

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 05 Issue-01
January 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1322

VLSI Design of a Novel Pre Encoding Multiplier Using DADDA

Multiplier
G.V.S.M.Kumar, E. Adinarayana, Dr .V.S.R.Kumari,

 1M.Tech Scholar, Dept. of ECE, Email Id: kumargvsm@gmail.com

 2Associate Professor, Dept. of ECE, Email Id: adinarayanamtech@gmail.com
3Professor, Dept. of ECE, Email Id: vsrk46@gmail.com

1,2,3Sri Mittapalli College Of Engineering, Tummalapalem(V), Prathipadu(M), Guntur(Dt),A.P.

Abstract: The most effective way to increase the speed

of a multiplier is to reduce the number of the partial

products because multiplication precedes a series of

additions for the partial products. To reduce the

number of calculation steps for the partial products

NR4SD encoding is used mostly where CSA has taken

the role of increasing the speed to add the partial

products. In this NR4SDˉ and NR4SD+ are used to

reduce no of partial products. To further implement

the

Performance of the multiplier we are using the

DADDA multiplier. The experimental results have

shown that the proposed multiplier outperforms the

conventional multiplier in terms of power and speed of

operation. In this paper we used Xilinx-ISE tool for

logical verification, and Simulation.

Keywords: Computer arithmetic, multiplication by

constants, arithmetic circuits, , VLSI design.

I. INTRODUCTION

Multiplier plays an important role for

performing the arithmetic operations in both Digital

Signal Processors and Microprocessors. In order to

enhance the performance characteristics of either the

D.S.P. or the Microprocessors, the efficient and

effective Multiplication Algorithm has to be

adopted[2],[3],[6]. In digital systems, the multiplier are

the basic blocks. The Multipliers also contribute to the

Computational speed and Power consumption of the

digital system. So, the need for designing High speed

Multiplier with minimal power dissipation is very

crucial for a digital system[8]. Thus, it can boost the

efficiency of the Digital systems.

Fast multipliers are essential parts of digital

signal processing systems. The speed of multiply

operation is of great importance in digital signal

processing as well as in the general purpose processors

today, especially since the media processing took

off[10]. In the past multiplication was generally

implemented via a sequence of addition,

Subtraction, and shift operations. Multiplication can

be considered as a series of repeated additions. The

number to be added is the multiplicand, the number of

times that it is added is the multiplier, and the result is

the product[9]. Each step of addition generates a

partial product. In most computers, the operand

usually contains the same number of bits. When the

operands are interpreted as integers, the product is

generally twice the length of operands in order to

preserve the information content. This repeated

addition method that is suggested by the arithmetic

definition is slow that it is almost always replaced

by an algorithm that makes use of positional

representation[5],[1]. It is possible to decompose

multipliers into two parts. The first part is dedicated to

the generation of partial products, and the second one

collects and adds them.

The one most effective way to increase the

speed of a multiplier is to reduce the number of the

partial products[6]. Although the number of partial

products can be reduced with a higher radix booth

encoder, but the number of hard multiples that are

expensive to generate also increases simultaneously.

To increase the speed and performance, many

parallel MAC architectures have been proposed.

Parallelism in obtaining partial products is the most

common technique used in this architecture. There are

two common approaches that make use of parallelism

to enhance the multiplication performance[7]. The

first one is reducing the number of partial product

rows and second one is the carry-save-tree

technique to reduce multiple partial product rows as

two "carry-save" redundant forms.

II. Existing system
A)NR4SD¯ Encoding Scheme

The following Boolean equations summarize

the HA* operation:

𝑐2𝑗+2 = 𝑏2𝑗+1˅𝑐2𝑗+1 , 𝑛2𝑗+1
− = 𝑏2𝑗+1 ⊕ c 2𝑗+1 (1)

mailto:kumargvsm@gmail.com
mailto:adinarayanamtech@gmail.com
mailto:vsrk46@gmail.com

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 05 Issue-01
January 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1323

Fig. 1. Block Diagram of the NR4SDˉ Encoding

Scheme at the (a) Digit and (b) Word Level.

Table 1

HA* Operation

𝑐 = 𝑝 ˅ 𝑞, s= 𝑝 ⊕ 𝑞 (2)

Calculate the value of the 𝑏𝑗
𝑁𝑅−digit

 𝑏𝑗
𝑁𝑅− = −2𝑛2𝑗+1

− + 𝑛2𝑗
+ (3)

Table2

NR4SD¯ Encoding

Table 2 shows how the NR4SD digits are formed. The

NR4SD encoding signals 𝑜𝑛𝑒𝑗
+, 𝑜𝑛𝑒𝑗

−,𝑎𝑛𝑑 𝑡𝑤𝑜𝑗
− of

Table 2 are generated.

B)NR4SD
+
 Encoding Scheme

Fig. 2. Block Diagram of the NR4SD+ Encoding

Scheme at the (a) Digit and (b) Word Level.

Calculate the value of the 𝑏𝑗
𝑁𝑅+digit

 𝑏𝑗
𝑁𝑅+ = 2𝑛2𝑗+1

+ − 𝑛2𝑗
− (4)

Table 3 shows how the NR4SD digits are formed. The

NR4SD encoding signals 𝑜𝑛𝑒𝑗
+, 𝑜𝑛𝑒𝑗

−,𝑎𝑛𝑑 𝑡𝑤𝑜𝑗
− of

Table 3 are generated

Table 3

NR4SD+ Encoding

For the computation of the least and the most

significant bits of the partial product we consider and

respectively[7]. Note in that case , the number of the

resulting partial products is and the most significant

MB digit is formed based on sign extension of the

initial 2’s complement number.

After the partial products are generated, they

are added, properly weighted, through a Carry-Save

Adder (CSA) tree[8] .

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 05 Issue-01
January 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1324

Finally, the carry-save output of the Wallace

CSA tree is leaded to a fast Carry Look Ahead (CLA)

adder to form the final result Z = X . Y .

In the pre-encoded MB multiplier scheme, the

coefficient B is encoded off-line according to the

conventional MB form. The resulting encoding signals

of B are stored in a ROM[1],[2]. The circled part,

which contains the ROM with coefficients in 2’s

complement form and the MB encoding circuit, is now

totally replaced by the ROM .The MB encoding blocks

are omitted. The new ROM is used to store the

encoding signals of B and feed them into the partial

product generators (PPj Generators - PPG) on each

clock cycle. Targeting to decrease switching activity,

the value ’1’ of sj in the last entry of Table 1 is

replaced by ’0’. The sign sj is now given by the

relation:𝑠𝑗 = 𝑏2𝑗+1 ⊕ (b2j+1˄b2j˄b2j−1)

However, the ROM width is increased. Each

digit requests three encoding bits (i.e., s, two and one)

to be stored in the ROM[7]. Since the n-bit coefficient

B needs three bits per digit when encoded in MB form,

the ROM width requirement is 3n/2 bits per

coefficient. Thus, the width and the overall size of the

ROM are increased by 50% compared to the ROM of

the conventional scheme.

The system architecture for the pre-encoded

NR4SD multipliers is presented. Two bits are now

stored in ROM: 𝑛2𝑗+1
− ,𝑛2𝑗

+ (Table 2) for the NR4SD or

𝑛2𝑗+1
+ , ,𝑛2𝑗

− (Table 3) for the NR4SD+form. In this

way, we reduce the memory requirement to n +1 bits

per coefficient while the corresponding memory

required for the pre-encoded MB scheme is 3n/2 bits

per coefficient. Thus, the amount of stored bits is equal

to that of the conventional MB design, except for the

most significant digit that needs an extra bit as it is

MB encoded. Compared to the pre-encoded MB

multiplier, where the MB encoding blocks are omitted,

the pre-encoded NR4SD multipliers need extra

hardware to generate the signals for the NR4SDˉ and

NR4SD+ form, respectively.

III. Proposed System

 To further reduce the delay we are using the

Dadda multiplier for the generation of partial products

and final product in the existing system. The Dadda

multiplier is a hardware multiplier design invented by

computer scientist Luigi Dadda in 1965. It is similar to

the Wallace multiplier, but it is slightly faster and

requires fewer gates.

Dadda multipliers have the same 3 steps for

two bit strings w1 and w2 of lengths l1 and l2

respectively:

1.Multiply (logical AND) each bit of , by each bit of ,

yielding results, grouped by weight in columns

2.Reduce the number of partial products by stages of

full and half adders until we are left with at most two

bits of each weight.

3.Add the final result with a conventional adder.

Fig : 3 System architecture of the pre encoded

multipliers Using Dadda Multiplier.

The multiplication products of the first step

carry different weights reflecting the magnitude of the

original bit values in the multiplication. Dadda

multipliers attempt to minimize the number of gates

used, as well as input/output delay. Because of this,

Dadda multipliers have a less expensive reduction

phase, but the final numbers may be a few bits longer,

thus requiring slightly bigger adders.

In this Dadda multipliers generated partial

products are first applied to the partial product

reduction tree. The progression of the reduction is

controlled by a maximum-height sequence dj.

Dj+1 = floor(1.5 * dj)

This yields a sequence like so: d1 = 2, d2=3,

d3=4, d4=6, d5=9, d6=13,...

The initial value of j is chosen as the largest

value such that dj < min(n1,n2) where n1 and n2 are the

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 05 Issue-01
January 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1325

number of bits in the input multiplicand and multiplier.

The lesser of the two bit lengths will be the maximum

height of each column of weights after the first stage

of multiplication.

IV. RESULTS

The simulation of the program is done using

ISim Simulator tool and synthesis is done using Xilinx

ISE Design Suite 14.5. The results for the

multiplication 8x8 using Dadda multiplier is shown in

this section.

Simulation results:

Design summary

Timing report:

RTL schematic:

Technology schematic:

V. CONCLUSION

New designs of pre-encoded multipliers are

explored by off-line encoding the standard coefficients

and storing them in system memory. One of the input

in the multiplier is encoded using Non-Redundant

radix-4 Signed-Digit (NR4SD) form. That encoded

input is used for the generation of partial products

using Dadda multiplier. The proposed pre-encoded

Dadda Multipliers are compared with conventional

multiplier designs.

VI.REFERENCES

[1] D.J. Magenheimer, L. Peters, K.W. Pettis, and D.

Zuras, “IntegerMultiplication and Division on the HP

Precision Architecture,”IEEE Trans. Computers,vol.

37, no. 8, pp. 980-990, Aug. 1988.

[2] A.D. Booth, “A Signed Binary Multiplication

Technique,”Quarterly J. Mechanical Applications of

Math.,vol. IV, no. 2, pp. 236-240,1951.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 05 Issue-01
January 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1326

[3] R. Bernstein, “Multiplication by Integer

Constants,”Software—Practice and Experience,vol.

16, no. 7, pp. 641-652, July 1986.

[4] N. Boullis and A. Tisserand, “Some Optimizations

of Hardware Multiplication by Constant

Matrices,”Proc. 16th IEEE Symp.Computer

Arithmetic (ARITH 16),J. -C. Bajard and M. Schulte,

eds.,pp. 20-27, June 2003.

[5] M. Potkonjak, M.B. Srivastava, and A.P.

Chandrakasan, “Multiple Constant Multiplications:

Efficient and Versatile Framework and Algorithms for

Exploring Common Subexpression Elimination,”

IEEE Trans. Computer-Aided Design of Integrated

Circuits and Systems,vol. 15, no. 2, pp. 151-165, Feb.

1996.

[6] M.D. Ercegovac and T. Lang,Digital

Arithmetic.Morgan Kaufmann, 2003.

[7] M.J. Flynn and S.F. Oberman,Advanced Computer

Arithmetic Design.Wiley-Interscience, 2001.

[8] R.I. Hartley, “Subexpression Sharing in Filters

Using Canonic Signed Digit Multipliers,” IEEE Trans.

Circuits and Systems II:Analog and Digital Signal

Processing,vol. 43, no. 10, pp. 677-688,Oct. 1996.

[9] K.D. Chapman, “Fast Integer Multipliers Fit in

FPGAs,”EDN Magazine,May 1994.

[10] S. Yu and E.E. Swartzlander, “DCT

Implementation with Distributed Arithmetic,”IEEE

Trans. Computers, vol. 50, no. 9, pp. 985-991, Sept.

2001.

