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ABSTRACT 

This paper represent an approach to basic 

arithmetic between abstract matrices, i.e., 

matrices of symbolic dimension with 

underspecified components. We define a 

simple basis function that enables the 

representation of abstract matrices 

composed of arbitrary regions in a single 

term that supports matrix addition and 

multiplication by regular arithmetic on 

terms. This can, in particular, be exploited 

to obtain general arithmetic closure 

properties for classes of structured 

matrices. We also describe an approach 

using alternative basis functions that allow 

more compact expressions. 

 

INTRODUCTION 
 

Matrices find applications in almost every 

branch of science, engineering, economics, 

probability, theory, and statistics to 

mention a few. The aim of this section is to 

present the concept of matrix and their 

elementary properties. It is everyday 

mathematical practice to represent 

matrices in an abstract way with symbolic 

dimensions and containing underspecified 

parts described by the use of ellipses. 

While reasoning about matrices in this 

form is mathematically routine, there is 

very little automated support for it. In 

earlier work we have investigated the 

problem of representing abstract matrices 

with certain entries given by expressions 

and others given by interpolating ellipses. 

Their analysis included determining 

conditions for boundaries between regions 

and general expressions for elements 

within regions of such matrices and has led 

to a representation that made abstract 

matrices available as a template for 

concrete matrices with fully specified 

dimensions and entries. 

 

 

DEFINITION 

A matrix is a rectangular array of numbers 

or other mathematical objects, for which 

operations such as addition and 

multiplication are defined. Most 

commonly, a matrix over a field F is a 

rectangular array of scalars from F. Most 

of this article focuses on real and complex 

matrices, i.e., matrices whose elements are 

real numbers or complex numbers, 

respectively. More general types of entries 

are discussed below. For instance, this is a 

real matrix: The numbers, symbols or 

expressions in the matrix are called its 

entries or its elements. The horizontal and 

vertical lines of entries in a matrix are 

called rows and columns, respectively. 

Example: 

 Consider the 3×4 matrix  represent 

respectively the 2-nd row and the 3-rd 
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column of the matrix, and 5 represents the 

entry in the matrix on the 2-nd row and 3-

rd column. 

 

 

 

SIZE 

The size of a matrix is defined by the 

number of rows and columns that it 

contains. A matrix with m rows and n 

columns is called an m × n matrix or m-

by-n matrix, while m and n are called its 

dimensions. For example, the matrix A 

above is a 3 × 2 matrix.Matrices which 

have a single row are called row vectors, 

and those which have a single column are 

called column vectors. A matrix which has 

the same number of rows and columns is 

called a square matrix. A matrix with an 

infinite number of rows or columns (or 

both) is called an infinite matrix. In some 

contexts, such as computer algebra 

programs, it is useful to consider a matrix 

with no rows or no columns, called an 

empty matrix. 

 

MATRIX MULTIPLICATION 

Multiplication of two matrices is defined if 

and only if the number of columns of the 

left matrix is the same as the number of 

rows of the right matrix. If A is an m-by-n 

matrix and B is an n-by-p matrix, then 

their matrix product AB is the m-by-p 

matrix whose entries are given by dot 

product of the corresponding row of A and 

the corresponding column of B: 

Matrix multiplication satisfies the rules 

(AB)C = A(BC) (associativity), and 

(A+B)C = AC+BC as well as C(A+B) = 

CA+CB (left and right distributive), 

whenever the size of the matrices is such 

that the various products are defined.[13] 

The product AB may be defined without 

BA being defined, namely if A and B are 

m-by-n and n-by-k matrices, respectively, 

and m ≠ k. Even if both products are 

defined, they need not be equal, i.e., 

generally 

   AB ≠ BA, 

i.e., matrix multiplication is not 

commutative, in marked contrast to 

(rational, real, or complex) numbers whose 

product is independent of the order of the 

factors. An example of two matrices not 

commuting with each other is: 

 

ROW OPERATION 

There are three types of row operations:  

Row addition: that is adding a row to 

another. 

Row multiplication: that is multiplying 

all entries of a row by a non-zero constant. 

Row switching: that is interchanging two 

rows of a matrix. 

These operations are used in a number of 

ways, including solving linear equations 

and finding matrix inverses. 



     

 

International Journal of Research (IJR)   Vol-1, Issue-11 December 2014   ISSN 2348-6848 

            

 

P a g e  | 728 

 

SUB MATRIX 

A sub matrix of a matrix is obtained by 

deleting any collection of rows or 

columns. 

 For example: 

For any given 3-by-4 matrix, we can 

construct a 2-by-3 sub matrix by removing 

row 3 and column 2. 

 

LINEAR TRANSFORMATION 

Matrices and matrix multiplication reveal 

their essential features when related to 

linear transformations, also known as 

linear maps. A real m-by-n matrix A gives 

rise to a linear transformation Rn → Rm 

mapping each vector x in Rn to the 

(matrix) product Ax, which is a vector in 

Rm. Conversely, each linear 

transformation f: Rn → Rm arises from a 

unique m-by-n matrix A: explicitly, the (i, 

j)-entry of A is the ith coordinate of f(ej), 

where ej = (0,...,0,1,0,...,0) is the unit 

vector with 1 in the jth position and 0 

elsewhere.  

Furthermore, this fact indicates that the 

representation could be used as a starting 

point for translating the algebraic 

expression back into a graphical 

representation of the abstract matrix, i.e. 

witellipses etc.While our approach is 

encompassing enough to deal with abstract 

matrices of arbitrary structure we have 

identified cases in which the growth of 

terms is potentially exponential. We have 

started addressing this issue by 

investigating an alternative basis function 

that can avoid this exponential growth. 

Although the alternative basis function 

requires distinct representations of abstract 

matrices, depending on the arithmetic 

operation we want to perform, we could 

already show that it is effective for 

addition and multiplication on abstract 

vectors. However, its correct extension to 

the two-dimensional case of abstract 

matrices remains the subject of future.  

 

DETERMINANT 

The determinant det (A) or |A| of a square 

matrix A is a number encoding certain 

properties of the matrix. A matrix is 

invertible if and only if its determinant is 

nonzero. Its absolute value equals the area 

(in R2) or volume (in R3) of the image of 

the unit square (or cube), while its sign 

corresponds to the orientation of the 

corresponding linear map: the determinant 

is positive if and only if the orientation is 

preserved. The determinant of 2-by-2 

matrices is given by 

\det\begin{bmatrix}a&b\\c&d\end{bmatri

x} = ad-bc. The determinant of 3-by-3 

matrices involves 6 terms. The more 

lengthy Leibniz formula generalises these 

two formulae to all dimensions. The 

determinant of a product of square 

matrices equals the product of their 

determinants :det(AB) = det(A) · det(B). 

Adding a multiple of any row to another 

row, or a multiple of any column to 

another column, does not change the 

determinant. Interchanging two rows or 

two columns affects the determinant by 

multiplying it by −1. Using these 

operations, any matrix can be transformed 

to a lower (or upper) triangular matrix, and 

for such matrices the determinant equals 

the product of the entries on the main 

diagonal; this provides a method to 

calculate the determinant of any matrix. 
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Finally, the Laplace expansion expresses 

the determinant in terms of minors, i.e., 

determinants of smaller matrices. This 

expansion can be used for a recursive 

definition of determinants (taking as 

starting case the determinant of a 1-by-1 

matrix, which is its unique entry, or even 

the determinant of a 0-by-0 matrix, which 

is 1), that can be seen to be equivalent to 

the Leibniz formula. Determinants can be 

used to solve linear systems using 

Cramer's rule, where the division of the 

determinants of two related square 

matrices equates to the value of each of the 

system's variables. Eigen values and eigen 

vectors A number λ and a non-zero vector 

v satisfying 

 Av = λv 

are called an eigen value and an 

eigenvector of A, respectively.[nb 1][31] 

The number λ is an eigen value of an n×n-

matrix A if and only if A−λIn is not 

invertible, which is equivalent 

to\det(\mathsf{A}-\lambda \mathsf{I}) = 

0.The polynomial pA in an indeterminate 

X given by evaluation the determinant 

det(XIn−A) is called the characteristic 

polynomial of A. It is a monic polynomial 

of degree n. Therefore the polynomial 

equation pA(λ) = 0 has at most n different 

solutions, i.e., eigen values of the matrix. 

They may be complex even if the entries 

of A are real. According to the Cayley–

Hamilton theorem, pA(A) = 0, that is, the 

result of substituting the matrix itself into 

its own characteristic polynomial yields 

the zero matrix. 

SQUARE MATRIX 

A square matrix is a matrix with the same 

number of rows and columns. An n-by-n 

matrix is known as a square matrix of 

order n. Any two square matrices of the 

same order can be added and multiplied. 

The entries aii form the main diagonal of a 

square matrix. They lie on the imaginary 

line which runs from the top left corner to 

the bottom right corner of the matrix 

SYMMETRIC AND SKEW 

SYMMETRIC 

A square matrix A that is equal to its 

transpose, i.e., A = AT, is a symmetric 

matrix. If instead, A was equal to the 

negative of its transpose, i.e., A = −AT, 

then A is a skew-symmetric matrix. In 

complex matrices, symmetry is often 

replaced by the concept of Hermitian 

matrices, which satisfy A∗ = A, where the 

star or asterisk denotes the conjugate 

transpose of the matrix, i.e., the transpose 

of the complex conjugate of A by the 

spectral theorem, real symmetric matrices 

and complex Hermitian matrices have an 

eigen basis,  i.e., every vector is 

expressible as a linear combination of 

eigenvectors. In both cases, all eigen 

values are real. This theorem can be 

generalized to infinite-dimensional 

situations related to matrices with 

infinitely many rows and columns, see 

below. 

DEFINITE MATRIX 

A symmetric n×n-matrix is called positive-

definite (respectively negative-definite; 

indefinite), if for all nonzero vectors x ∈ 

Rn the associated quadratic form given 

byQ(x) = xTAx takes only positive values 

(respectively only negative values; both 

some negative and some positive values). 

If the quadratic form takes only non-

negative (respectively only non-positive) 



     

 

International Journal of Research (IJR)   Vol-1, Issue-11 December 2014   ISSN 2348-6848 

            

 

P a g e  | 730 

values, the symmetric matrix is called 

positive-semi-definite (respectively 

negative-semi-definite); hence the matrix 

is indefinite precisely when it is neither 

positive-semi-definite nor negative-semi-

definite. A symmetric matrix is positive-

definite if and only if all its eigen values 

are positive, i.e., the matrix is positive-

semi-definite and it   invertible.[24] The 

table at the right shows two possibilities 

for 2-by-2 matrices. Allowing as input two 

different vectors instead yields the bilinear 

form associated to A. 

 Orthogonal matrix: 

 An orthogonal matrix is a square matrix 

with real entries whose columns and rows 

are orthogonal unit vectors. Equivalently, a 

matrix A is orthogonal if its transpose is 

equal to its inverse A^\mathrm{T}=A^{-

1}, \,which entails  A^\mathrm{T} A = A 

A^\mathrm{T} = I, \,where I is the identity 

matrix.  

An orthogonal matrix A is necessarily 

invertible (with inverse A−1 = AT), unitary 

(A−1 = A*), and normal (A*A = AA*). 

The determinant of any orthogonal matrix 

is either +1 or −1. A special orthogonal 

matrix is an orthogonal matrix with 

determinant +1. As a linear transformation, 

every orthogonal matrix with determinant 

+1 is a pure rotation, while every 

orthogonal matrix with determinant -1 is 

either a pure reflection, or a composition 

of reflection and rotation. The complex 

analogue of an orthogonal matrix is a 

unitary matrix  have not yet successfully 

extended them to full matrices. 

 

 

CONCLUSION 

 

We have presented a computational 

approach to arithmetic on abstract 

matrices. We have defined a simple basis 

function that allows us to represent every 

abstract matrix regardless of its structural 

composition as a sum of region terms. 

Given this representation we could define 

matrix addition and multiplication 

straightforwardly as addition and 

multiplication of the sums. In fact we 

could show that presentation enables 

symbolic computations on abstract 

matrices that are considered 

mathematically routine but for which only 

limited automated support exists. In a next 

step we therefore intend to implement 

bespoke algorithms for abstract matrix 

arithmetic and combine them with our 

parsing procedure presented in [5]. 

Moreover, we intend to use our 

representation as a basis for developing 

other operations on abstract matrices such 

as computing Jordan normal forms or 

determinants. Another advantage of our 

representation is that the result of an 

arithmetic operation on two abstract 

matrices can be examined by systematic 

arithmetic manipulations and exploitation 

of the partial order structure of the basis 

function to yield structural properties of 

the resulting matrix. This could be further 

exploited to perform and automate general 

proofs of closure properties for certain 

classes of structural matrices 
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