

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 05 Issue-01
January 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1595

Evaluation of Shortest Path and Distance Queries on Road

using PRP
Ambati Naga Sai Durga & J. Rajanikanth

1
M.Tech, Department of Computer Science and Technology, SRKR Engineering College, Bhimavaram,

West Godavari, Andhra Pradesh, India.
2
Assistant Professor, Department of Computer Science and Engineering, SRKR Engineering College,

Bhimavaram, West Godavari, Andhra Pradesh, India.

Abstract-- We research a scenario for route path

in road networks, where the aim to be optimized

may change between every shortest path query.

Since this invalidates many of the known speedup

techniques for road networks that are based on

data pre-processing of shortest path structures,

we investigate optimizations exploiting simply

the topological structure of networks. We

experimentally estimate our technique on a large

dataset of real-world road networks of various

data sources. With lightweight data pre-

processing our technique response long distance

queries across continental networks significantly

faster than previous approaches towards the

same problem formulation.

Keywords:- PRP; preprocessing; road networks;

1. Introduction

On such large networks, Dijkstra’s

classical shortest path algorithm incurs

substantial running times of several seconds even

on modern computer hardware. This is too slow

for many applications such as navigation, route

planning, location-based services, range and

trajectory queries, k-nearest-neighbor search, and

other queries on spatial network databases.

Hence, the past decade has seen numerous

research (by both theoretical and applied

communities) into techniques that accelerate

shortest path queries. For an overview see the

recent surveys. Assuming that the graph metric is

fixed or does not change too often, these

techniques offer very fast queries at considerate

preprocessing effort, enabling route planning

services that serve millions of users per day.

However, if instead costs change for every query,

these techniques cease to provide benefit over

Dijkstra’s algorithm. Yet, in practice, even the

same user might prefer a quickest route in the

morning but a safe and fuel-efficient route back

home.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 05 Issue-01
January 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1596

Here, every arc in the road graph is

associated with a vector c of several non-

negative numeric costs such as for example

travel time, distance, speed, emissions, and

energy consumption. The input of a query, in

addition to the source and the target node,

consists of a cost vector w with non-negative

entries. In the search, every arc is associated with

the scalar product of w and c. The output consists

of the shortest path with respect to this weighted

sum of costs. Solving the PRP problem

efficiently seems very useful in order to construct

route planning services that adapt to the

individual needs of every person. Unfortunately,

in practice not all routing constraints can be

modeled as a linear combination of additive

costs. For example, summing up height

limitations is not meaningful (i. e., a 3 m high

truck will not fit through two consecutive tunnels

of 2 m height). A similar observation holds for

vehicle weight limitations or the limit on the

maximum slope that a vehicle can climb. Further

constraints are the avoidance of certain road

categories, such as for example highways, city

centers, or water conservation zones (which

trucks with dangerous goods are not allowed to

traverse). In this work, we generalize PRP to also

support such restrictions.

2. Related Work

The classic solution to solving shortest

path problems on road networks is Dijkstra’s

algorithm. Slightly faster queries are achieved by

employing bidirectional search from both source

and target. Heuristic search using easily available

bounds (e.g., Euclidean distance) is still a

common choice. However, some studies, such as

, have come to the conclusion that on road

networks, Euclidean distance bounds is not

necessarily beneficial over Dijkstra’s algorithm;

it can even slightly decrease efficiency. We have

witnessed similar behavior in preliminary

experiments in our specific setting. Many

techniques have been proposed for further

acceleration. Nearly all of these divide the work

into two phases: In a preprocessing phase the

graph is augmented with auxiliary data that is

then exploited during the query phase for faster

shortest path or distance retrieval.

The PRP problem is essentially a high-

dimensional, linear multi-criteria search problem,

related to the parametric shortest path problem.

Extensions of known preprocessing techniques to

multi-criteria optimization have been proposed,

but were only evaluated experimentally for the

bi-criteria and tri-criteria case. Even for the three

criteria of travel time, travel distance, and fuel

consumption (which are even quite correlated),

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 05 Issue-01
January 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1597

diminishing returns in terms of query speed over

preprocessing effort have been reported.

3. Our Contribution

The primary results of our work are:

 We generalize Personalized Route

Planning (PRP) to support a more rich set

of restrictions. The generalization allows

to model, for example, maximum vehicle

heights (e. g., for tunnels) and maximum

vehicle weights (e. g., for bridges) as well

as user-preferences such as avoidance of

highways.

 A new preprocessing-based algorithm for

PRP, extending the Bidirectional

Dijkstra. While we build on basic and

easy to implement concepts, in

combination our approach is better at

PRP than the state-of-the-art.

 A key ingredient is efficient identification

of topologically important core nodes,

while preserving all (not just shortest)

paths. our construction, which is

computed optimally in time linear in the

size of the input graph.

 We conduct an extensive experimental

study on a large set of real-world road

graphs of different data sources.

 Our algorithms achieve significantly

faster personalized route planning queries

than previous approaches at less

preprocessing costs.

 Our query times are well below one

second even on the largest instance tested

for random long-distance queries. This is

fast enough for a wide range of

applications. Note that in practice most

queries are short-distance that result in

even lower query times.

 Our analysis further shows that

performance gains significantly vary

depending on the data source—as

opposed to just the geographical instance

considered. While observed before,

overall it is surprisingly underreported in

the literature on route planning in road

networks.

 We conclude that ranking road networks

just by node count is not meaningful, and

cross comparisons of the performance of

route planning techniques are

inconclusive without careful

consideration of the respective data

sources used for experimental evaluation.

4. Dijkstra’s Algorithm

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 05 Issue-01
January 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1598

Dijkstra’s algorithm is the textbook

solution to the shortest path problem, and many

modern techniques still use it as a subroutine.

Fine-tuning its implementation therefore directly

results in better overall running times, but it also

tightens the baseline for reporting speedups. (The

speedup of a technique, which is used as an

indication of machine-independent performance,

is measured in terms of its query speed in

relation to an implementation of Dijkstra’s

algorithm.). To ensure reproducibility of our

experimental findings, we document details of

our implementation and the reasoning behind the

choices we made, as much as space allows.

Node Orders:-

 Node data is usually stored as a large

array and the nodeIDs correspond to the offset in

this array. A small IDdifference therefore implies

a high likelihood that the data of both nodes is

loaded simultaneously into the cache. Dijkstra’s

algorithm works by accessing the memory

attached to the two endpoints of an arc directly

after another. If both are in cache, memory

access times decreases. To illustrate this

influence we consider three node orders as in [6]:

(a) random order, (b) input order, and (c) DFS

pre-order. A random order performs the worst as

it does not have much locality. The quality of the

input order solely depends on the data source.

Usually it has some locality as nodes often

appear in the order that they were added to the

dataset and adjacent nodes are often added

successively. The DFS pre-order consists of

picking a random root node and running a depth

first search. Nodes get ordered in the way they

are first visited. Every node with pre-order ID i

that is not the root or a leaf in the tree (i.e. the

vast majority of the nodes) will have two

neighbors with directly adjacent node IDs: The

parent node has ID i − 1 and the first child has ID

i + 1.

Bidirectional Dijkstra’s:-

Dijkstra’s algorithm works by visiting all

nodes around the source node increasing by

distance until the target node is reached. A

speedup can be gained by visiting the nodes

around the source and the target node

simultaneously. The central idea consists of

running two instances of Dijkstra’s unidirectional

algorithm simultaneously. The first search

explores the nodes close to the source node,

while the other explores the nodes around the

target node. Once a node is reached by both

searches, a (not necessarily shortest) path is

found. Denote by µ the length of the shortest

path found so far. Further denote by dF the

distance of the next node in the forward

instance’s queue and by dB the distance of the

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 05 Issue-01
January 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1599

next node of the backward instance. We abort the

search once df + db ≥ µ, as any path that we find

from that point on, has a distance of at least µ.

Several alternation strategies exist that decide

from which of the two queues a node should be

popped and processed: The strategy alternation

(alt) switches each step between forward and

backward search. The min-key strategy (mk)

picks the forward search if df ≤ db. The min-

queue-size strategy (mq) picks the forward

search if the backward queue size is not smaller

than the forward queue size. Note that if the

considered graph is directed, the backward

search must operate on the reversed graph

instead of the input graph.

Fig: - Bidirectional Graph

A Bidirectional Dijkstra’s is a preprocessing-

based technique to accelerate shortest path

queries. In the preprocessing phase a core graph

GC = (VC, AC) is computed. Think of this core

graph as a coarsened sub graph containing all

major roads. The query phase is a Bidirectional

Dijkstra’s algorithm. Conceptually, it first

searches locally around the source and the target

nodes until the core is reached on both sides.

From there on the search is restricted to the core

graph. This decreases query times because GC is

smaller than G and therefore only parts of the

graph have to be searched. Formally the nodes

VC of GC are a subset of V and called core nodes.

The arcs of the core are defined as

following: For every loop-free path v1, v2 . . . vk

for which only the endpoints v1 and vk are in VC

and all intermediate nodes are in V \VC, there

exists a shortcut arc (v1, vk) ε AC in the core

graph. It is possible that multi-arcs are created by

this construction. The cost vector c(v1, vk) of the

shortcut is defined as the combination of the cost

vectors of the arcs within the path, i.e., c(v1, vk)

= c(v1, v2) _ . . . _ c(vk-1, vk).

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 05 Issue-01
January 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1600

Given a core graph we compute a forward and a

backward search graph as follows:

1) The forward graph GF is the union of G

and GC without the arcs (u, v) that leave

the core, i.e., u ε VC and v ε V \VC.

2) The backward graph GB is constructed

analogously: First compute the union of

G and GC, then reverse the direction of

every arc and finally remove the arcs

leaving the core. The query phase is a

bidirectional of Dijkstra’s algorithm. The

forward search is run on GF while the

backward search runs on GB. We abort

the search if df + db ≥ µ, where μ is the

tentative distance, and no queue contains

a non-core node.

5. Results analysis

Table 6: Query running time and number of queue pop-operations

for variants of Bidirectional Dijkstra’s

Query running time and number of queue pop-

operations for Bidirectional Dijkstra’s algorithm

on the graph for the general PRP problem.

―random‖, ―input‖ and ―dfs‖ are the node orders

considered. They vary in terms of running time

because of cache-effects but not in terms of pop-

operations. ―uni‖ and ―bi-directional‖ are the

alternation strategies. The performance of

Bidirectional Dijkstra’s algorithm in its

unidirectional and bidirectional variants and with

all three node orders. Overall, bidirectional

search with minimum-queue-size alternation

strategy yields the best query performance,

consistently about 55% faster than unidirectional

search. Additionally, DFS-reordered nodes

improve query times by 19–23 %, compared to

the input order.

 Time[ms] Nodes

Popped

from queue
Dir Random Input DFS

Uni 470 265 223 1539k

Bi-directional 302 171 143 900k

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 05 Issue-01
January 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1601

Fig:- Query running time and number of queue pop-operations

for variants of Bidirectional Dijkstra’s

6. Conclusions

We evaluated a preprocessing-based speedup

technique for faster Personalized Route Planning.

On all tested instances - which include very

large-scale networks with hundreds of millions

of nodes - we were able to achieve running times

well below a second. This is fast enough for

many applications, including web services of

moderate user base. The main advantage of the

Personalized Route Planning is that costs are

individually adjusted for every user and every

query in a very flexible way. Rerunning

preprocessing is only necessary when roads are

build or cost vectors are adjusted (e. g., a new

speed limit is posted).

7. References

[1] I. Abraham, D. Delling, A. Fiat, A. V.

Goldberg, and R. F. Werneck. HLDB: Location-

based services in databases. In Proceedings of

the 20th ACM SIGSPATIAL International

Symposium on Advances in Geographic

Information Systems (GIS’12), pages 339–348.

ACM Press, 2012. Best Paper Award.

[2] I. Abraham, D. Delling, A. Fiat, A. V.

Goldberg, and R. F. Werneck. Highway

dimension and provably efficient shortest path

algorithms. 2013.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X

Volume 05 Issue-01
January 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 1602

[3] H. Bast, D. Delling, A. V. Goldberg, M.

Müller–Hannemann, T. Pajor, P. Sanders, D.

Wagner, and R. F. Werneck. Route planning in

transportation networks. Technical Report

abs/1504.05140, ArXiv e-prints, 2015.

[4] B. Bresar, F. Kardos, J. Katrenic, and G.

Semanisin. Minimum k-path vertex cover.

Discrete Applied Mathematics, 159(12):1189–

1195, 2011.

[5] G. B. Dantzig. Linear Programming and

Extensions. Princeton University Press, 1962.

[6] D. Delling, A. V. Goldberg, A. Nowatzyk,

and R. F. Werneck. PHAST: Hardware-

accelerated shortest path trees. Journal of Parallel

and Distributed Computing, 73(7):940–952,

2013.

[7] D. Delling, A. V. Goldberg, T. Pajor, and R.

F. Werneck. Robust distance queries on massive

networks. In Algorithms - ESA 2014 - 22th

Annual European Symposium, Wroclaw, Poland,

September 8-10, 2014.Proceedings, pages 321–

333, 2014.

[8] D. Delling, A. V. Goldberg, T. Pajor, and R.

F. Werneck. Customizable route planning in road

networks. Transportation Science, 2015.

[9] D. Delling, M. Kobitzsch, and R. F. Werneck.

Customizing driving directions with GPUs. In

Proceedings of the 20th International Conference

on Parallel Processing (Euro-Par 2014), volume

8632 of Lecture Notes in Computer Science,

pages 728–739. Springer, 2014.

[10] D. Delling and D. Wagner. Pareto paths

with SHARC. In Proceedings of the 8th

International Symposium on Experimental

Algorithms (SEA’09), volume 5526 of Lecture

Notes in Computer Science, pages 125–136.

Springer, June 2009.

