

Existence of Cyclic Subgroup of order p of group of Automorphisms of a finite p-group

Manoj Kumar Soni

Assistant Professor Department of Mathematics Govind National College, Narangwal, Distt. Ludhiana

e-mail: manojksoni74@gmail.com

Abstract: We give definitions of some automorphisms and give some important results. We find condition that cyclic subgroup of order p of group of automorphisms of a finite p-group exists.

Keywords: Inner automorphism, Central automorphism, outer automorphism

1. Introduction

Let G be a p-group. An isomorphism from a group G onto itself is called an automorphism of G. Aut(G)denote the set of all automorphisms of G. The automorphism $f_a: G \rightarrow G$ given by $f_a(x) = a^{-1}xa \forall x \in G$ is called the inner automorphism of G induced by a. Inn(G) denotes the set of all inner automorphisms of G. The set of automorphisms of a group and the set of inner automorphisms of a group are under operation both groups the composition function [4]. Many problems are open for automorphisms of finite p-groups. There is conjecture of Berkovich stating that every nonsimple finite p-group has a non-inner automorphism of order p [5]. This conjecture is confirmed for various

classes of p-groups.

2,. Some definitions and results

2.1 [9] An automorphism φ of G is called a class-preserving automorphism, if for each x ε G, \exists an element $g_x \varepsilon$ G s.t. $\varphi(x) = g_x^{-1} x g_x$; and is called an inner automorphism of for each x ε G, \exists a fixed element g ε G s.t. $\varphi(x) = g^{-1}xg$. An automorphism of a group is called an outer automorphism if it is not an inner automorphism. An automorphism φ of G is called a central automorphism it with all If commutes inner automorphisms or equivalently, if g ${}^{1}\varphi(g) \in Z(G) \forall g \in G.$

The commutator of a, b ε G is [a, b] = $a^{-1}b^{-1}$ ab and the commutator subgroup G' of G is the subgroup of G generated by all commutators of G. A maximal subgroup of G is a proper subgroup S s.t. there is no subgroup H of G s.t. S \subset H \subset G. The Frattini subgroup $\varphi(G)$ of G is the intersection of all maximal subgroups of G. If G has no maximal subgroup then $\varphi(G) = G$. An element a ε G is called nongenerator of G, If G = <a, Y> then G = <Y>. $\varphi(G)$ is exactly the set of all non-

generators of G. Let G be a finite group then G is nilpotent if and only of $G/\phi(G)$ is nilpotent.

A cyclic group is generated by a single element. We denote a cyclic group of order n by C_n . The rank of a group is denoted by d(G), which is the smallest generating set of G. The least common multiple of orders of the elements of a finite group G is called the exponent of G.

[6] A finite collection of normal subgroups H_i of a group G is a normal series for G if

 $1 = H_0 \subseteq H_1 \subseteq H_2 \subseteq \dots \subseteq H_r =$ G. This normal series is a central series if $H_i/H_{i-1} \subseteq Z$ (G/H_{i-1}) for $1 \le i \le r$. A group G is nilpotent if it has a central series. Subgroups and factor groups of nilpotent groups are nilpotent.

Given any group G, we define a central series as follows. Let $Z_0 = 1$ and $Z_1 = Z$ (G). The second center Z_2 is defined to be the unique subgroup such that $Z_2/Z_1 = Z$ (G/Z₁). We continue like this, inductively defining Z_n for n > 0 so that $Z_n/Z_{n-1} = Z$ (G/Z_{n-1}).

The chain of normal subgroups.

 $1 = Z_0 \subseteq Z_1 \subseteq Z_2 \subseteq \dots$

Constructed in this way is called upper central series of G. The upper central series may not actually be a central series for G because it may happen that $Z_i < G$ for all i. If $Z_r = G$ for some integer r, then $\{Z_i | 0 \le i \le r\}$ is a true central series and G is nilpotent.

If G is an arbitrary nilpotent group, then G is a term of its upper central series. As $G = Z_r$ for some integer $r \ge 0$, and the smallest integer r for which this happens is called the nilpotence class of G. Non trivial abelian groups have nilpotence class 1, and for non-abelian groups of nilpotency class 2 have quotient group G/Z(G) abelian.

2.2 Lemma: ([6]) Let G be finite. Then the following are equivalent.

1. G is nilpotent

2. Every nontrivial homomorphic image of G has a nontrivial center.

3. G appears as a member of its upper central series.

2.3 Theorem. ([6]) Let G be a (not necessarily finite) nilpotent group with central series.

 $1 = 1 = H_0 \subseteq H_1 \subseteq H_2 \subseteq \dots \subseteq G,$

and let $1 = Z_0 \subseteq Z_1 \subseteq Z_2 \subseteq \dots$.

be the upper central series of G. Then $H_i \subseteq Z_i$ for $0 \le i \le r$, and in particular, $Z_r = G$.

Theorem 2.4 ([6]) Let H is a subgroup of G, where G is a nilpotent group. Then $N_G(H) > H$.

Theorem 2.5 For any group G, Inn(G)is a normal subgroup of Aut(G). Further $Inn(G) \cong G/Z(G)$, where Z(G)denotes the centre of G.

3. Cyclic Subgroup of order p of

group of Automorphism of a finite pgroup.

3.1 [10] First we find innerautomorphism of order p

Let G be a p-group If a ε Z(G), then clearly the inner automorphism f_a is trivial.

Now If a $\notin Z(G)$ but o(a) = p, then first we prove that $f_a^p(x) = a^{-p} x a^p$

Let $f_a^2(x) = f_a(f_a(x)) = f_a(a^{-1} x a) = a^{-1}$ $(a^{-1}x a) = a^{-2}x a^2$

In the similar way we arrived at

 $f_a^p(x) = a^{-p} x a^p$, Now since o(a) =

 $p \therefore a^{p} = e$, e the identity of G, so $f_{a}^{p}(x) = x$

Since p is the smallest prime, therefore order of f_a is p.

Now Let $a \notin Z(G)$ and $o(a) \neq p$. Since G/Z(G) is a p-group, therefore let order of aZ(G) is p. So $(aZ(G))^p =$ Z(G), $a^pZ(G) = Z(G)$. We see that $a^p \in$ Z(G) and $f_a^p(x) = a^{-p} x a^p = x$

Because p is prime, so we conclude that If order of aZ(G) is p then f_a^{p} is identity. Therefore order of f_a is p.

Since f_a is an inner automorphism of order p. $\langle f_a \rangle$ is cyclic subgroup of Inn(G) of order p.

Further if G is non-abelian and we know that $G/Z(G) \cong Inn(G)$ If Inn(G) is cyclic which means G/Z(G) is cyclic. This contradicts the fact that G is non-abelian. Inn(G) is not cyclic for a non-abelian group G. **3.2** We know that the conjecture of Berkovich has been settled for p-group G [3] s.t.

(i) G is regular (ii) G' is cyclic (iii) G is nilpotent of class 2 or 3 (iv) G/Z(G) is powerful (v) G is of co-class 2.

Therefore we get a non-inner automophorism of order p. Let σ be the non-inner automorphism of order p.

Therefore σ generates the cyclic subgroup of order p consisting of non-inner automorphisms.

Theorem 3.3 Let $G \neq \{e\}$ be a cyclic group generated by b. Then any endomorphism Φ of is G an automorphism of G If and only If f(b) is a generator of G. Further (i) If G is infinite then Aut(G) is of order 2. (ii) If G is of finite order n, then Aut(G) is isomorphic to the group of those positive integers <n, which are relatively prime to n, with binary operation as multiplication modulo n and order of Aut(G) is $\varphi(n)$.

3.4 From the above theorem 3.3, Aut(G) is cyclic If G be a cyclic group.3.5 The problem arises whether Aut(G) is cyclic for a non-cyclic group G.

Thus there is cyclic subgroup of order p of group of automorphisms. The result is open for discussion.

REFERENCES

[1] Abdollahi, A. Finite p-groups of class 2 have noninner automorphisms of order p, J.

Algebra, 312 (2007) 876-879.

- [2] Abdollahi, A., Ghoraishi M. and Wilkens, B. Finite p-groups of class 3 have noninner automorphisms of order p, Beitr Algebra Geom. 54 no. 1 (2013) 363-381.
- [3] Abdollahi, A., Ghoraishi M. and Wilkens, B. A note on non-inner automorphisms of order p for finite p-groups of coclass 2, arXiv:13062049.
- [4] Gallian, J.A., Contemporary Abstract Algebra, Narosa Publishing House.
- [5] Guerboussa, Y. and Reguiat, M. Some automorphism groups of finite p-groups, arXiv: 1301.0085.
- [6] Isaacs, I.M. Finite Group Theory, Vol. 92, American Mathematical Society Providence, Rhode Island.
- [7] Jamali, A.R. and Viseh, M. On the existence of noninner automorphisms of order two in finite 2-groups, Bull. Aust. Math. Soc., 87(2013) 278-287.
- [8] Singh. S., Zameeruddin. Q, Modern Algebra, Vikas Publishing House Pvt. Ltd.
- [9] Singh, S. On automorphism Groups of Finitely Generated Groups, Ph.D. Thesis Thapar University, 2015.
- [10] Soni, M.K., Condition on an element of p-group that determines inner automorphism of order p, IJR, Vol. (4), issue 17, 3379-80.