

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue-17

December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3959

A Novel Design and Implementation of Hybrid Lut/Multiplexer For

Fpga Logic Architectures
Y. Priyanka

, A. Deepika,

A. Vikas

y.priyankareddy@gmail.com
1
 , adeepika.745@gmail.com

2
 , vikas.ambekar@hotmail.com

3

Assistant Professor, Dept of ECE, TKR college of Engineering and Technology, Medbowli, Hyderabad, Telangana, India.

Abstract: Hybrid configurable logic block architectures

for field-programmable gate arrays that contain a mixture

of lookup tables and hardened multiplexers are evaluated

toward the goal of higher logic density and area reduction.

Multiple hybrid configurable logic block architectures,

both nonfracturable and fracturable with varying

MUX:LUT logic element ratios are evaluated across two

benchmark suites (VTR and CHStone) using a custom tool

flow consisting of LegUp-HLS, Odin-II front-end synthesis,

ABC logic synthesis and technology mapping, and VPR for

packing, placement, routing, and architecture exploration.

Technology mapping optimizations that target the

proposed architectures are also implemented within ABC.

Experimentally, we show that for nonfracturable

architectures, without any mapper optimizations, we

naturally save up to ∼8% area postplace and route; both

accounting for complex logic block and routing area while

maintaining mapping depth. With architecture-aware

technology mapper optimizations in ABC, additional area

is saved, post-place-and-route. For fracturable

architectures, experiments show that only marginal gains

are seen after place-and-route up to ∼2%. For both

nonfracturable and fracturable architectures, we see

minimal impact on timing performance for the

architectures with best area-efficiency.

Keywords— FPGA, Multiplexer logic element, Complex

logic block, mapping technologies

I. INTRODUCTION

A field-programmable gate array (FPGA) is a

block of programmable logic that can implement multi-

level logic functions. FPGAs are most commonly used as

separate commodity chips that can be programmed to

implement large functions. However, small blocks of

FPGA logic can be useful components on-chip to allow the

user of the chip to customize part of the chip’s logical

function. An FPGA block must implement both

combinational logic functions and interconnect to be able

to construct multi-level logic functions. There are several

different technologies for programming FPGAs, but most

logic processes are unlikely to implement antifuses or

similar hard programming technologies.

Throughout the history of field-programmable

gate arrays (FPGAs), lookup tables (LUTs) have been the

primary logic element (LE) used to realize combinational

logic. A K-input LUT is generic and very flexible—able to

implement any K-input Boolean function. The use of LUTs

simplifies technology mapping as the problem is reduced

to a graph covering problem. However, an exponential area

price is paid as larger LUTs are considered. The value of K

between 4 and 6 is typically seen in industry and academia,

and this range has been demonstrated to offer a good

area/performance compromise [4], [5]. Recently, a number

of other works have explored alternative FPGA LE

architectures for performance improvement [6]–[10] to

close the large gap between FPGAs and application-

specific integrated circuits (ASICs) [11].

In this paper, we present a six-input LE based on a

4-to-1 MUX, MUX4, that can realize a subset of six input

Boolean logic functions, and a new hybrid complex logic

block (CLB) that contains a mixture of MUX4s and 6-

LUTs. Hybrid configurable logic block architectures for

field programmable gate arrays that contain a mixture of

lookup tables and hardened multiplexers are evaluated

toward the goal of higher logic density and area reduction.

LOOKUP TABLES

The fundamental strategy used to build a

combinational logic block (CLB) also called a logic

element in a SRAM-based FPGA is the lookup table

(LUT). As appeared in Figure, the lookup table is a SRAM

that is utilized to implement a fact table. Each address in

the SRAM represents a combination of inputs to the logic

element. The value stored at that address represents the

mailto:y.priyankareddy@gmail.com1
mailto:adeepika.745@gmail.com2
mailto:vikas.ambekar@hotmail.com

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue-17

December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3960

value of the function for that input combination. An n-

input function requires an SRAM with locations. A n-input

function requires a SRAM with locations.

Since a fundamental SRAM isn't clocked, the

lookup table logic element works much as some other logic

gate as its inputs changes, its yield changes after some

delay.

Fig .1: Lookup Tables

PROGRAMMING A LOOKUP TABLE

Unlike a typical logic gate, the function

represented by the logic element can be changed by

changing the values of the bits stored in the SRAM. As a

result, the n-input logic element can represent functions

(though some of these functions are permutations of each

other).

 Fig.2: Programming a Lookup Table

A typical logic element has four inputs. The delay

through the lookup table is independent of the bits stored in

the SRAM, so the delay through the logic element is the

same for all functions. This means that, for example, a

lookup table-based logic element will exhibit the same

delay for a 4-input XOR and a 4-input NAND. In contrast,

a 4-input XOR built with static CMOS logic is

considerably slower than a 4-input NAND. Of course, the

static logic gate is generally faster than the logic element.

Logic elements generally contain registers flip-flops and

latches as well as combinational logic. A flip-flop or latch

is small compared to the combinational logic element (in

sharp contrast to the situation in custom VLSI), so it makes

sense to add it to the combinational logic element. Using a

separate cell for the memory element would simply take up

routing resources. The memory element is connected to the

output; whether it stores a given value is controlled by its

clock and enable inputs.

In this paper, we propose incorporating (some)

hardened multiplexers (MUXs) in the FPGA logic blocks

as a means of increasing silicon area efficiency and logic

density. The MUX based logic blocks for the FPGAs have

seen success in early commercial architectures, such as the

Actel ACT-1/2/3 architectures, and efficient mapping to

these structures has been studied in the early 1990s.

However, their use in commercial chips has waned,

perhaps partly due to the ease with which logic functions

can be mapped into LUTs, simplifying the entire computer

aided design (CAD) flow. Nevertheless, it is widely

understood that the LUTs are inefficient at implementing

MUXs, and that MUXs are frequently used in logic

circuits.

To underscore the wastefulness of LUTs

implementing MUXs, think about that as a six information

LUT (6-LUT) is essentially a 64-to-1 MUX (to select 1 of

64 truth-table lines) and 64-SRAM arrangement cells, yet

it can only realize a 4-to-1 MUX (4 data+2 select=6

inputs). In this paper, we exhibit a six-input LE in view of

a 4-to-1 MUX, MUX4, that can realize a subset of six-

input Boolean logic capacities, and another hybrid complex

logic block (CLB) that contains a blend of MUX4s and 6-

LUTs. The proposed MUX4s are small contrasted and a 6-

LUT (15% of 6-LUT area), and can efficiently delineate

{2, 3}- input functions and some {4, 5, 6}- input functions.

What's more, we explore fracturability of Les the ability to

split the LEs into multiple smaller elements in both LUTs

and MUX4s to build logic thickness. The proportion of

LEs that should be LUTs versus MUX4s is also explored

toward upgrading logic thickness for both nonfracturable

and fracturable FPGA structures. To facilitate the

engineering exploration, we developed a CAD flow for

mapping into the proposed hybrid CLBs, made utilizing

ABC and VPR, and portray technology mapping

procedures that energize the selection of logic works that

can be inserted into the MUX4 elements. The primary

commitments in this paper are as follows.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue-17

December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3961

1) Two hybrid CLB architectures (nonfracturable

and fracturable) that contain a mixture of MUX4 LEs and

the traditional LUTs yielding up to 8% area savings.

2) Mapping techniques called NaturalMux and

MuxMap targeted toward the hybrid CLB architecture that

optimize for area, while preserving the original mapping

depth.

3) A full post-place-and-route architecture

evaluation with VTR7 [1], and CHStone [2] benchmarks

facilitated by LegUp-HLS[3], the Verilog-to-Routing

project [1] showing impact on both area and delay.

Contrasted with the preliminary publication, we

have performed transistor level modeling of the MUX4

LE, additionally examined the fracturable structures, and

unified the open source tool-flow from C through LegUp-

HLS to the VTR flow. Meager crossbars (versus full

crossbars in the past work) have also been included in our

CLBs, expanding modeling exactness. The new transistor-

level modeling of the MUX4 also gives more exact results

as contrasted and the past work. Results have also been

expanded with the inclusion of timing results and larger

architectural proportion clears.

II. LITERATURE REVIEW

Recent works have demonstrated that the

heterogeneous designs and combination techniques can

significantly affect enhancing logic density and delay,

narrowing the ASIC– FPGA gap . Works by Anderson and

Wang with "gated" LUTs, at that point with asymmetric

LUT LEs, demonstrate that the LUT elements show in

commercial FPGAs give superfluous flexibility. Toward

enhanced delay and area, the macrocell-based FPGA

designs have been proposed. These investigations portray

huge changes to the traditional FPGA structures, though

the progressions proposed here build on models utilized as

a part of industry and the scholarly world. Similarly, and-

inverter cones have been proposed as replacements for the

LUTs, propelled by and-inverter diagrams (AIGs).

Purnaprajna and Ienne explored the possibility of

repurposing the current MUXs contained inside the Xilinx

Logic Slices. Similar to this work, they utilize the ABC

need cut mapper and also VPR for pressing, place, and

course. Be that as it may, their work is primarily delay-

based demonstrating a normal speed up of 16% utilizing

only ten of 19 VTR7 benchmarks.

In this article, we contemplate the technology

mapping problem for a novel field-programmable gate

exhibit (FPGA) design that is based onk-input single-yield

programmable logic cluster (PLA-) like cells, or, k/m-

macrocells. Every cell in this design can implement a

single yield functions of up to k inputs and up to m item

terms. We develop an exceptionally effective technology

mapping algorithm, km flow, for this new sort of

engineering. The experimental results demonstrate that our

algorithm can accomplish profundity optimality on almost

all the experiments in an arrangement of 16

Microelectronics Center of North Carolina (MCNC)

benchmarks. Moreover it is demonstrated that on this

arrangement of benchmarks, with only a relatively small

number of item terms (m≤k+3), the k/m-full scale cell-

based FPGAs can accomplish the same or similar mapping

profundity contrasted and the traditional k-input single-

yield lookup table-(k-LUT-) based FPGAs. We also

investigate the total area and delay of k/m-large scale cell-

based FPGAs and contrast them and those of the

commonly utilized 4-LUT-based FPGAs. The

experimental results demonstrate that k/m-full scale cell-

based FPGAs can outflank 4-LUT-based FPGAs as far as

both delay and area after placement and steering by VPR

on this arrangement of benchmarks.

This paper presents experimental estimations of

the contrasts between a 90-nm CMOS field programmable

gate exhibit (FPGA) and 90-nm CMOS standard-cell

application particular coordinated circuits (ASICs) as far as

logic thickness, circuit speed, and power consumption for

center logic. We are roused to make these estimations to

enable framework fashioners to settle on better educated

decisions between these two media and to offer knowledge

to FPGA creators on the lacks to assault and, in this

manner, enhance FPGAs. We depict the methodology by

which the estimations were gotten and demonstrate that,

for circuits containing only look-up table-based logic and

flip-flops, the proportion of silicon area required to

implement them in FPGAs and ASICs is by and large 35.

Current FPGAs also contain "hard" blocks, for example,

multiplier/accumulators and block recollections. We find

that these blocks decrease this normal area gap

significantly to as meager as 18 for our benchmarks, and

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue-17

December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3962

we evaluate that broad utilization of these hard blocks

could potentially lower the gap to below five. The

proportion of critical-way delay, from FPGA to ASIC, is

roughly three to four with less influence from block

memory and hard multipliers. The dynamic power

consumption proportion is approximately 14 times and,

with hard blocks, this gap generally ends up noticeably

smaller.

In this paper the new architectural proposals are

routinely created in both scholarly community and

industry. For FPGA's to keep on growing, it is essential

that these new architectural thoughts are fairly and

accurately evaluated, so those commendable thoughts can

be included in future chips. Typically, this evaluation is

finished utilizing experimentation. In any case, the

utilization of experimentation is perilous, since it requires

making assumptions in regards to the tools and design of

the gadget being referred to. In the event that these

assumptions are not precise, the conclusions from the trials

may not be meaningful. In this paper, we investigate the

affectability of FPGA architectural conclusions to

experimental varieties. To influence our examination to

solid, we evaluate the affectability of four previously

published and well-known FPGA architectural results:

lookup-table size, switch block topology, cluster size, and

memory measure. It is demonstrated that these

examinations are significantly influenced by the

assumptions, tools, and procedures utilized as a part of the

trials.

III. PROPOSED ARCHITECTURES

A. MUX4: 4-to-1 Multiplexer Logic Element

The MUX4 LE shown in Fig. 3 consists of a 4-to-

1 MUX with optional inversion on its inputs that allow the

realization of any {2, 3}-input function, some {4, 5}-input

functions, and one 6-input function—a 4-to-1 MUX itself

with optional inversion on the data inputs. A 4-to-1 MUX

matches the inputpin count of a 6-LUT, allowing for fair

comparisons with respect to the connectivity and

intracluster routing. Naturally, any two-input Boolean

function can be easily implemented in the MUX4: the two

function inputs can be tied to the select lines and the truth

table values (logic-0 or logic-1) can be routed to the data

inputs accordingly. Or alternately, a Shannon

decomposition can be performed about one of the two

variables—the variable can then feed a select input. The

Shannon cofactors will contain at most one variable and

can, therefore, be fed to the data inputs (the optional

inversion may be needed). For three-input functions,

consider that a Shannon decomposition about one variable

produces cofactors with at most two variables.

A second decomposition of the cofactors about

one of their two remaining variables produces cofactors

with at most one variable. Such single-variable cofactors

can be fed to the data inputs (the optional inversion may be

needed), with the decomposition variables feeding the

select inputs. Likewise, functions of more than four inputs

can be implemented in the MUX4 as long as Shannon

decomposition with respect to any two inputs produce

cofactors with at most one input. Observe that input

inversion on each select input is omitted as this would only

serve to permute the four MUX data inputs. While this

could help routability within the CLB’s internal crossbar,

additional inversions on the select inputs would not

increase the number of Boolean functions that are able to

map to the MUX4 LE.

Fig.3: MUX4 LE depicting optional data input

inversions

B. Logic Elements, Fracturability, and MUX4-Based

Variants

Two families of architectures were created:

1) Without fracturable LEs and

2) With fracturable LEs.

In this paper, the fracturable LEs refer to an

architectural element on which one or more logic functions

can be optionally mapped. Nonfracturable LEs refer to an

architectural element on which only one logic function is

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue-17

December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3963

mapped. In the nonfracturable architectures, the MUX4

element shown in Fig. 3 is used together with

nonfracturable 6-LUTs. This element shares the same

number of inputs as a 6-LUT lending for fair comparison

with respect to the input connectivity. For the fracturable

architecture, we consider an eight-input LE, closely

matched with the adaptive logic module in recent Altera

Stratix FPGA families.

Fracturable 6-LUT

Fig. 4: Fracturable 6-LUT that can be fractured into

two 5-LUTs with two shared inputs.

A 6-LUT that can be fractured into two 5-LUTs

using eight inputs is shown in Fig. 4. Two five-input

functions can be mapped into this LE if two inputs are

shared between the two functions. If no inputs are shared,

two four-input functions can be mapped to each 5-LUT.

For the MUX4 variant, Dual MUX4, we use two MUX4s

within a single eight-input LE. In the configuration, shown

in Fig. 5, the two MUX4s are wired to have dedicated

select inputs and shared data inputs. This configuration

allows this structure to map two independent (no shared

inputs) three-input functions, while larger functions may be

mapped dependent on the shared inputs between both

functions. An architecture in which a 4-to-1 MUX

(MUX4) is fractured into two smaller 2-to-1 MUXs was

first considered However, since a 2-to-1 MUX’s mapping

flexibility is quite limited (can only map two-input

functions and the three-input 2-to-1 MUX itself), little

benefit was added compared with the overheads of making

the MUX4 fracturable and poor area results were observed.

Fig.5: Dual MUX4 LE that utilizes dedicated select

inputs and shared data Inputs

C. Hybrid Complex Logic Block

A variety of different architectures were

considered—the first being a nonfracturable architecture.

In the nonfracturable architecture, the CLB has 40 inputs

and ten basic LEs (BLEs), with each BLE having six

inputs and one output following empirical data in prior

work [4]. Fig. 6 shows this nonfracturable CLB

architecture with BLEs that contain an optional register.

We vary the ratio of MUX4s to LUTs within the ten

element CLB from 1:9 to 5:5 MUX4s:6-LUTs. The MUX4

element is proposed to work in conjunction with 6-LUTs,

creating a hybrid CLB with a mixture of 6-LUTs and

MUX4s (or MUX4 variants). Fig. 6 shows the organization

of our CLB and internal BLEs. For fracturable

architectures, the CLB has 80 inputs and ten BLEs, with

each BLE having eight inputs and two outputs emulating

an Altera Stratix Adaptive-LUT [18]. The same sweep of

MUX4 to LUT ratios was also performed.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue-17

December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3964

Fig. 6: Hybrid CLB with a 50% depopulated intra-

CLB crossbar depicting BLE internals for

nonfracturable (one optional register and one output)

architecture.

Fig. 7 shows the fracturable architecture with

eight inputs to each BLE that contains two optional

registers. We evaluate fracturability of LEs versus

nonfracturable LEs in the context of MUX4 elements since

fracturable LUTs are common in commercial architectures.

For example, Altera Adaptive 6-LUTs in Stratix IV and

Xilinx Virtex 5 6-LUTs can be fractured into two smaller

LUTs with some limitations on inputs. The crossbars for

fracturable architectures are larger than the nonfracturable

architectures for two reasons. Due to the virtual increase of

LEs, a larger number of CLB inputs are required, which

increases crossbar size. Since there are now twice as many

outputs from the LEs, these additional outputs need to also

be fed back into the crossbar, also increasing its size. Due

to this disparity in crossbar size, fair comparisons cannot

be made between fracturable and nonfracturable

architectures. Therefore, in this paper, we compare

nonfracturable hybrid CLB architectures to a baseline LUT

only nonfracturable architecture and we compare

fracturable hybrid CLB architectures to a baseline LUT-

only fracturable architecture.

Fig.7: Hybrid CLB with a 50% depopulated intra-CLB

crossbar depicting BLE internals for a fracturable (two

optional registers and two outputs) architecture.

D. Area Modeling

1) MUX4 Logic Element: Initial estimates of the

MUX4 element demonstrated that the MUX4 is∼10% the

area of a 6-LUT overall. A 4-to-1 MUX can be realized

with three 2-to-1 MUXs. Consequently, the MUX4

element contains seven 2-to-1 MUXs, four SRAM cells,

and four inverters altogether (see Fig. 3). The optional

inversion utilizes the four SRAM cells, though whatever is

left of the LE setup is performed through steering. Also,

the profundity of the MUX tree is halved contrasted and

the 6-LUT, which has six 2-to-1 MUXs on its longest

ways. Conservatively, assuming consistent pass transistor

measuring and that the area of a 2-to-1 MUX and six

transistor SRAM cell are roughly equivalent, the MUX4

element has (1/16)th the SRAM area and(1/8)th the MUX

area of a 6-LUT.

These estimates were revised using transistor

level modelling of the circuit blocks. Transistor-level

optimization of the constituent circuit blocks of an FPGA

requires an understanding of the optimal area-delay

tradeoffs for each individual circuit block. This requires

extracting a representative critical path, which is a path

whose composition of blocks and topology will be similar

to the critical path of a specific design. Extracting the

representative critical path allows us to judge to what

extent each individual block is timing critical, which thus

establishes an area-delay tradeoff goals for each block.

This is in line with the transistor-level optimization tool

developed previously [20]. We use the results of prior

work [20] to establish the optimal area-delay tradeoff for

6-LUTs in a conventional island-style FPGA architecture

with typical architectural parameters. The resulting 6-LUT

delay serves as a point of reference for optimization for the

circuits considered in this paper: in the interest of

maximizing area reduction while allowing performance to

be maintained (ignoring the differences in cell counts

between mapping to a conventional LUT and the LEs

proposed in this paper), we attempt to match the delay of a

6-LUT while minimizing the area of each of the variants of

the MUX4 circuits.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue-17

December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3965

Transistor level modelling and optimizations were

based on a predictive 22-nm high performance process

[21], while the area model presented in prior work [20]

was used to estimate the area of various circuit structures.

With this methodology, we determined an area-delay

optimal 6-LUT has an area of 930 minimum-width

transistors, and a worst-case delay of 261 ps. For the

MUX4 cell and Dual MUX4 cell, a minimum area and

minimum delay cell was created. The minimum area

MUX4 cell has an area of 95 minimumwidth transistors

and a delay of 204 ps; all transistors were minimum-width

in this case, and as the minimum area solution for this

circuit was able to meet (and improve upon) the worst-case

delay target of a 6-LUT. Similarly, the Dual MUX4 cell

has an area of 249 minimum-width transistors while

meeting the worst-case delay requirement. However, we

chose to use the minimum delay design for both the MUX4

and Dual MUX4 elements for the rest of the study as there

is not a significant increase in area over the minimum area

design. Although the modelling was performed in the 22-

nm process, the standard VPR architecture we use has all

parameters (routing delays, crossbar delays, and so on)

scaled to a 40-nm process.

In this standard VPR architecture, parameters are

compounded from a multitude of sources, some also in

other lithographic processes, and subsequently scaled to

40- nm. Likewise, we linearly scale our delays by

comparing the delays of our 22-nm 6-LUT (261 ps) and the

6-LUT in the standard architecture (398 ps). The delays for

each design after scaling to 40-nm are shown in Table I.

TABLE I

LE TRANSISTOR MODELS WITH AREA GIVEN IN

MINIMUM-WIDTH TRANSISTOR AREA AND

DELAYS SCALED FOR A 40-nm PROCESS

FPGA Area Model:

Although determining the area of a MUX4

element relative to a 6-LUT is important, we need to also

examine global FPGA area considering the number of CLB

tiles, area overheads within the CLB and routing area per

CLB. Throughout this paper, global FPGA area was

estimated assuming that, per tile, 50% of the area is

intercluster and intracluster routing, 30% of the area is

used for LUTs, and 20% for registers and other

miscellaneous logic, followingAnderson and Wang [7] and

a private communication [22]. It is important to note that

this 50%–30%–20% model is an estimate based on a

traditional full FPGA design where-by the routing and

internal CLB crossbars are optimized toward 6-LUTs.

Production of an optimized FPGA utilizing our new

MUX4 elements would surely change said model.

However, optimizing the entire routing architecture toward

our MUX4 variants, measuring the routing architecture,

and closing the loop by creating a more accurate model is

out of the scope of this work.

Area calculation:

Using this model, we can make some observations

about the hybrid CLB architecture. The 30% that normally

would account for ten 6-LUT LEs within the tile is now

split between the smaller MUX4 elements and 6-LUTs.

For example, in a 3 MUX4:7 6-LUT architecture, the area

relative to the reference area model can be estimated by

deducing the Logic Change% = (3 × 0.116 + 7)/10 (3

MUX4s each at 0.116 the area of a 6-LUT and 7 6-LUTs),

and multiplying Logic Change% × 30% = 22% of total

FPGA area. If routing and miscellaneous area were held

constant, our overall architecture area is Area3:7 = 50% +

20% + 22% = 92% of the reference area—8% area savings.

However, this is the maximum area savings and it can only

be realized by circuits that have a natural (i.e., inherent)

MUX4:LUT ratio greater than or equal to the architecture

ratio. In addition, since any function that can be mapped to

a MUX4 element can also be mapped into a 6-LUT, all

excess MUX4 functions can be mapped to 6-LUTs. If the

natural MUX4: LUT ratio of the circuit is less than the

architecture ratio, additional CLBs will be required to

supply more LUTs. In addition, the number of CLBs may

also increase during CLB packing (CLB Change%) and

routing demand may increase post placement and routing

(Routing Change%). In general, the model used to estimate

area relative to the baseline 6-LUT only architecture

(nonfracturable or fracturable) is as follows:

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue-17

December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3966

Using this model, it is useful to calculate how many

additional CLBs can be tolerated for our new architectures.

Again, consider a 3:7 MUX4:LUT architecture.

Disregarding packing, placement, and routing effects

This means that an area win can only be achieved

if the number of CLBs needed to implement circuits in a

hybrid 3:7 architecture is less than 1.08× the number

needed for a traditional LUT-only architecture. Similarly,

the calculation is performed for the fracturable architecture

with the larger Dual MUX4 element. A full table for all

architectures showing the architectural minimum area and

tolerable CLB increase is shown in Table II.

TABLE II

PER ARCHITECTURE, MINIMUM RELATIVE ARCHITECTURAL PERCENTAGE AREA, AND TOLERABLE

PERCENTAGE CLB INCREASE ASSUMING CONSTANT ROUTING DEMAND

IV. TECHNOLOGY MAPPING USING ABC

ABC [13] was used for technology mapping, with

modifications that allow for MUX4-embeddable function

identification and MUX2-embeddable function

indentification in the case of fracturable MUX4s and

custom mapping. The internal data structure used within

the ABC is an AIG, where the logic circuit is represented

using 2-input AND gates with inverters. Priority Cuts

mapping in ABC (invoked with the if command) [23] was

modified to perform our custom technology mapping. This

mapper traverses the AIG from primary inputs to primary

outputs finding intermediate mappings for internal nodes

and finally the primary outputs, using a dynamic

programming approach. The priority cuts mapper performs

multiple passes on the AIG to find the best cut per node.

For depth-oriented mapping, the mapper first prioritizes

mapping depth then optimizes for area discarding cuts

whose selection would increase the overall depth of the

mapped network. Based on this standard mapper, two

mapper variants were produced and evaluated. The first

variant, NaturalMux, evaluates and identifies internal

functions that are MUX4-embeddable, agnostic of the

target architecture; i.e., this flow uses the default priority

cuts mapping and performs a postprocessing step to

identify MUX4-embeddable functions. From this mapping,

we can evaluate what area savings are possible without any

mapper changes. The second variant MuxMap, area-

weights the MUX4-embeddable cuts relative to 6-LUT

cuts, thereby establishing a preference for

selection/creation of MUX4-embeddable solutions.

In this paper, each of the select input(s) and data

inputs to the MUX4 element is classified by the mapper on

a pin-by-pin basis, so that much more accurate packing can

be performed in the VPR.

A. Natural Mux

Natural Mux mapping invokes the standard priority cuts

mapper. Following mapping, we use the preceding

approach to determine if the LUT logic functions in the

mapping are MUX4-embeddable. This is needed so we can

identify which LUTs are MUX4-embeddable in the

subsequent packing stage.

B. Mux Map

In default ABC technology mapping, each LUT

has a unit area of 1. In our Mux Map approach, we use a

lower weight for the cases where logic functions are

MUX4-embeddable. Following the area model where 50%

of an FPGA tile area is routing, 30% is 6-LUTs and 20% is

miscellaneous circuitry (FFs + other), we can derive the

weight of a MUX4 element versus a 6-LUT. Dividing an

FPGA tile into ten subtiles that contain a single 6-LUT

plus the 6-LUT’s associated routing and miscellaneous

circuitry, the 6-LUT or logic portion of a subtile is 3% and

the miscellaneous circuitry and routingis 7% of a complete

tile. Recall from Section III-D that a MUX4 element

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue-17

December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3967

consumes 11.6% of the area of a 6-LUT. Therefore, the

area of a subtile with a MUX4 is 7.45% of the entire tile,

i.e., 7% routing and miscellaneous circuitry area plus

11.6% × 3% logic area. The area ratio of a subtile with a

MUX4 versus a subtile with a 6-LUT would be roughly

7.34%/10% = 0.734% (assuming the routing and other

circuitry is held constant). Following this reasoning, we

weight MUX4s conservatively at 80% of a 6-LUT during

technology mapping. Experimental results shown in

Section VI-A show that this is a reasonable choice.

C. Select Mapping

Depending on the circuit, Natural Mux or Mux

Map may be preferred. In select mapping, the circuit is first

mapped using NaturalMux. Following from the discussion

in Section III-D, we know that if a circuit’s MUX4:LUT

ratio is higher than the architectural ratio, maximum area

reductions are realized. Therefore, if the natural ratio of the

circuit is higher than our target architectural ratio, we use

this mapping. Otherwise, if the natural ratio is lower than

the architectural ratio, we rerun the mapping with the Mux

Map mapper to encourage the selection of more MUX4-

embeddable LEs. Note that the technology mapping run-

time is a small fraction of that required for placement and

routing.

V. MODELING USING VPR

VPR was utilized to perform architectural

evaluation. The standard ten 6-LUT CLB design in 40-nm

included with the VPR dissemination was utilized for

baseline modeling. The hybrid CLBs appeared in Figs. 3

and 4 were modeled utilizing the XML-based VPR

architectural language. The piece from the design file for

the physical block solidified MUX4 element, this code

indicates a MUX4 as a six-input one-yield black box to the

VPR. What's more, since all MUX4s can also be mapped

to the 6-LUTs, an additional mode was added to the 6-LUT

physical block.

The architectures with CLBs having MUX4:LUT

ratios from 1:9 to 5:5 were created from the baseline 40-

nm architectures with delays obtained through circuit

simulations of the MUX4 variants. Importantly, we made

minor modifications to the VPR packing algorithm [1]

itself, so that the MUX4 netlist elements are preferred to be

packed into the MUX4 LEs in the architecture (while

limiting packing MUX4 netlist elements into LUTs). The

modifications involved changing the attraction function

during the CLB packing. One change was to ensure that

the logic functions that were MUX4 embeddable were

preferentially packed into a physical MUX4 element and

not into an LUT. Another was to apply a negative weight

on MUX4-embeddable functions when the current CLB’s

physical MUX4 elements are all occupied—also

preventing MUX4-embeddable functions from being

placed into the LUTs. Without this, the MUX4 netlist

elements might needlessly consume LUTs, which should

be reserved, where possible, for those netlist elements that

demand their flexibility. This becomes doubly important

for fracturable architectures, since their packing problem is

more complex. Without this modification, a significant

CLB usage increase was observed across all benchmark

sets.

VI. EXPERIMENTAL EVALUATION

To determine the benefits of these new

architectures, evaluation was performed for each

architecture using multiple benchmark suites and mapping

schemes. Two benchmarks suites were used to evaluate our

hybrid architectures: 1) VTR7 [1] and 2) CHStone [2].

Over the nonfracturable and fracturable architecture

families, two sets of experiments were performed using the

NaturalMux and Mux Map mapping schemes.

As the number of LEs grows, packing, placement,

and routing effects play a greater role in the final circuit

area. In the remainder of this paper, a weighting of 80%

was chosen for the Mux Map as this gave a good balance

of additional MUX4-embeddable LEs. Lower weightings

result in many additional LEs, exacerbating the losses due

to packing, placement, and routing. The left-hand side of

Table III shows the projected area results for NaturalMux

mapping as well as the baseline statistics of each

benchmark in the two benchmark suites.

TABLE III

POSTMAPPING AREA ESTIMATE FOR VTR7 AND CHSTONE BENCHMARKS ASSUMING COMPLETE CLB

PACKING AND NO INCREASE IN ROUTING DEMAND

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue-17

December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3968

VII. RESULTS

The composed Verilog HDL Modules have effectively

recreated and confirmed utilizing Isim Simulator and

orchestrated utilizing Xilinxise13.2.

SIMULATION RESULTS:

RTL schematic:

Technology Schematic:

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue-17

December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3969

Design summary:

Timing Report:

VIII. CONCLUSION

In this paper we proposed another hybrid CLB

design containing MUX4 hard MUX elements and

demonstrated procedures for efficiently mapping to these

models. We also gave analysis of the benchmark suites

post mapping, examining the conveyance of functions

inside every benchmark suite. The area decreases for

nonfracturable structures, is 8% and MUX4:LUT

proportion is 4:6 and on account of fracturable engineering

the area diminishments are 2%.The CHStone benchmarks

being abnormal state blended with LegUp-HLS also

demonstrated marginally better execution and this could be

because of the way LegUp performs HLS on the CHStone

benchmarks themselves. Overall, the expansion of MUX4s

to FPGA models minimally affect FMax and show

potential for enhancing logic-thickness in nonfracturable

structures and unobtrusive potential for enhancing logic

thickness in fracturable design.

REFERENCES

[1] J. Rose et al., ―The VTR project: Architecture and

CAD for FPGAs from verilog to routing,‖ inProc.

ACM/SIGDA FPGA, 2012, pp. 77–86.

[2] Y. Hara, H. Tomiyama, S. Honda, and H. Takada,

―Proposal and quantitative analysis of the CHStone

benchmark program suite for practical C-based high-level

synthesis,‖ J. Inf. Process., vol. 17,pp. 242–254, Oct. 2009.

[3] A. Canis et al., ―LegUp: High-level synthesis for

FPGA-based processor/accelerator systems,‖ in Proc.

ACM/SIGDA FPGA, 2011, pp. 33–36.

[4] E. Ahmed and J. Rose, ―The effect of LUT and cluster

size on deepsubmicron FPGA performance and density,‖

IEEE Trans. Very Large Scale Integr. (VLSI), vol. 12, no.

3, pp. 288–298, Mar. 2004.

[5] J. Rose, R. Francis, D. Lewis, and P. Chow,

―Architecture of field programmable gate arrays: The

effect of logic block functionality on area efficiency,‖

IEEE J. Solid-State Circuits, vol. 25, no. 5,pp. 1217–1225,

Oct. 1990.

[6] H. Parandeh-Afshar, H. Benbihi, D. Novo, and P.

Ienne, ―Rethinking FPGAs: Elude the flexibility excess of

LUTs with and-inverter cones,‖ in Proc. ACM/SIGDA

FPGA, 2012, pp. 119–128.

[7] J. Anderson and Q. Wang, ―Improving logic density

through synthesisinspired architecture,‖ inProc. IEEE FPL,

Aug./Sep. 2009, pp. 105–111.

[8] J. Anderson and Q. Wang, ―Area-efficient FPGA logic

elements: Architecture and synthesis,‖ inProc. ASP DAC,

2011, pp. 369–375.

[9] J. Cong, H. Huang, and X. Yuan, ―Technology

mapping and architecture evalution for k/m-macrocell-

based FPGAs,‖ACM Trans. Design Autom. Electron.

Syst., vol. 10, no. 1, pp. 3–23, Jan. 2005

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 04 Issue-17

December 2017

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3970

[10] (2011). Virtex-6 FPGA User Guide. [Online].

Available: http://www.xilinx.com

[11] (2011). Stratix IV Device Handbook. [Online].

Available: http://www.altera.com

[12] G. Lemieux and D. Lewis, ―Using sparse crossbars

within LUT,‖ in Proc. 9th Int. Symp. ACM/SIGDA FPGA,

2001, pp. 59–68.

[13] C. Chiasson and V. Betz, ―COFFE: Fully-automated

transistor sizing for FPGAs,‖ in Proc. Int. Conf. FPT, Dec.

2013, pp. 34–41.

[14] Predictive Technology Model. [Online]. Available:

http://ptm.asu.edu/, accessed 2015.

 [15] A. Mishchenko, S. Cho, S. Chatterjee, and R.

Brayton, ―Combinational and sequential mapping with

priority cuts,‖ in Proc. IEEE/ACM Int. Conf. ICCAD, Nov.

2007, pp. 354–361.

[16] A. Yan, R. Cheng, and S. J. E. Wilton, ―On the

sensitivity of FPGA architectural conclusions to

experimental assumptions, tools, and techniques,‖ in Proc.

10th Int. Symp. ACM/SIGDA FPGA, 2002, pp. 147–156.

[17] K. Karplus, ―Amap: A technology mapper for

selector-based fieldprogrammable gate arrays,‖ in Proc.

28th ACM/IEE DAC, Jun. 1991, pp. 244–247.

[18] A. Mishchenko, S. Chatterjee, and R. Brayton, ―DAG-

aware AIG rewriting a fresh look at combinational logic

synthesis,‖ in Proc. 43rd Annu. DAC, 2006, pp. 532–535.

[19] V. Betz and J. Rose, ―VPR: A new packing,

placement and routing tool for FPGA research,‖ in Proc.

7th Int. Workshop FPL, 1997, pp. 213–222.

[20] S. A. Chin and J. H. Anderson, ―A case for hardened

multiplexers in FPGAs,‖ in Proc. FPT, Dec. 2013, pp. 42–

49.

[21] M. Purnaprajna and P. Ienne, ―A case for

heterogeneous technologymapping: Soft versus hard

multiplexers,‖ in Proc. IEEE 21st Annu. Int. Symp. FCCM,

Apr. 2013, pp. 53–56.

http://www.altera.com/

