1 MUXes along with 30 3:1 MUXes. The first 

control block decides whether the DCT size is of 

32 or lower. If , the selection of input data is 

done for the 32point DCT, otherwise, for the 

DCTs of lower lengths. 
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Simulation Results: 

Top Module: 

 
 

RTL Schematic: 

 
Technology schematic: 

 
Design summary: 

 
 

IV Conclusion 

A reconfigurable bit-serial Galois field 

multiplier architecture is proposed in this paper. 

The multiplier is reconfigurable because it can 

perform for variable Galois field degreem: This 

multiplier can support any arbitrary irreducible 

polynomial. The multiplication result is computed 

aftermclock cycles. The advantages of the 

proposed architecture are the high order of 

flexibility, which allows an easy configuration for 

variable field size 2m ; and the low hardware 

complexity, which results in small area. In 

addition, the proposed multiplier has low power 

consumption features, which are achieved by 

using the gated clock technique. Comparing with 

previous published implementations, the proposed 

multiplier architecture is suitable for devices with 

limited silicon area. 

Extension Work: 

In Proposed system we are using Input 

Adder Unit, now it can be replaced by Wallace 

Tree Multiplier. By doing this we can get less 

power consumption, high accuracy and reduced 

delay. 
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