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Abstract: Hybrid configurable logic block architectures 

for field-programmable gate arrays that contain a mixture 

of lookup tables and hardened multiplexers are evaluated 

toward the goal of higher logic density and area reduction. 

Multiple hybrid configurable logic block architectures, 

both nonfracturable and fracturable with varying 

MUX:LUT logic element ratios are evaluated across two 

benchmark suites (VTR and CHStone) using a custom tool 

flow consisting of LegUp-HLS, Odin-II front-end synthesis, 

ABC logic synthesis and technology mapping, and VPR for 

packing, placement, routing, and architecture exploration. 

Technology mapping optimizations that target the 

proposed architectures are also implemented within ABC. 

Experimentally, we show that for nonfracturable 

architectures, without any mapper optimizations, we 

naturally save up to ∼8% area postplace and route; both 

accounting for complex logic block and routing area while 

maintaining mapping depth. With architecture-aware 

technology mapper optimizations in ABC, additional area 

is saved, post-place-and-route. For fracturable 

architectures, experiments show that only marginal gains 

are seen after place-and-route up to ∼2%. For both 

nonfracturable and fracturable architectures, we see 

minimal impact on timing performance for the 

architectures with best area-efficiency. 

Keywords— FPGA, Multiplexer logic element, Complex 

logic block, mapping technologies 

I. INTRODUCTION 

A field-programmable gate array (FPGA) is a 

block of programmable logic that can implement multi-

level logic functions. FPGAs are most commonly used as 

separate commodity chips that can be programmed to 

implement large functions. However, small blocks of 

FPGA logic can be useful components on-chip to allow the 

user of the chip to customize part of the chip’s logical 

function. An FPGA block must implement both 

combinational logic functions and interconnect to be able 

to construct multi-level logic functions. There are several 

different technologies for programming FPGAs, but most 

logic processes are unlikely to implement antifuses or 

similar hard programming technologies. 

Throughout the history of field-programmable 

gate arrays (FPGAs), lookup tables (LUTs) have been the 

primary logic element (LE) used to realize combinational 

logic. A K-input LUT is generic and very flexible—able to 

implement any K-input Boolean function. The use of LUTs 

simplifies technology mapping as the problem is reduced 

to a graph covering problem. However, an exponential area 

price is paid as larger LUTs are considered. The value of K 

between 4 and 6 is typically seen in industry and academia, 

and this range has been demonstrated to offer a good 

area/performance compromise [4], [5]. Recently, a number 

of other works have explored alternative FPGA LE 

architectures for performance improvement [6]–[10] to 

close the large gap between FPGAs and application-

specific integrated circuits (ASICs) [11].  

In this paper, we present a six-input LE based on a 

4-to-1 MUX, MUX4, that can realize a subset of six input 

Boolean logic functions, and a new hybrid complex logic 

block (CLB) that contains a mixture of MUX4s and 6-

LUTs. Hybrid configurable logic block architectures for 

field programmable gate arrays that contain a mixture of 

lookup tables and hardened multiplexers are evaluated 

toward the goal of higher logic density and area reduction. 

LOOKUP TABLES 

The fundamental strategy used to build a 

combinational logic block (CLB) also called a logic 

element in a SRAM-based FPGA is the lookup table 

(LUT). As appeared in Figure, the lookup table is a SRAM 

that is utilized to implement a fact table. Each address in 

the SRAM represents a combination of inputs to the logic 

element.  The value stored at that address represents the 
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value of the function for that input combination. An n-

input function requires an SRAM with locations. A n-input 

function requires a SRAM with locations. 

Since a fundamental SRAM isn't clocked, the 

lookup table logic element works much as some other logic 

gate as its inputs changes, its yield changes after some 

delay. 

 
Fig .1: Lookup Tables 

PROGRAMMING A LOOKUP TABLE 

Unlike a typical logic gate, the function 

represented by the logic element can be changed by 

changing the values of the bits stored in the SRAM. As a 

result, the n-input logic element can represent functions 

(though some of these functions are permutations of each 

other). 

 
 Fig.2:  Programming a Lookup Table 

A typical logic element has four inputs. The delay 

through the lookup table is independent of the bits stored in 

the SRAM, so the delay through the logic element is the 

same for all functions. This means that, for example, a 

lookup table-based logic element will exhibit the same 

delay for a 4-input XOR and a 4-input NAND. In contrast, 

a 4-input XOR built with static CMOS logic is 

considerably slower than a 4-input NAND. Of course, the 

static logic gate is generally faster than the logic element. 

Logic elements generally contain registers flip-flops and 

latches as well as combinational logic. A flip-flop or latch 

is small compared to the combinational logic element (in 

sharp contrast to the situation in custom VLSI), so it makes 

sense to add it to the combinational logic element. Using a 

separate cell for the memory element would simply take up 

routing resources. The memory element is connected to the 

output; whether it stores a given value is controlled by its 

clock and enable inputs. 

In this paper, we propose incorporating (some) 

hardened multiplexers (MUXs) in the FPGA logic blocks 

as a means of increasing silicon area efficiency and logic 

density. The MUX based logic blocks for the FPGAs have 

seen success in early commercial architectures, such as the 

Actel ACT-1/2/3 architectures, and efficient mapping to 

these structures has been studied in the early 1990s. 

However, their use in commercial chips has waned, 

perhaps partly due to the ease with which logic functions 

can be mapped into LUTs, simplifying the entire computer 

aided design (CAD) flow. Nevertheless, it is widely 

understood that the LUTs are inefficient at implementing 

MUXs, and that MUXs are frequently used in logic 

circuits. 

To underscore the wastefulness of LUTs 

implementing MUXs, think about that as a six information 

LUT (6-LUT) is essentially a 64-to-1 MUX (to select 1 of 

64 truth-table lines) and 64-SRAM arrangement cells, yet 

it can only realize a 4-to-1 MUX (4 data+2 select=6 

inputs). In this paper, we exhibit a six-input LE in view of 

a 4-to-1 MUX, MUX4, that can realize a subset of six-

input Boolean logic capacities, and another hybrid complex 

logic block (CLB) that contains a blend of MUX4s and 6-

LUTs. The proposed MUX4s are small contrasted and a 6-

LUT (15% of 6-LUT area), and can efficiently delineate 

{2, 3}- input functions and some {4, 5, 6}- input functions. 

What's more, we explore fracturability of Les the ability to 

split the LEs into multiple smaller elements in both LUTs 

and MUX4s to build logic thickness. The proportion of 

LEs that should be LUTs versus MUX4s is also explored 

toward upgrading logic thickness for both nonfracturable 

and fracturable FPGA structures. To facilitate the 

engineering exploration, we developed a CAD flow for 

mapping into the proposed hybrid CLBs, made utilizing 

ABC and VPR, and portray technology mapping 

procedures that energize the selection of logic works that 

can be inserted into the MUX4 elements. The primary 

commitments in this paper are as follows.  
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1) Two hybrid CLB architectures (nonfracturable 

and fracturable) that contain a mixture of MUX4 LEs and 

the traditional LUTs yielding up to 8% area savings.  

2) Mapping techniques called NaturalMux and 

MuxMap targeted toward the hybrid CLB architecture that 

optimize for area, while preserving the original mapping 

depth.  

3) A full post-place-and-route architecture 

evaluation with VTR7 [1], and CHStone [2] benchmarks 

facilitated by LegUp-HLS[3], the Verilog-to-Routing 

project [1] showing impact on both area and delay. 

Contrasted with the preliminary publication, we 

have performed transistor level modeling of the MUX4 

LE, additionally examined the fracturable structures, and 

unified the open source tool-flow from C through LegUp-

HLS to the VTR flow. Meager crossbars (versus full 

crossbars in the past work) have also been included in our 

CLBs, expanding modeling exactness. The new transistor-

level modeling of the MUX4 also gives more exact results 

as contrasted and the past work. Results have also been 

expanded with the inclusion of timing results and larger 

architectural proportion clears. 

II. LITERATURE REVIEW 

Recent works have demonstrated that the 

heterogeneous designs and combination techniques can 

significantly affect enhancing logic density and delay, 

narrowing the ASIC– FPGA gap . Works by Anderson and 

Wang with "gated" LUTs, at that point with asymmetric 

LUT LEs, demonstrate that the LUT elements show in 

commercial FPGAs give superfluous flexibility. Toward 

enhanced delay and area, the macrocell-based FPGA 

designs have been proposed. These investigations portray 

huge changes to the traditional FPGA structures, though 

the progressions proposed here build on models utilized as 

a part of industry and the scholarly world. Similarly, and-

inverter cones have been proposed as replacements for the 

LUTs, propelled by and-inverter diagrams (AIGs).  

Purnaprajna and Ienne explored the possibility of 

repurposing the current MUXs contained inside the Xilinx 

Logic Slices. Similar to this work, they utilize the ABC 

need cut mapper and also VPR for pressing, place, and 

course. Be that as it may, their work is primarily delay-

based demonstrating a normal speed up of 16% utilizing 

only ten of 19 VTR7 benchmarks.  

In this article, we contemplate the technology 

mapping problem for a novel field-programmable gate 

exhibit (FPGA) design that is based onk-input single-yield 

programmable logic cluster (PLA-) like cells, or, k/m-

macrocells. Every cell in this design can implement a 

single yield functions of up to k inputs and up to m item 

terms. We develop an exceptionally effective technology 

mapping algorithm, km flow, for this new sort of 

engineering. The experimental results demonstrate that our 

algorithm can accomplish profundity optimality on almost 

all the experiments in an arrangement of 16 

Microelectronics Center of North Carolina (MCNC) 

benchmarks. Moreover it is demonstrated that on this 

arrangement of benchmarks, with only a relatively small 

number of item terms (m≤k+3), the k/m-full scale cell-

based FPGAs can accomplish the same or similar mapping 

profundity contrasted and the traditional k-input single-

yield lookup table-(k-LUT-) based FPGAs. We also 

investigate the total area and delay of k/m-large scale cell-

based FPGAs and contrast them and those of the 

commonly utilized 4-LUT-based FPGAs. The 

experimental results demonstrate that k/m-full scale cell-

based FPGAs can outflank 4-LUT-based FPGAs as far as 

both delay and area after placement and steering by VPR 

on this arrangement of benchmarks.  

This paper presents experimental estimations of 

the contrasts between a 90-nm CMOS field programmable 

gate exhibit (FPGA) and 90-nm CMOS standard-cell 

application particular coordinated circuits (ASICs) as far as 

logic thickness, circuit speed, and power consumption for 

center logic. We are roused to make these estimations to 

enable framework fashioners to settle on better educated 

decisions between these two media and to offer knowledge 

to FPGA creators on the lacks to assault and, in this 

manner, enhance FPGAs. We depict the methodology by 

which the estimations were gotten and demonstrate that, 

for circuits containing only look-up table-based logic and 

flip-flops, the proportion of silicon area required to 

implement them in FPGAs and ASICs is by and large 35. 

Current FPGAs also contain "hard" blocks, for example, 

multiplier/accumulators and block recollections. We find 

that these blocks decrease this normal area gap 

significantly to as meager as 18 for our benchmarks, and 
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we evaluate that broad utilization of these hard blocks 

could potentially lower the gap to below five. The 

proportion of critical-way delay, from FPGA to ASIC, is 

roughly three to four with less influence from block 

memory and hard multipliers. The dynamic power 

consumption proportion is approximately 14 times and, 

with hard blocks, this gap generally ends up noticeably 

smaller.  

In this paper the new architectural proposals are 

routinely created in both scholarly community and 

industry. For FPGA's to keep on growing, it is essential 

that these new architectural thoughts are fairly and 

accurately evaluated, so those commendable thoughts can 

be included in future chips. Typically, this evaluation is 

finished utilizing experimentation. In any case, the 

utilization of experimentation is perilous, since it requires 

making assumptions in regards to the tools and design of 

the gadget being referred to. In the event that these 

assumptions are not precise, the conclusions from the trials 

may not be meaningful. In this paper, we investigate the 

affectability of FPGA architectural conclusions to 

experimental varieties. To influence our examination to 

solid, we evaluate the affectability of four previously 

published and well-known FPGA architectural results: 

lookup-table size, switch block topology, cluster size, and 

memory measure. It is demonstrated that these 

examinations are significantly influenced by the 

assumptions, tools, and procedures utilized as a part of the 

trials. 

III. PROPOSED ARCHITECTURES 

A. MUX4: 4-to-1 Multiplexer Logic Element 

The MUX4 LE shown in Fig. 3 consists of a 4-to-

1 MUX with optional inversion on its inputs that allow the 

realization of any {2, 3}-input function, some {4, 5}-input 

functions, and one 6-input function—a 4-to-1 MUX itself 

with optional inversion on the data inputs. A 4-to-1 MUX 

matches the inputpin count of a 6-LUT, allowing for fair 

comparisons with respect to the connectivity and 

intracluster routing. Naturally, any two-input Boolean 

function can be easily implemented in the MUX4: the two 

function inputs can be tied to the select lines and the truth 

table values (logic-0 or logic-1) can be routed to the data 

inputs accordingly. Or alternately, a Shannon 

decomposition can be performed about one of the two 

variables—the variable can then feed a select input. The 

Shannon cofactors will contain at most one variable and 

can, therefore, be fed to the data inputs (the optional 

inversion may be needed). For three-input functions, 

consider that a Shannon decomposition about one variable 

produces cofactors with at most two variables.  

A second decomposition of the cofactors about 

one of their two remaining variables produces cofactors 

with at most one variable. Such single-variable cofactors 

can be fed to the data inputs (the optional inversion may be 

needed), with the decomposition variables feeding the 

select inputs. Likewise, functions of more than four inputs 

can be implemented in the MUX4 as long as Shannon 

decomposition with respect to any two inputs produce 

cofactors with at most one input. Observe that input 

inversion on each select input is omitted as this would only 

serve to permute the four MUX data inputs. While this 

could help routability within the CLB’s internal crossbar, 

additional inversions on the select inputs would not 

increase the number of Boolean functions that are able to 

map to the MUX4 LE. 

 
Fig.3: MUX4 LE depicting optional data input 

inversions 

B. Logic Elements, Fracturability, and MUX4-Based 

Variants 

Two families of architectures were created:  

1) Without fracturable LEs and  

2) With fracturable LEs.  

In this paper, the fracturable LEs refer to an 

architectural element on which one or more logic functions 

can be optionally mapped. Nonfracturable LEs refer to an 

architectural element on which only one logic function is 
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mapped. In the nonfracturable architectures, the MUX4 

element shown in Fig. 3 is used together with 

nonfracturable 6-LUTs. This element shares the same 

number of inputs as a 6-LUT lending for fair comparison 

with respect to the input connectivity. For the fracturable 

architecture, we consider an eight-input LE, closely 

matched with the adaptive logic module in recent Altera 

Stratix FPGA families.  

Fracturable 6-LUT 

 
Fig. 4: Fracturable 6-LUT that can be fractured into 

two 5-LUTs with two shared inputs. 

A 6-LUT that can be fractured into two 5-LUTs 

using eight inputs is shown in Fig. 4. Two five-input 

functions can be mapped into this LE if two inputs are 

shared between the two functions. If no inputs are shared, 

two four-input functions can be mapped to each 5-LUT. 

For the MUX4 variant, Dual MUX4, we use two MUX4s 

within a single eight-input LE. In the configuration, shown 

in Fig. 5, the two MUX4s are wired to have dedicated 

select inputs and shared data inputs. This configuration 

allows this structure to map two independent (no shared 

inputs) three-input functions, while larger functions may be 

mapped dependent on the shared inputs between both 

functions. An architecture in which a 4-to-1 MUX 

(MUX4) is fractured into two smaller 2-to-1 MUXs was 

first considered However, since a 2-to-1 MUX’s mapping 

flexibility is quite limited (can only map two-input 

functions and the three-input 2-to-1 MUX itself), little 

benefit was added compared with the overheads of making 

the MUX4 fracturable and poor area results were observed. 

 
Fig.5: Dual MUX4 LE that utilizes dedicated select 

inputs and shared data Inputs 

C. Hybrid Complex Logic Block 

A variety of different architectures were 

considered—the first being a nonfracturable architecture. 

In the nonfracturable architecture, the CLB has 40 inputs 

and ten basic LEs (BLEs), with each BLE having six 

inputs and one output following empirical data in prior 

work [4]. Fig. 6 shows this nonfracturable CLB 

architecture with BLEs that contain an optional register. 

We vary the ratio of MUX4s to LUTs within the ten 

element CLB from 1:9 to 5:5 MUX4s:6-LUTs. The MUX4 

element is proposed to work in conjunction with 6-LUTs, 

creating a hybrid CLB with a mixture of 6-LUTs and 

MUX4s (or MUX4 variants). Fig. 6 shows the organization 

of our CLB and internal BLEs. For fracturable 

architectures, the CLB has 80 inputs and ten BLEs, with 

each BLE having eight inputs and two outputs emulating 

an Altera Stratix Adaptive-LUT [18]. The same sweep of 

MUX4 to LUT ratios was also performed.  
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Fig. 6:  Hybrid CLB with a 50% depopulated intra-

CLB crossbar depicting BLE internals for 

nonfracturable (one optional register and one output) 

architecture. 

Fig. 7 shows the fracturable architecture with 

eight inputs to each BLE that contains two optional 

registers. We evaluate fracturability of LEs versus 

nonfracturable LEs in the context of MUX4 elements since 

fracturable LUTs are common in commercial architectures. 

For example, Altera Adaptive 6-LUTs in Stratix IV and 

Xilinx Virtex 5 6-LUTs can be fractured into two smaller 

LUTs with some limitations on inputs. The crossbars for 

fracturable architectures are larger than the nonfracturable 

architectures for two reasons. Due to the virtual increase of 

LEs, a larger number of CLB inputs are required, which 

increases crossbar size. Since there are now twice as many 

outputs from the LEs, these additional outputs need to also 

be fed back into the crossbar, also increasing its size. Due 

to this disparity in crossbar size, fair comparisons cannot 

be made between fracturable and nonfracturable 

architectures. Therefore, in this paper, we compare 

nonfracturable hybrid CLB architectures to a baseline LUT 

only nonfracturable architecture and we compare 

fracturable hybrid CLB architectures to a baseline LUT-

only fracturable architecture. 

 

Fig.7:  Hybrid CLB with a 50% depopulated intra-CLB 

crossbar depicting BLE internals for a fracturable (two 

optional registers and two outputs) architecture. 

D. Area Modeling 

1) MUX4 Logic Element: Initial estimates of the 

MUX4 element demonstrated that the MUX4 is∼10% the 

area of a 6-LUT overall. A 4-to-1 MUX can be realized 

with three 2-to-1 MUXs. Consequently, the MUX4 

element contains seven 2-to-1 MUXs, four SRAM cells, 

and four inverters altogether (see Fig. 3). The optional 

inversion utilizes the four SRAM cells, though whatever is 

left of the LE setup is performed through steering. Also, 

the profundity of the MUX tree is halved contrasted and 

the 6-LUT, which has six 2-to-1 MUXs on its longest 

ways. Conservatively, assuming consistent pass transistor 

measuring and that the area of a 2-to-1 MUX and six 

transistor SRAM cell are roughly equivalent, the MUX4 

element has (1/16)th the SRAM area and(1/8)th the MUX 

area of a 6-LUT.  

 

These estimates were revised using transistor 

level modelling of the circuit blocks. Transistor-level 

optimization of the constituent circuit blocks of an FPGA 

requires an understanding of the optimal area-delay 

tradeoffs for each individual circuit block. This requires 

extracting a representative critical path, which is a path 

whose composition of blocks and topology will be similar 

to the critical path of a specific design. Extracting the 

representative critical path allows us to judge to what 

extent each individual block is timing critical, which thus 

establishes an area-delay tradeoff goals for each block. 

This is in line with the transistor-level optimization tool 

developed previously [20]. We use the results of prior 

work [20] to establish the optimal area-delay tradeoff for 

6-LUTs in a conventional island-style FPGA architecture 

with typical architectural parameters. The resulting 6-LUT 

delay serves as a point of reference for optimization for the 

circuits considered in this paper: in the interest of 

maximizing area reduction while allowing performance to 

be maintained (ignoring the differences in cell counts 

between mapping to a conventional LUT and the LEs 

proposed in this paper), we attempt to match the delay of a 

6-LUT while minimizing the area of each of the variants of 

the MUX4 circuits.  
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Transistor level modelling and optimizations were 

based on a predictive 22-nm high performance process 

[21], while the area model presented in prior work [20] 

was used to estimate the area of various circuit structures. 

With this methodology, we determined an area-delay 

optimal 6-LUT has an area of 930 minimum-width 

transistors, and a worst-case delay of 261 ps. For the 

MUX4 cell and Dual MUX4 cell, a minimum area and 

minimum delay cell was created. The minimum area 

MUX4 cell has an area of 95 minimumwidth transistors 

and a delay of 204 ps; all transistors were minimum-width 

in this case, and as the minimum area solution for this 

circuit was able to meet (and improve upon) the worst-case 

delay target of a 6-LUT. Similarly, the Dual MUX4 cell 

has an area of 249 minimum-width transistors while 

meeting the worst-case delay requirement. However, we 

chose to use the minimum delay design for both the MUX4 

and Dual MUX4 elements for the rest of the study as there 

is not a significant increase in area over the minimum area 

design. Although the modelling was performed in the 22-

nm process, the standard VPR architecture we use has all 

parameters (routing delays, crossbar delays, and so on) 

scaled to a 40-nm process.  

In this standard VPR architecture, parameters are 

compounded from a multitude of sources, some also in 

other lithographic processes, and subsequently scaled to 

40- nm. Likewise, we linearly scale our delays by 

comparing the delays of our 22-nm 6-LUT (261 ps) and the 

6-LUT in the standard architecture (398 ps). The delays for 

each design after scaling to 40-nm are shown in Table I. 

TABLE I  

LE TRANSISTOR MODELS WITH AREA GIVEN IN 

MINIMUM-WIDTH TRANSISTOR AREA AND 

DELAYS SCALED FOR A 40-nm PROCESS 

 

FPGA Area Model: 

Although determining the area of a MUX4 

element relative to a 6-LUT is important, we need to also 

examine global FPGA area considering the number of CLB 

tiles, area overheads within the CLB and routing area per 

CLB. Throughout this paper, global FPGA area was 

estimated assuming that, per tile, 50% of the area is 

intercluster and intracluster routing, 30% of the area is 

used for LUTs, and 20% for registers and other 

miscellaneous logic, followingAnderson and Wang [7] and 

a private communication [22]. It is important to note that 

this 50%–30%–20% model is an estimate based on a 

traditional full FPGA design where-by the routing and 

internal CLB crossbars are optimized toward 6-LUTs. 

Production of an optimized FPGA utilizing our new 

MUX4 elements would surely change said model. 

However, optimizing the entire routing architecture toward 

our MUX4 variants, measuring the routing architecture, 

and closing the loop by creating a more accurate model is 

out of the scope of this work. 

Area calculation: 

Using this model, we can make some observations 

about the hybrid CLB architecture. The 30% that normally 

would account for ten 6-LUT LEs within the tile is now 

split between the smaller MUX4 elements and 6-LUTs. 

For example, in a 3 MUX4:7 6-LUT architecture, the area 

relative to the reference area model can be estimated by 

deducing the Logic Change% = (3 × 0.116 + 7)/10 (3 

MUX4s each at 0.116 the area of a 6-LUT and 7 6-LUTs), 

and multiplying Logic Change% × 30% = 22% of total 

FPGA area. If routing and miscellaneous area were held 

constant, our overall architecture area is Area3:7 = 50% + 

20% + 22% = 92% of the reference area—8% area savings. 

However, this is the maximum area savings and it can only 

be realized by circuits that have a natural (i.e., inherent) 

MUX4:LUT ratio greater than or equal to the architecture 

ratio. In addition, since any function that can be mapped to 

a MUX4 element can also be mapped into a 6-LUT, all 

excess MUX4 functions can be mapped to 6-LUTs. If the 

natural MUX4: LUT ratio of the circuit is less than the 

architecture ratio, additional CLBs will be required to 

supply more LUTs. In addition, the number of CLBs may 

also increase during CLB packing (CLB Change%) and 

routing demand may increase post placement and routing 

(Routing Change%). In general, the model used to estimate 

area relative to the baseline 6-LUT only architecture 

(nonfracturable or fracturable) is as follows: 
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Using this model, it is useful to calculate how many 

additional CLBs can be tolerated for our new architectures. 

Again, consider a 3:7 MUX4:LUT architecture. 

Disregarding packing, placement, and routing effects 

 

This means that an area win can only be achieved 

if the number of CLBs needed to implement circuits in a 

hybrid 3:7 architecture is less than 1.08× the number 

needed for a traditional LUT-only architecture. Similarly, 

the calculation is performed for the fracturable architecture 

with the larger Dual MUX4 element. A full table for all 

architectures showing the architectural minimum area and 

tolerable CLB increase is shown in Table II. 

TABLE II 

PER ARCHITECTURE, MINIMUM RELATIVE ARCHITECTURAL PERCENTAGE AREA, AND TOLERABLE 

PERCENTAGE CLB INCREASE ASSUMING CONSTANT ROUTING DEMAND 

IV. TECHNOLOGY MAPPING USING ABC 

ABC [13] was used for technology mapping, with 

modifications that allow for MUX4-embeddable function 

identification and MUX2-embeddable function 

indentification in the case of fracturable MUX4s and 

custom mapping. The internal data structure used within 

the ABC is an AIG, where the logic circuit is represented 

using 2-input AND gates with inverters. Priority Cuts 

mapping in ABC (invoked with the if command) [23] was 

modified to perform our custom technology mapping. This 

mapper traverses the AIG from primary inputs to primary 

outputs finding intermediate mappings for internal nodes 

and finally the primary outputs, using a dynamic 

programming approach. The priority cuts mapper performs 

multiple passes on the AIG to find the best cut per node. 

For depth-oriented mapping, the mapper first prioritizes 

mapping depth then optimizes for area discarding cuts 

whose selection would increase the overall depth of the 

mapped network. Based on this standard mapper, two 

mapper variants were produced and evaluated. The first 

variant, NaturalMux, evaluates and identifies internal 

functions that are MUX4-embeddable, agnostic of the 

target architecture; i.e., this flow uses the default priority 

cuts mapping and performs a postprocessing step to 

identify MUX4-embeddable functions. From this mapping, 

we can evaluate what area savings are possible without any 

mapper changes. The second variant MuxMap, area-

weights the MUX4-embeddable cuts relative to 6-LUT 

cuts, thereby establishing a preference for 

selection/creation of MUX4-embeddable solutions. 

In this paper, each of the select input(s) and data 

inputs to the MUX4 element is classified by the mapper on 

a pin-by-pin basis, so that much more accurate packing can 

be performed in the VPR.  

A. Natural Mux  

Natural Mux mapping invokes the standard priority cuts 

mapper. Following mapping, we use the preceding 

approach to determine if the LUT logic functions in the 

mapping are MUX4-embeddable. This is needed so we can 

identify which LUTs are MUX4-embeddable in the 

subsequent packing stage.  

B. Mux Map  

In default ABC technology mapping, each LUT 

has a unit area of 1. In our Mux Map approach, we use a 

lower weight for the cases where logic functions are 

MUX4-embeddable. Following the area model where 50% 

of an FPGA tile area is routing, 30% is 6-LUTs and 20% is 

miscellaneous circuitry (FFs + other), we can derive the 

weight of a MUX4 element versus a 6-LUT. Dividing an 

FPGA tile into ten subtiles that contain a single 6-LUT 

plus the 6-LUT’s associated routing and miscellaneous 

circuitry, the 6-LUT or logic portion of a subtile is 3% and 

the miscellaneous circuitry and routingis 7% of a complete 

tile. Recall from Section III-D that a MUX4 element 
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consumes 11.6% of the area of a 6-LUT. Therefore, the 

area of a subtile with a MUX4 is 7.45% of the entire tile, 

i.e., 7% routing and miscellaneous circuitry area plus 

11.6% × 3% logic area. The area ratio of a subtile with a 

MUX4 versus a subtile with a 6-LUT would be roughly 

7.34%/10% = 0.734% (assuming the routing and other 

circuitry is held constant). Following this reasoning, we 

weight MUX4s conservatively at 80% of a 6-LUT during 

technology mapping. Experimental results shown in 

Section VI-A show that this is a reasonable choice.  

C. Select Mapping  

Depending on the circuit, Natural Mux or Mux 

Map may be preferred. In select mapping, the circuit is first 

mapped using NaturalMux. Following from the discussion 

in Section III-D, we know that if a circuit’s MUX4:LUT 

ratio is higher than the architectural ratio, maximum area 

reductions are realized. Therefore, if the natural ratio of the 

circuit is higher than our target architectural ratio, we use 

this mapping. Otherwise, if the natural ratio is lower than 

the architectural ratio, we rerun the mapping with the Mux 

Map mapper to encourage the selection of more MUX4-

embeddable LEs. Note that the technology mapping run-

time is a small fraction of that required for placement and 

routing. 

V. MODELING USING VPR 

VPR was utilized to perform architectural 

evaluation. The standard ten 6-LUT CLB design in 40-nm 

included with the VPR dissemination was utilized for 

baseline modeling. The hybrid CLBs appeared in Figs. 3 

and 4 were modeled utilizing the XML-based VPR 

architectural language. The piece from the design file for 

the physical block solidified MUX4 element, this code 

indicates a MUX4 as a six-input one-yield black box to the 

VPR. What's more, since all MUX4s can also be mapped 

to the 6-LUTs, an additional mode was added to the 6-LUT 

physical block.  

The architectures with CLBs having MUX4:LUT 

ratios from 1:9 to 5:5 were created from the baseline 40-

nm architectures with delays obtained through circuit 

simulations of the MUX4 variants. Importantly, we made 

minor modifications to the VPR packing algorithm [1] 

itself, so that the MUX4 netlist elements are preferred to be 

packed into the MUX4 LEs in the architecture (while 

limiting packing MUX4 netlist elements into LUTs). The 

modifications involved changing the attraction function 

during the CLB packing. One change was to ensure that 

the logic functions that were MUX4 embeddable were 

preferentially packed into a physical MUX4 element and 

not into an LUT. Another was to apply a negative weight 

on MUX4-embeddable functions when the current CLB’s 

physical MUX4 elements are all occupied—also 

preventing MUX4-embeddable functions from being 

placed into the LUTs. Without this, the MUX4 netlist 

elements might needlessly consume LUTs, which should 

be reserved, where possible, for those netlist elements that 

demand their flexibility. This becomes doubly important 

for fracturable architectures, since their packing problem is 

more complex. Without this modification, a significant 

CLB usage increase was observed across all benchmark 

sets. 

VI. EXPERIMENTAL EVALUATION 

To determine the benefits of these new 

architectures, evaluation was performed for each 

architecture using multiple benchmark suites and mapping 

schemes. Two benchmarks suites were used to evaluate our 

hybrid architectures: 1) VTR7 [1] and 2) CHStone [2]. 

Over the nonfracturable and fracturable architecture 

families, two sets of experiments were performed using the 

NaturalMux and Mux Map mapping schemes. 

As the number of LEs grows, packing, placement, 

and routing effects play a greater role in the final circuit 

area. In the remainder of this paper, a weighting of 80% 

was chosen for the Mux Map as this gave a good balance 

of additional MUX4-embeddable LEs. Lower weightings 

result in many additional LEs, exacerbating the losses due 

to packing, placement, and routing. The left-hand side of 

Table III shows the projected area results for NaturalMux 

mapping as well as the baseline statistics of each 

benchmark in the two benchmark suites. 

TABLE III 

POSTMAPPING AREA ESTIMATE FOR VTR7 AND CHSTONE BENCHMARKS ASSUMING COMPLETE CLB 

PACKING AND NO INCREASE IN ROUTING DEMAND 
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VII. RESULTS 

The composed Verilog HDL Modules have effectively 

recreated and confirmed utilizing Isim Simulator and 

orchestrated utilizing Xilinxise13.2. 

SIMULATION RESULTS: 

 

RTL schematic: 

 

Technology Schematic: 
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Design summary: 

 

Timing Report: 

 

VIII. CONCLUSION 

In this paper we proposed another hybrid CLB 

design containing MUX4 hard MUX elements and 

demonstrated procedures for efficiently mapping to these 

models. We also gave analysis of the benchmark suites 

post mapping, examining the conveyance of functions 

inside every benchmark suite. The area decreases for 

nonfracturable structures, is 8% and MUX4:LUT 

proportion is 4:6 and on account of fracturable engineering 

the area diminishments are 2%.The CHStone benchmarks 

being abnormal state blended with LegUp-HLS also 

demonstrated marginally better execution and this could be 

because of the way LegUp performs HLS on the CHStone 

benchmarks themselves. Overall, the expansion of MUX4s 

to FPGA models minimally affect FMax and show 

potential for enhancing logic-thickness in nonfracturable 

structures and unobtrusive potential for enhancing logic 

thickness in fracturable design. 
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