

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

P a g e | 839

Load Rebalancing in Public Cloud Using Best
Partitioning Technique by dividing the Cloud

1 B.Manohar Sai , 2 G. Rama Swamy

1M.Tech Research Scholar, Department of CSE,
2 Professor, Department of CSE

 Priyadarshini Institute of Technology & Science, Chintalapudi, India

Abstract

Cloud computing is emerging technology
where different users uses the resources
dynamically. The number of users using the
file systems is increasing day by day.
Therefore distributed file systems are
building blocks for cloud environment.
When a client uploads a file it is partitioned
into number of chunks to distinct nodes so
that map reduces can be performed in
parallel among the nodes. In addition to
this, in cloud computing environment failure
can occur, nodes can be replaced and/or
added in the system. Files can also be
deleted or created. Therefore it could result
in load imbalance problem. To overcome
this problem, a fully distributed load
rebalancing algorithm is proposed. Hence
the objective is to allocate chunks of files as
uniformly as possible among the nodes so
that no node manages excessive number of
chunks while reducing the movement cost.
Each node in system performs the load
rebalancing algorithm independently. Each
node implements a gossip based
aggregation protocol to collect the load
status from different nodes.

Keywords-Distributed file system,

Cloud, Chunk server, Rebalance Cloud
architecture, resource allocation,
distributed name node.

1. INTRODUCTION

The rapid growth of communication
technologies and the Internet in particular
has transformed the way we live and work.
It has the potential to transform a large part
of the IT industry, making software even
more attractive as a service and shaping the
way IT hardware is designed and purchased
[2]. There have been many companies
which have plunged deep in this, such as
Amazon EC2 [6], Google AppEngine[4],
Microsoft Azure[5], Salesforce[3], etc.
Projections show great future growth of
cloud computing. Although estimates vary
wildly, a research firm IDC [1] predicts cloud
computing will reach worth $42 billion in
2012. This large investment shows the
increasing interest in this new technology.

However this growth comes with increasing
and complex challenges of how to transfer
compute and store data reliably and in real-
time. Some of the challenges include data
transfer bottlenecks, performance

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

P a g e | 840

unpredictability, scalable storage, fast
scaling to varying workloads, etc. Dealing
with these challenges of large scale
distributed data, compute and storage
intensive applications such as social
networks and search engines requires
robust, scalable and efficient algorithms
and protocols. The Google File System (GFS)
[7], and/or Hadoop Distributed File System
(HDFS) [8] are the most common algorithms
deployed in large scale distributed systems
such as Facebook, Google and Yahoo today.
These file systems use a name node to keep
a list of all files in the cloud and their
respective metadata (i-node). Besides the
name node has to manage almost all file
related operations such as open, copy,
move, delete, update, etc. This may not
scale and can potentially make the name
node a resource bottleneck. Other
limitation of this is that the name node is a
single point of failure for an HDFS
installation [9]. If the name node goes
down, the file system is offline. When it
comes back up, the name node must replay
all outstanding operations. This replay
process can take over half an hour for a big
cluster.

In cloud computing environment, failure is
the norm, and the chunk servers may be
upgraded, replaced and added in the
system which leads to load imbalance in the
distributed file systems. It means that the
file chunks are not distributed equitably
between the nodes. Distributed file systems
in clouds such as GFS and HDFS, rely on
central servers (master for GFS and Name
Node for HDFS) to manage the metadata
and the load balancing. The master
rebalances replicas periodically: data must
be moved from a data node/chunkserver V
to another one if its free space is below a

certain threshold. However, this centralized
approach can provoke a bottleneck for
those servers as they become unable to
manage a large number of file accesses.
Consequently, dealing with the load
imbalance problem with the central nodes
complicate more the situation as it
increases their heavy loads. In order to
manage large number of chunk servers to
work in collaboration, and solve the
problem of load balancing in distributed file
systems, there are several approaches that
have been proposed such as reallocating file
chunks such that the chunks can be
distributed to the system as uniformly as
possible while reducing the movement cost
as much as possible. Here a fully distributed
rebalancing algorithm is proposed to solve
the imbalance state of the nodes in the
system. This algorithm can be integrated
with Hadoop Single Node or Multi Node
Cluster. Here we have implemented using
Single Node Cluster. In this paper, we
introduce a load rebalancing algorithm to
solve the load balancing problem among all
chunk servers (i.e. node in short) in the
distributed file system. We rebalance the
load by migrating the chunks to the
previous node in the system.

In this paper, we address these problems
with current systems such as the GFS/HDFS.
In order to make the system scalable, our
scheme uses a light weight front-end server
to connect all requests with many name
nodes. This helps distribute load of a single
name node to many name nodes. Our front-
end just manages sessions and hence is not
a resource bottleneck. Also, our frontend is
stateless, therefore if it goes down, no data
is lost and bringing it up is very fast. The
other feature of our system is that it uses
an efficient protocol to send and route

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

P a g e | 841

data. Our protocol can achieve full link
utilization and hence decreased download
times. As a result of this, it can achieve
lower chunk transfer times and it is much
more efficient than HDFS.

The main contributions of this paper
include:

 A new distributed architecture with
light weight frontend server which is
much more scalable than the
existing systems such as the
HDFS/GFS.

 An efficient protocol to send and
route data, which leads to a better
link utilization than TCP and hence
faster data chunk transfer time.

 A comparative analysis of our
protocol with GFS/HDFS.

2. RELATED WORK

Another popular file system for networked
computers is the Network File System (NFS)
[11]. It is a way to share files between
machines on a network as if the files were
located on the client’s local hard drive. One
of the disadvantages of NFS is that it tries to
make a remote file system appear as a local
file system, but it’s dangerous to rely on
that oversimplification. There are many
situations in which the use of NFS
(compared to a local file system) is not
appropriate or reliable. Andrew File System
(AFS) [10] is a distributed networked file
system which uses a set of trusted servers
to present a homogeneous, location-
transparent file name space to all the client
workstations. AFS has several benefits over
traditional networked file systems,
particularly in the areas of security and
scalability. It is not uncommon for

enterprise AFS cells to exceed twenty five
thousand clients. AFS uses Kerberos for
authentication, and implements access
control lists on directories for users and
groups. Each client caches files on the local
file system for increased speed on
subsequent requests for the same file. AFS
may not be convenient for large scale file
systems such as the once handled by GFS.

Other examples of works in distribute file
system are GPFS [18], Frangipani [20] and
InterMezzo [5]. Frangipani is a scalable
distributed file system that manages a
collection of disks on multiple machines as a
single shared pool of storage. The machines
are required to be under a common
administrator and be able to communicate
securely. It has a very simple internal
structure which enables them to handle
system recovery, reconfiguration and load
balancing very easily. GPFS [13] is IBM’s
parallel, shared-disk file system for cluster
computers. GPFS uses a centralized
management scheme which can have
scalability issues. In InterMezzo [12], the
key design decisions were to exploit local
file systems as server storage and as a client
cache and make the kernel file system
driver a wrapper around local file system.
However, they rely on existing protocols
such as TCP. Besides these systems do not
have a good resource allocation which deals
with the dynamic link, storage and
processing capacities.

Large-scale distributed system varies inside
in different conditions. For example, chunk
servers will be added to or withdrew from
the system from time to time. Furthermore,
a number of performance parameters of
the system are always changing. Honey Bee
Foraging algorithm is derived from behavior

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

P a g e | 842

of honey bees for finding and reaping food.
In order to check for fluctuation in demand
of services, servers are grouped under
virtual servers having its own virtual queues
calculates a profit or reward on basis of CPU
utilization which is corresponds to the
quality that the bees show in their waggle
dance and advertise on the advert board.
Each of the servers takes the role of either a
forager or a scout. A server serving a
request calculates its profit and compare it
with colony profit , if profit as high then the
server stays at the current virtual servers
and on the other hand if profit was low
then the server returns to the forger or
scout behavior thus balancing the load with
the server.

Randles et al. [14] investigated a distributed
and scalable load balancing approach that
uses random sampling of the system
domain to achieve self-organization thus
balancing the load across all nodes of the
system. Here a virtual graph is constructed,
with the connectivity of each node (a server
is treated as a node) representing the load
on the server. Each server is symbolized as a
node in the graph, with each in degree
directed to the free resources of the server.
The load balancing scheme used here is
fully decentralized, thus making it apt for
large network systems like that in a cloud.
The performance is degraded with an
increase in population diversity.

The main objective of the algorithm [14] is
to minimize the system cost by moving the
tokens around the system. But in a scalable
cloud system agents cannot have the
enough information of distributing the work
load due to communication bottleneck. So
the workload distribution among the agents
is not fixed. The drawback of the token

routing algorithm can be removed with the
help of heuristic approach of token based
load balancing. This algorithm provides the
fast and efficient routing decision. In this
algorithm agent does not need to have an
idea of the complete knowledge of their
global state and neighbor working load. To
make their decision where to pass the
token they actually build their own
knowledge base. This knowledge base is
actually derived from the previously
received tokens. So in this approach no
communication overhead is generated.

ESWLC [15] is an improved form of
weighted least-connection (WLC) along with
its features, it also taken into account time
series and trials. However WLC counts the
connections of each server and reports the
appropriate server based on the
multiplication of a server weight and its
count of connections, ESWLC algorithm
concludes assigning a certain task to a node
only after getting to know about the node
capabilities. ESWLC builds the decision
based on the experience of the node’s CPU
power, memory, number of connections
and the amount of disk space currently
being used. ESWLC then predicts which
node is to be selected based on exponential
smoothing [15].

3. LOAD REBALANCE PROBLEM

We consider a large-scale distributed file
system consisting of a set of chunkserver V
in a cloud, where V is |V | = n. Typically n
can be 1000, 10, 000 or more. In the
system, a number of files are stored in the n
chunk servers. First, let us denote the set of
files as F. Each file f F is partitioned into
number of fixed-size chunks denoted by Cf.
For example; each chunk has the same size,

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

P a g e | 843

64Mbytes, in Hadoop HDFS. Second, the
load of a chunk server is proportional to the
number of chunks hosted by the server.
Third, node failure is the norm in such a
distributed system and the chunk servers
may be upgraded, replaced and added in
the system .Finally, the files chunks in F may
be arbitrarily created, deleted, and
appended. The net effect results in file
chunks not being uniformly distributed to
the chunk servers. Our objective in the
current study is design a load rebalancing
algorithm to reallocate file chunks such that
the chunks can be distributed to the system
as uniformly as possible while reducing the
movement cost as much as possible. Here,
the movement cost is defined as the
number of chunks migrated to balance the
loads of the chunk servers. Note that
“chunk servers” and “nodes” are
interchangeable in this paper.

4. OUR PROTOCOL

The main components of our protocol are
the user client (UCL), light weight front end
server (FES), and some name node servers
(NNS), a resource allocator (RA), block
servers (BS) and resource monitors (RM). As
shown in Figure 2 users of our file system
connect by invoking the UCL. The UCL
connects users to the FES. The FES manages
sessions with the clients and then forwards
the client requests to an NNS. An NNS
stores the users file system Meta data and
reference to a BS which in turn stores the
data blocks of a file. The RA tells the NNS
which BS and path to BS to use to store data
in the BS based on the resource monitor
value (rate) it gets from each RM. An RM
associated with each BS monitors the
resource at its BS and periodically sends a
rate metric to the RA.

The Algorithm

As shown in Figures 2 and 1 our protocol
uses the following steps.

1. A user application initiates a session with
FES using a UCL.

2. The FES authenticates the user request,
finds an appropriate NNS for example by
hashing the request ID, and sends the name
or ID of the NNS (along with the NNS
password) back to the user application.

3. The NNS in turn asks the RA connected to
the local switch for an appropriate BS and a
path to the BS in which the user application
(or another node in the cloud) can store
blocks of data or from which it can retrieve
the previously stored blocks of data. The RA
uses the rate metric it gets from each RM,
from itself and other RAs to do the resource
allocation. The RA is like a software router.
An RA and the network switch can serve as
a router. More on how the RA finds the
appropriate BS is discussed in section 3.3.

4. The NNS sends name or ID of the BS to
the user application and request ID and
password to the BS.

5. The user application requests the BS
using the information it got from the NNS to
store data or retrieve data blocks.

6. The BS authenticates the user request
using the information it got from the NNS
and continues to transfer data to the user
or store data from the user.

7. The RM associated with the BS
periodically sends the rate metric which
serves as an aggregate resource monitor.

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

P a g e | 844

Figure 1: Overview of Our Protocol

5. LOAD REBALANCING
ALGORITHM

Here we assume the entire node has
identical capacity and node can handles
equal number of chunks.

Assumptions

F= {f1, f2 ,f3, ….. fr}

Ni={n1,n2,n3……….ns}

G= defines capacity of node

Boolean flag=false

Boolean full=true

m =defines the total number of nodes in the
system

s =defines the number of chunks in nodes

b= files splitted into number of chunks
based on file size

ck=defines the number of chunks

Figure 2. Load Rebalancing Algorithm

6. CONCLUSION

A novel load balancing algorithm to deal
with rebalancing problem in large scale,
dynamic and distributed file systems in
cloud has been presented in this paper. Our
proposal strives to balance the load of
nodes and reduce the demanded
movement cost as much as possible. Our
proposal is comparable to the centralized
algorithm in HDFS and can be incorporated
in Single Node or Multi Node cluster
environment. The proposed algorithm

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

P a g e | 845

operates in a distributed manner in which
nodes perform their load balancing tasks
independently without synchronization or
global knowledge regarding the system. In a
load balance cloud the resources can be
well utilized and provisioned, maximizing
the performance of Map Reduce based
applications. The algorithm also
outperforms the competing distributed in
terms of load imbalance factor, and
movement cost.

 REFERENCES

[1] IDC Cloud Computing.
http://blogs.idc.com/ie/?p=224.

[2] Armbrust, M., Fox, A., Griffith, R.,
Joseph, A. D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., and
Zaharia, M. Above the clouds: A berkeley
view of cloud computing. Technical Report:
Electrical Engineering and Computer
Sciences University of California at Berkeley
UCB/EECS-2009-28 (Feb 2009), 1–23.

[3] Cerbelaud, D., Garg, S., and
Huylebroeck, J. Opening the clouds:
qualitative overview of the state-of-the-art
open source vm-based cloud management
platforms. In Middleware ’09: Proceedings
of the 10th ACM/IFIP/USENIX International
Conference on Middleware (New York, NY,
USA, 2009), Springer-Verlag New York, Inc.,
pp. 1–8.

[4] Ciurana, E. Developing with Google App
Engine. Apress, Berkely, CA, USA, 2009.

[5] Fouquet, M., Niedermayer, H., and
Carle, G. Cloud computing for the masses.
In U-NET ’09: Proceedings of the 1st ACM
workshop on User-provided networking:

challenges and opportunities (New York,
NY, USA, 2009), ACM, pp. 31–36.

[6] Robinson, D. Amazon Web Services
Made Simple: Learn how Amazon EC2, S3,
SimpleDB and SQS Web Services enables
you to reach business goals faster. Emereo
Pty Ltd, London, UK, UK, 2008.

[7] Ghemawat, S., Gobioff, H., and Leung,
S.-T. The google file system. SIGOPS Oper.
Syst. Rev. 37, 5 (2003).

[8] Borthakur, D. The Hadoop Distributed
File System: Architecture and Design. The
Apache Software Foundation, 2007.

[9] Improve Namenode Performance.
http://issues.apache.org/jira/browse/HADO
OP-3248

[10] Howard, J., Kazar, M., Menees, S.,
Nichols, D., Satyanarayanan, M.,
Sidebotham, R., and West, M. Scale and
performance in a distributed file system.
ACM Transactions on Computer Systems
(TOCS) 6, 1 (1988), 51–81.

[11] Shepler, S., Callaghan, B., Robinson, D.,
Thurlow, R., Beame, C., Eisler, M., and
Noveck, D. Network file system (NFS)
version 4 protocol. Request for Comments
3530 (2003).

[12] Braam, P., Callahan, M., and Schwan, P.
The intermezzo file system. In Proceedings
of the 3rd of the Perl Conference,
O¨ı£¡Reilly Open Source Convention,
Citeseer.

[13] Schmuck, F., and Haskin, R. GPFS: A
shared-disk file system for large computing
clusters. In Proceedings of the 1st USENIX
Conference on File and Storage

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

P a g e | 846

Technologies (2002), USENIX Association, p.
19.

[14] Randles, M., D. Lamb and A. Taleb-
Bendiab, “A Comparative Study into
Distributed Load Balancing Algorithms for
Cloud Computing,” in Proc. IEEE 24th
International Conference on Advanced
Information Networking and Applications
Workshops (WAINA), Perth, Australia, April
2010.

[15] T.R.V. Anandharajan, Dr.M.A.
Bhagyaveni “Co-operative Scheduled
Energy Aware Load-Balancing technique for
an Efficient Computational Cloud” IJCSI
International Journal of Computer Science
Issues, Vol. 8, Issue 2, March 2011.

