

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 05 Issue-01
January 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1203

Clustering based Forgy‟s Algorithm using Java

Y. Ratna Rao & Dr. D.B.K. Kamesh
1Schlor, Shri Venkateshwara University, 2Professor, St. Martin‟s Engineering College, Secunderabad

Abstract:

As the number of available Web pages grows, it

becomes more difficult for users finding

documents relevant to their interests. Clustering is

the classification of a data set into subsets

(clusters), so that the data in each subset (ideally)

share some common trait - often proximity per

some defined distance measure. It can enable

users to find the relevant documents more easily

and help users to form an understanding of the

different facets of the query that have been

provided for web search engine.

Keywords: Cluster, web search, K-means,

Forgy‟s algorithm

Introduction

One of the simplest clustering algorithms

is Forgy‟s algorithm. K-means algorithm is like

Fogy‟s algorithm. Clustering based on k-means is

closely related to several other clustering and

location problems. These include the Euclidean k-

medians, in which the objective is to minimize the

sum of distances to the nearest center, and the

geometric k-center problem in which the objective

is to minimize the maximum distance from every

point to its closest center. In is presented an

asymptotically efficient approximation for the k-

means clustering problem, but the large constant

factors suggest that it is not a good candidate for

practical implementation. The fast greedy k-

means algorithm overcomes the major

shortcomings of the k-means algorithm discussed

above, possible convergence to local minima and

large time complexity with respect to the

number of points in the dataset. One group of

experiments aimed to assess the ability of the

implementation to bring together topically related

documents. Implementation included a procedure

of term selection for document representation

which preceded the clustering process and a

procedure involving cluster representation for

users viewing following the clustering process.

After some tuning of the implementation

parameters for the databases used, several

different types of experiments were designed and

conducted to assess whether clusters could group

documents in useful ways. Document clustering

analysis plays an important role in document

mining research. A widely adopted definition of

optimal clustering is a partitioning that minimizes

distances within a cluster and maximizes

distances between clusters. In this approach the

clusters and, to a limited degree, relationships

between clusters are derived automatically from

the documents to be clustered, and the documents

are subsequently assigned to those clusters.

Related Work:

Linear time clustering algorithms are the best

candidates to comply with the speed requirement

of on-line clustering. These include the K-Means

algorithm [5], and the Single-Pass method [3],

which has the advantage of being incremental and

as such is popular in the event detection domain

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 05 Issue-01
January 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1204

[6] Buckshot and Fractionation [2]. In contrast to

STC, all the mentioned algorithms treat a

document as a set of words and not as an ordered

sequence of words, thus losing valuable

information. Phrases have long been used to

supplement word-based indexing in IR systems

[1]. Phrases generated by simple statistical

approaches have also been successfully used [4].

Yet these methods have not been widely applied

to document clustering. The only example known

to the authors is the use of the co-appearance of

pairs of words as the attributes of the documents‟

vector representations [7]. On the Web, there are

some attempts to handle the large number of

documents returned by search engines. Many

search engines provide query refinement features.

AltaVista, for example, suggests words to be

added or to be excluded from the query. These

words are organized into groups, but these groups

do not represent clusters of documents. The

Northern Light search engine

(www.nlsearch.com), provides “Custom Search

Folders”, in which the retrieved documents are

organized. Each folder is labeled by a single word

or a two-word phrase, and is comprised of all the

documents containing the label. Northern Light

does not reveal the method used to create these

folders nor its cost.

The Lucene Search Engine

The Lucene search engine is an open source,

Jakarta project used to build and search indexes.

Lucene can index any text-based information you

like and then find it later based on various search

criteria. Although Lucene only works with text,

there are other add-ons to Lucene that allow you

to index Word documents, PDF files, XML, or

HTML pages. Lucene has a very flexible and

powerful search capability that uses fuzzy logic to

locate indexed items. Lucene is not overly

complex. It provides a basic framework that you

can use to build full-featured search into your web

sites.

The easiest way to learn Lucene is to look at an

example of using it. Let's pretend that we are

writing an application for our university's Physics

department. The professors have been writing

articles and storing them online and we would like

to make the articles searchable. (To make the

example simple, we will assume that the articles

are stored in text format.) Although we could use

google, we would like to make the articles

searchable by various criteria such as who wrote

the article, what branch of physics the article deals

with, etc. Google could index the articles but we

wouldn't be able to show results based on

questions such as, "show me all the articles by

Professor Henry that deal with relativity and have

superstring in their title."

Let's look at the key classes that we will use to

build a search engine.

 Document - The Document class represents a

document in Lucene. We index Document objects

and get Document objects back when we do a

search.

 Field - The Field class represents a section of

a Document. The Field object will contain a name

for the section and the actual data.

 Analyzer - The Analyzer class is an abstract

class that used to provide an interface that will take

a Document and turn it into tokens that can be

indexed. There are several useful implementations

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 05 Issue-01
January 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1205

of this class but the most commonly used is the

StandardAnalyzer class.

 IndexWriter - The IndexWriter class is used

to create and maintain indexes.

 IndexSearcher - The IndexSearcher class is

used to search through an index.

 QueryParser - The QueryParser class is used

to build a parser that can search through an index.

 Query - The Query class is an abstract class

that contains the search criteria created by the Query

Parser.

 Hits - The Hits class contains the Document

objects that are returned by running the Query

object against the index.

Existing Algorithm

Implementation

Apache Tomcat (or Jakarta Tomcat or simply

Tomcat) is an open sourceservlet container

developed by the Apache Software Foundation

(ASF). Tomcat implements the Java Servlet and

the JavaServer Pages (JSP) specifications from

Sun Microsystems, and provides a "pure Java"

HTTPweb server environment for Java code to

run. Apache Tomcat includes tools for

configuration and management, but can also be

configured by editing XML configuration files. In

many production environments, it is very useful to

have the capability to deploy a new web

application, or undeploy an existing one, without

having to shut down and restart the entire

container. In addition, you can request an existing

application to reload itself, even if you have not

declared it to be reloadable in the Tomcat 5 server

configuration file.

To support these capabilities, Tomcat 5 includes a

web application (installed by default on context

path /manager) that supports the following

functions:

Deploy a new web application from the uploaded

contents of a WAR file.

Deploy a new web application, on a specified

context path, from the server file system.

List the currently deployed web applications, as well

as the sessions that are currently active for those

web apps.

Reload an existing web application, to reflect

changes in the contents of /WEB-INF/classes or

/WEB-INF/lib.

List the OS and JVM property values.

List the available global JNDI resources, for use in

deployment tools that are preparing

<ResourceLink> elements nested in a <Context>

deployment description.

List the available security roles defined in the user

database.

Start a stopped application (thus making it available

again).

Stop an existing application (so that it becomes

unavailable), but do not undeploy it.

Undeploy a deployed web application and delete its

document base directory (unless it was deployed

from file system).

Results

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 05 Issue-01
January 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1206

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 05 Issue-01
January 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1207

References:

[1] C. Buckley, G. Salton, J. Allen and A.

Singhal. Automatic query expansion using

SMART: TREC-3. In: D. K. Harman (ed.),

The Third Text Retrieval Conference

(TREC-3). U.S. Department of Commerce,

1995.

[2] D. R. Cutting, D. R. Karger, J. 0. Pedersen

and J. W. Tukey. Scatter/Gather: a cluster-

based approach to browsing large document

collections. In Proceedings of the 15th

International ACM SIGIR Conference on

Research and Development in information

Retrieval, pages 318-29, 1992.

[3] D. R. Hill. A vector clustering technique. In

Samuelson (ed.), Mechanised Information

Storage, Retrieval and Dissemination,

North-Holland, Amsterdam, 1968.

[4] L. Fagan. Experiments in automatic phrase

indexing for document retrieval: a

comparison of syntactic and non- syntactic

methods. Ph.D. Thesis, Cornell University,

1987.

[5] J. J. Rocchio, Document retrieval systems -

optimization and evaluation. Ph.D. Thesis,

Harvard University, 1966

[6] Proceedings of the TDT Workshop,

University of Maryland, College Park, MD,

October 1997.

[7] Y. S. Maarek and A. J. Wecker. The

Librarian‟s Assistant: automatically

organizing on-line books into dynamic

bookshelves. In Proceedings of RIAO „94,

1994.

