

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

FEATURES OF POINTERS IN C Manish Singh Mahar; Manish & Deepak Singh Bisht

P a g e | 742

Features of Pointers in C

Manish Singh Mahar; Manish & Deepak Singh Bisht

Department of Electronics & Communication

Dronacharya College of Engineering,Gurgaon

depak.19203@ggnindia,dronacharya.info, manish.16232@ggnindia,dronacharya.info

manish.16301@ggnindia.dronacharya.info

ABSTRACT:

This paper discusses about the most

powerful and yet most dangerous and

effective tool in C language i.e, pointers.

Pointers are an extremely powerful

programming tool in C, they can make

programming much easier to execute and

design and help improve your program's

efficiency and even allow you to handle

unlimited stock of data, using a pointers is

theone way to have a function to modify a

variable passed to it. It is also possible to

use pointers to dynamically allocate

memory, which means that you can write

programs that can handle nearly unlimited

stock of data. This research includes all

the meritorious features of pointers along

with the common errors made while using

a pointers.

INTRODUCTION:

A pointer is a kind of variable that holds

up memory address that is usually a

location of another variable present in

computer memory. The pointer is one of

the strongest and most significant tools of

C programming languages, before using a

pointer the programmer must know how to

use and implement the pointer in order to

make a perfect and successful program.

There are certain reasons why pointers are

considered to be the most effective tool in

C:

i. The pointer provides a way by

which the memory location of a

given variable can be directly

accessed and after that it can be

manipulated.

ii. The pointers support the feature

of dynamic allocation of

memory i.e, allocation of

memory during run time.

iii. The pointers help in improving

the efficiency of a program.

REFERENCE OPERATOR (&):

Whenever a variable is declared in a

program a storage location in the internal

memory is made available by the compiler.

Now the address of the variable can be

obtained by ‘&’, an address operator. This

operator when applied to a given variable

gives the present memory address of that

variable

If var is a variable then, &var is the

address in memory.

Example to demonstrate the use of

reference operator in C programming

int main()

{

intvar=5;

printf("Value: %d\n",var);

printf("Address: %d",&var); //Note,

the ampersand(&) before var.
return 0;

}

Output

Value: 5 ;Address: 2686778

mailto:depak.19203@ggnindia,dronacharya.info
mailto:manish.16232@ggnindia,dronacharya.info

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

FEATURES OF POINTERS IN C Manish Singh Mahar; Manish & Deepak Singh Bisht

P a g e | 743

Note: You may obtain different value of

address while using this code.In above

source code, value 5 is stored in the

memory location 2686778. var is just the

name given to that location.

scanf("%d",&var);

INDIRECTION OPERATOR (*) :

If address of a variable is known then this

operator provides contents of that variable.

For example:

main()

{ int x=5;

 printf(“\n value of x is = %d” , x);

 printf(“\n Address of x = %u”,

&x);

 printf(“\n Value at address %d =

%d, *(&x));

}

Output

Values of x = 15 ;Address of x = 2712;

Value at address 2712 = 15

POINTER VARIABLES: Pointers

variables are the special types of variables

that hold memory address rather than data,

that is, a variable that holds address value

is called a pointer variable or simply a

pointer.

DECLARATION OF POINTER

data_type *pointer_variable_name;

int *p;

Above statement defines,p as pointer

variable of type int.

IMPORTANT: When a pointer is

declared it does not point anywhere. You

must set it to point somewhere before you

use it

Example to demonstrate pointers

int main()

{

 int *pc,c;

 c=22;

 printf("Address of c:%d\n",&c);

 printf("Value of c:%d\n\n",c);

 pc=&c;

 printf("Address of pointer

pc:%d\n",pc);

 printf("Content of pointer

pc:%d\n\n",*pc);

 c=11;

 printf("Address of pointer

pc:%d\n",pc);

 printf("Content of pointer

pc:%d\n\n",*pc);

 *pc=2;

 printf("Address of c:%d\n",&c);

 printf("Value of c:%d\n\n",c);

 return 0;

}

Output:Address of c: 2686784

Value of c: 22

Address of pointer pc: 2686784

Content of pointer pc: 22

Address of pointer pc: 2686784

Content of pointer pc: 11

Address of c: 2686784

Value of c: 2

Explanation of program and figure

1. Code int *pc, p; creates a pointer

pc and a variable c. Pointer pc

points to some address and that

address has garbage value.

Similarly, variable c also has

garbage value at this point.

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

FEATURES OF POINTERS IN C Manish Singh Mahar; Manish & Deepak Singh Bisht

P a g e | 744

2. Code c=22; makes the value of c

equal to 22, i.e.,22 is stored in the

memory location of variable c.

3. Code pc=&c; makes pointer, point

to address of c. Note that, &c is the

address of variable c (because c is

normal variable) and pc is the

address of pc (because pc is the

pointer variable). Since the address

of pc and address of c is same, *pc

(value of pointer pc) will be equal

to the value of c.

4. Code c=11; makes the value of c,

11. Since, pointer pc is pointing to

address of c. Value of *pc will also

be 11.

5. Code *pc=2; change the contents

of the memory location pointed by

pointer pc to change to 2. Since

address of pointer pc is same as

address of c, value of c also

changes to 2.

POINTER AND FUNCTION:

typedefstruct {float x,y,z;

} COORD

 main()

 {

 COORD p1, *coord_fn();

 p1 = *coord_fn();

 }

 COORD *coord_fn()

 { COORD p;

 p =;

return&p;

 }

POINTERS AND ARRAY:

Pointers and arrays are very closely linked

in C. In C the name of array is a pointer

that actually has the base address of the

array. In real it is a pointer to the first

element of array.

Hint: think of array elements arranged in

consecutive memory locations.

Consider the following:

int a[10], x;

int *pa;

pa = &a[0];

 x = *pa;

Note: There is no bound checking of

arrays and pointers so you can easily go

beyond array memory and overwrite other

things.

C however is much more subtle in its link

between arrays and pointers.

For example we can just type

 pa = a;

instead of

 pa = &a[0]

and

 a[i] can be written as *(a + i).

i.e.&a[i] a + i.

We also express pointer addressing like

this:

 pa[i] *(pa + i).

However pointers and arrays are different:

 A pointer is a variable. We can do

pa = a andpa++.

 An Array is not a variable. a = pa

and a++ ARE ILLEGAL.

This stuff is very important. Make sure

you understand it. We will see a lot more

of this.

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

FEATURES OF POINTERS IN C Manish Singh Mahar; Manish & Deepak Singh Bisht

P a g e | 745

We can now understand how arrays are

passed to functions.

When an array is passed to a function what

is actually passed is its initial elements

location in memory.

So:

 strlen(s) strlen(&s[0])

This is why we declare the function:

 intstrlen(char s[]);

An equivalent declaration is

: intstrlen(char *s);

since char s[] char *s.

strlen() is a standard library function that

returns the length of a string. Let's look at

how we may write a function:

 intstrlen(char *s)

 { char *p = s;

 while (*p != `\0’);

 p++;

 return p-s;

 }

Now let’s write a function to copy a string

to another string. strcpy() is a standard

library function that does this.

 voidstrcpy(char *s, char *t)

 { while ((*s++ =

*t++) != `\0’);}

This uses pointers and assignment by

value.

Very Neat!!

NOTE: Uses of Null statements with

while.

ARRAYS OF POINTERS:

Like any other array we can have arrays of

pointers since pointers are variables

Declaration of array of pointer:

Data type *variable[];

Example of array of pointer:

Char *name[30];

{ram,

raman,

raj,

raju};

The above example declares an array of

pointer named as ‘name’, each element of

name points to a string.

The advantage of having array of pointer

to string is that we can manipulate the

strings conveniently.

For example, the string raman can be

copied to to a pointer ptr without using

strcpy() function by following statement:

Char *ptr;

Ptr=name[1];

POINTERS AND STRUCTURES:

These are fairly straight forward and are

easily defined. Consider the following:

struct COORD {float x,y,z;} pt;

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

FEATURES OF POINTERS IN C Manish Singh Mahar; Manish & Deepak Singh Bisht

P a g e | 746

 struct COORD *pt_ptr;

pt_ptr = &pt; /* assigns pointer to pt */

thearrowoperator lets us access a member

of the structure pointed to by a pointer.i.e.:

 pt_ptr x = 1.0;

 pt_ptr y = pt_ptr y - 3.0;

Example to demonstrate use of arrow

operator:

#include<stdio.h>

Main()

{

 Struct item

 { char code[5];

 intqty;

 float cost;

};

Struct item item_rec;

Struct item*ptr;

printf(“\n Enter the data for an item”);

printf(“\n code:”);

scanf(“ %s”, &item_rec.code);

printf(“\n qty:”);

scanf(“%d”, &item_rec.qty);

printf(“\n cost:”);

pcanf(“%f”, &item_rec.cost);

ptr=&item_rec;

printf(“\n The data for the item..”);

printf(“\n code: %s”, ptr -> code);

printf(“\n qty : %d”, ptr->qty);

printf(“\n cost :5.2f”, ptr-> cost);

}

CONCLUSION:

The use of pointers is a powerful tool and

it is one of the strongest feature of C, but

at the same time it is dangerous. In our

opinion the difficulty lies not in

understanding the subject as much as it

does in remembering how to use pointers.

If time passes and you don't program in C

often, you tend to forget how it works. By

the use of our imaginary methods we are

better suited at remembering how to use

pointers, and we hope it will help you as

well. Perhaps you can make up your own

way of remembering.In reality all variables

are pointers. What makes the difference

between when we call it a variable and

when we call it a pointer, is what the

pointer is actually pointing at. We can

point at a memory location, and we then

call it a "pointer", or we can point at the

value located inside a memory location,

and we then call it a variable.

REFFERENCE:

Culler, David E., et al. "Parallel

programming in Split-C."

Supercomputing'93. Proceedings. IEEE,

1993.

Kernighan, Brian W., and Dennis M.

Ritchie. The C programming language.

Vol. 2. Englewood Cliffs: prentice-Hall,

1988.

