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Abstract:  

The duality of light waves can sometimes be a difficult concept for high school level students to 

understand. To help demonstrate this dual personality the photoelectric effect often is used to show light 

acting as a particle (photons) and interference and diffraction can depict light’s wave nature. However, at 

a high school level these principles can be difficult to apply and describe in the classroom. This lesson 

plan focuses on the wave nature of light and utilizes real-world examples and straightforward activities to 

explain the complexities of interference patterns and the diffraction of electromagnetic waves 

Introduction 

Diffraction refers to various phenomena that occur when a wave encounters an obstacle or a slit. It is 

defined as the bending of light around the corners of an obstacle or aperture into the region of geometrical 

shadow of the obstacle. In classical physics, the diffraction phenomenon is described as the interference 

of waves according to the Huygens–Fresnel principle. These characteristic behaviors are exhibited when a 

wave encounters an obstacle or a slit that is comparable in size to its wavelength. Similar effects occur 

when a light wave travels through a medium with a varying refractive index, or when a sound wave 

travels through a medium with varying acoustic impedance. Diffraction has an impact on the acoustic 

space. Diffraction occurs with all waves, including sound waves, water waves, and electromagnetic waves 

such as visible light, X-rays and radio waves. 

Since physical objects have wave-like properties (at the atomic level), diffraction also occurs with matter 

and can be studied according to the principles of quantum mechanics. Italian scientist Francesco Maria 

Grimaldi coined the word "diffraction" and was the first to record accurate observations of the 

phenomenon in 1660. 

While diffraction occurs whenever propagating waves encounter such changes, its effects are generally 

most pronounced for waves whose wavelength is roughly comparable to the dimensions of the diffracting 

object or slit. If the obstructing object provides multiple, closely spaced openings, a complex pattern of 

varying intensity can result. This is due to the addition, or interference, of different parts of a wave that 

travel to the observer by different paths, where different path lengths result in different phases (see 

diffraction grating and wave superposition). The formalism of diffraction can also describe the way in 

which waves of finite extent propagate in free space. For example, the expanding profile of a laser beam, 

the beam shape of a radar antenna and the field of view of an ultrasonic transducer can all be analyzed 

using diffraction equations. 

Review of Literature  
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The effects of diffraction of light were first carefully observed and characterized by Francesco Maria 

Grimaldi, who also coined the term diffraction, from the Latin diffringere, 'to break into pieces', referring 

to light breaking up into different directions. The results of Grimaldi's observations were published 

posthumously in 1665.Isaac Newton studied these effects and attributed them to inflexion of light rays. 

James Gregory (1638–1675) observed the diffraction patterns caused by a bird feather, which was 

effectively the first diffraction grating to be discovered. Thomas Young performed a celebrated experiment 

in 1803 demonstrating interference from two closely spaced slits. Explaining his results by interference of 

the waves emanating from the two different slits, he deduced that light must propagate as waves. Augustin-

Jean Fresnel did more definitive studies and calculations of diffraction, made public in 1815. and 

1818,.and thereby gave great support to the wave theory of light that had been advanced by Christiaan 

Huygens and reinvigorated by Young, against Newton's particle theory. 

Theory of Diffraction of Light  

Basically phenomenon of diffraction is divided into two main groups— 

 

S. NO. Fraunhofer Diffraction Fresnel Diffraction 

1 

 

 

2. 

 

 

3. 

 

 

4. 

 

 

5. 

 

 

6. 

7. 

The Diffraction device is at infinite distance 

from the source. 

 

The wavefront is a plane one. 

 

 

The centre of diffraction pattern is always 

bright. 

 

Two convex lenses are used to observe 

diffraction effect. 

 

The diffraction pattern is the image of source 

itself. 

 

In this the inclinations are important. 

In this the effects of all diffracting devices are 

added. 

The Diffraction device is at finite distance 

from the source and the screen. 

The wavefront is either spherical or 

cylindricl 

 

The centre of diffraction pattern may be 

bright ordark. 

 

Lenses or mirrors are not used to observe 

diffraction effect. 

 

The diffraction pattern is the image of the 

obstacle or aperture. 

In this distance are important. 

In this, there is diffraction effect of a 

single diffraction device i.e., the diffraction 

effects of devices are not added. 

 

 

 Difference between Interference and Diffraction 
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S.NO.              INTERFERENCE  DIFFRACTION 

1. It occurs between two different wavefronts 

originating from two coherent sources 

 

It occurs due to the secondary wavelets 

originating from infinite different points of 

the same wavefront. 

 

2. In an interference pattern, the regions of minima 

are usually perfectly dark. 

 

In the diffraction pattern, they are not 

perfectly dark. 

 

3. The interference fringes are usually (not always) 

of the same width. 

The diffraction fringes are never of the 

same width. 

 

4. All maxima are of same intensity. They are of varying intensity. 

 

 

5. Condition for maxima 

(a) Path difference =2n /2 

(a) Phase difference =2n 

 

Condition for maxima 

(a)Path difference =(2n+1) /2 

(b)Phase difference =(2n1)  

 

6. 
Condition for minima 

(a) Path difference =(2n1) /2 

(b) Phase difference =(2n1)  

 

Condition for minima 

(a)Path difference =2n /2 

(b)Phase difference =2n 

 

 

 

 Single Slit Diffraction (Franuhofer’s Diffraction)  

 

 

Fig. represent a section AB of a narrow slit of width a perpendicular to the plane of the paper. Let a plane 

waveform ww’ of monochromatic light of wavelength     propagating normally to the slit be incident on it. 

Let the diffracted light be focused by means of a convex lens on a screen placed in the focal plane of the 

lens. According to Huygen’s-Fresnel; every point of the wavefront in the plane of the slit is a source of 
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secondary spherical wavelets, which spread out of the right in all directions. The secondary wavelets 

traveling normally to the slit, i.e., along the direction OPoare brought to focus at Po by the lens. Thus, Po is 

bright central image. The secondary wavelets traveling at an angle  with the normal are focused at a point 

P1 on the screen. The point P1 is the minimum intensity depending upon the path difference between the 

secondary waves originating form the corresponding points of the wavefront. In order to find out intensity 

at P1, draw a perpendicular AC on BR. The path difference between secondary wavelets from A and B in 

the direction  = BC = AB sin = e sin 

and corresponding phase difference = 


2
 e sin  

Let us consider that the width of the slit is divided into n equal parts and the amplitude of the waveform 

each part is a (because width of each part is same). The Phase difference between any two consecutive 

waves form these parts would be- 

n

1
(Total Phase) = 

n

1













sin

2
e = d (say)  

 

 

Let there be n vibration of the same period, same amplitude a and same phase difference d between 

successive vibrations which act on a particle simultaneously. Our aim is to consider the resultant amplitude 

of these vibrations. For this Purpose, We construct the Polygon of amplitudes as shown In the fig. 

The closing side OP and angle  then gives the resultant amplitude R and Phase of the resultant vibration 

respectively. To evaluate R and , we resolve the amplitudes along and perpendicular to OA and write 

 R cos   = a [1 + cos d + cos 2d + ……………+ cos (n-1)d ]   ……(1) 

 R sin   = a [1 + sin d + sin 2d + ……………+ sin (n-1)d ]   ……(2) 

 

Multiplying equation (1) by 2sin d/2 we get - 

2 R cos.sin d/2 = a[2 sin d/2+ 2 cos d. sin d/2 + …… + 2 cos (n-1) d.sind/2)] 
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= a anddndn
ddd













































2

3
sin

2

1
sin

2
sin

2

3
sin

2
sin2  

 

= a 















 dn

d

2

1
sin

2
sin  

 

= 2a sin 
2

)1(
cos

2

dnnd 
 

 

or R cos  = a 
2

)1(
cos

2/sin

2/sin dn

d

nd 
      ………(3) 

 

Similarly , multiplying equation (2) by 2 sind/2 and simplifying, we get- 

 

R sin  = a 
2

)1(
sin

2/sin

2/sin dn

d

nd 
      ………..(4) 

 

Squaring equation (3) and (4) and adding we get- 

 

R2 =    a2

2/sin

2/sin
2

2

d

nd
  

or R     = a 
2/sin

2/sin

d

nd
        …………(5) 

 

= a 
)/sinsin(

)/sinsin(





e

e
 

  = a 
n/sin

sin




 where  /sine  
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= a 
n/

sin












lisverysmal

n


 

 

= na


sin
 

 

= A 


sin
( where n         ,a        0 but product na = A remains finite) 

Now the intensity is givin by- 

 

I= R2 = A2

2
sin













  …(6) 

(a) Position of maxima / minima 

 

Principal Maxima 

 The expression for the resultant amplitude R can be written in ascending power of  as 

 

        R  = 







 ................

753

753 




A
 

 

 = 







 ................

753

662 




A
 

 

If the negative terms vanish, the value of R will be maximum. i.e.,  = 0  

 

0
sin







e
or sin = 0 or  = 0      …..(7) 
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Now maximum value of R is A and intensity is proportional to A2. The condition  =0 means that this 

maximum is formed by those secondary wavelets which travel normally to the slit. The maximum is 

known as principal maxima. 

 

Minimum intensity position- 

 

The intensity will be minimum, when sin = 0. The value of  which satisfy this equation are  

= , 2, 3,4, ……..etc. = m 

 

or


 sine
 = m or e sin = m 

where m= 1,2,3,4, …………etc. 

 

In this way we obtain the points of minimum intensity on the either sideof the principal maximum. The 

value of m=0 is not admissible, because for this value  =0 and this corresponds to principal maximum. 

 

Secondary Maxima –  

 

In addition to principal maximum at =0, there are weak secondary maxima between equally spaced 

minima. The position can be obtained with the rule of finding maxima and minima of a given function in 

calculus. Differentiating the expression of I with respect to  and equating to zero, we have 

 

0
sin

2

2 


























A

d

d

d

dI
 

 

0
)sincos(

.
sin2

.
2

2 









A  

 

Either sin = 0 or ( cos  - sin) = 0 
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The equation sin = 0 gives the values of (except )for which the intensity is zero on the screen. Hence, 

the position of maxima is given by the roots of the equation. 

(cos - sin) = 0 or  = tan  

The values of  satisfying the above equation are obtained graphically by plotting the curves y =  and y 

= tan on the graph. 

The point of intersection of two curves gives the values of  which satisfy equation( 4). The plots of y= 

and y= tan are shown in fig. 

 

 

 

The points of intersection are 

 = 0,3 /2, 5 /2, ……..etc.  

 = 0 gives principal maximum 

Substituting approximate value of  in equation (6), we get the intensities in the various maxima as 

I0 = A2 (principal maximum) 

 

I1 =     22 2/3/2/3sin A = 4I0/9
2= A2/22 approx. 

      [ Ist subsidiary maximum] 

 

I2 =     22 2/5/2/5sin A = 4I0/252= A2/62 approx. 

      [ IInd subsidiary maximum] 
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and son on . from the expression of I0, I1,and I2 it is evident that most of the incident light in concentrated 

in the principal maximum. 

Plane Transmission Diffraction Grating.  

Construction 

An arrangement consisting of large number of parallel slits of the same width and separated by equal 

opaque spaces is known as diffraction grating. Fraunhofer used the grating consisted of a large number of 

parallel wires placed very closely side-by-side at regular intervals. Now grating is constructed by ruling 

equidistant parallel lines on a transparent material such as glass, with a fine diamond point. The ruled lines 

are opaque to light while the space between any two lines is transparent to light and acts as slit. This is 

known as plane transmission grating. 

Theory of Plane Transmission Diffraction Grating 

 

 

 

Fig. represent the section of a plane transmission grating placed perpendicular to the plane of the paper. 

Let e be the width of each slit and d the width of each opaque part. Then (e+d) is known as grating 

element. XY is the screen placed perpendicular to the plane of the paper. Suppose a parallel beam of 

monochromatic light of wavelength  be incident normally on the grating. 

 

The intensity at a point P1 may be considered by applying the theory of Fraunhofer diffraction at a singlr 

slit. The wavelets proceeding from all points in a slit along the direction  are equivalent to a single wave 

of amplitude[A(sin /)],  

where=e sin/.  

     If there are N slits, then we have diffracted waves, one each from the middle points of the slits. The 

path difference between two consecutive slits is (e+d) sin. Therefore, there is a corresponding phase 

difference 2(e+d) sin/ between two consecutive wave. The phase difference is constant and it be 2 
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By the method of vector addition of amplitudes- 

MP1 = P1P2 ……… PN-1 PN = R = A(sin /) 

Representing wave amplitude by a phase vector, let us draw vectors MP1,P1P2, P2P3 …………….. PN-1, PN of 

equal length A but each increasing in phase by constant amount 2. We thus end up with a polygon of 

vectors of N side whose resultant OPN. Say it has amplitude RN. If O be the centre of polygon, then from 

the geometry of figure. It is seen that 

MP1 = 2OM sin 

MPN = 2OM sinN 

Dividing we have- 

MPN = MP1 sin N/2 sin =R sinN/2 sin 

RN = A ( sin/) (sinN/sin) 

Hence resultant intensity is given by-  

I= A2( sin2/2) (sin2 N/sin2) 

The factor [   2/sin A gives the distribution of intensity due to a single slit while the factor (sin2 

N/sin2) gives the distribution of intensity as a combined effect of all the slits. 

Principal Maxima 

 The intensity would be maximum when sin =0 

      OR = n where n=0,1,2,3…… 

       But at the same time sin N=0, so that the factor (sinN/ sin) becomes indeterminate. It may be 

evaluated by applying the usual method of differentiating the numerator and the denominator i.e., by 

applying the Hospital’s rule. Thus- 

Lim n  sinN/sin  =Lim n d/d(sin N) / d/d(sin) 

= Lim nNcos N /cos 

 

                                        = N 

   Hence, Lim  n  (sinN/sin)2 =N2 

 

     The resultant intensity as [A(sin /)]2 N2. 

    The maxima are obtained for = n 
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(e+d) sin/ = n 

 

 (e+d) sin = n      n=0,1,2,3,….. 

 

n=0 corresponds to zero order maximum. 

 

Minima 

A series of minima occur, when sinN=0 but sin0 

For minima sin N =0 or N =m 

N/(e+d)sin  == m 

N (e+d)sin == m 

  Where m has all integral values except 0,N,2N,….nN because for these values  

sin becomes zero and we get principal maxima. Thus m= 1,2,3,…..(N-1) hence, there are adjacent 

principal maxima. 

 

Secondary Maxima 

0
sin

cossinsinsin

sin

sin
2.

sin
2

2








 
































NNN
X

NA

d

dI
 

OR N cos N sin - sin Ncos =0 

 

N tan = tan N 

 

The roots of this equation other than those for which  = n (which correspond to principal maxima) 

gives the position of secondary maxima. 

To find out the value of (sin2 N/sin2) from equation N tan = tan N, we make use of the triangle 

shown in fig. 
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




22 tan1

tan
sin

N

N
N


  

 

  






222

22

2

2

sintan1

tan

sin

sin

N

NN


  

= 
 222

2

sincos N

N


  

=  
22

2

sin)1(1  N

N
 


imaincipalensityofpr

imaondaryfIntensityo

maxint

maxsec

22

2

sin)1(1  N

N
 

As N increases, the intensity of secondary maxima relative to principal maxima decrease and becomes 

negligible when N become large. 

# Missing spectra with a diffraction grating 

The principal maxima in the grating spectrum are obtained in the direction given by 

(e+d) sin = n        …….. (13) 

The minima in a single slit diffraction pattern (assumed a grating as N single slits) are obtained in the 

direction given by- 

(e+d) sin = m        …….. (14) 

If the equation (13) and (14) are simultaneously satisfied, a particular maximum or spectrum of order n 

will be absent in the grating spectrum. 

Now dividing equation (13) by equation (14) we get 

22 tan1 N

 

N tan 
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m

n

a

de



         …… (15) 

This is the condition for the spectrum of the order n to be missing in the diffraction pattern. 

(i)If e = d then n=2m 

 n= 2,4,6………… [for m=1,2,3,………….] 

which is the 2nd,4th,6th……..order spectrum will be missing. 

(ii)If 2e = d then n=3m 

 n= 3,6,9………… [for m=1,2,3,………….] 

Which is 3rd, 6th, 9th……….. order spectrum will be missing. 

Thus, the relative between width of ruling (d) and width of slits(e) determine the order of absent spectra. 

 The relation between grating element and wavelength of light also determine the order of absent 

spectra. According to equation (13)  

)(
sin

ba

n





         …….(1) 

If (e+d)  then sin1 for n1 

 

Hence, the first and higher order spectra are missing. 

 

If (e+d)  2 then sin1 for n2 

 

Hence, the second and higher order spectra are missing similarly. 

 

If (e+d)  n then sin1 for n 

 

Hence, nth and higher order spectra are missing. 

 

 Therefore, grating element (e+d) should be greater than n-times of wavelength of light, to see n 

order spectra. 
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# Overlapping of spectral lines 

If the light incident on the grating surface consist of a large range of wavelengths, then the spectral lines 

of shorter wavelength and of higher order overlap on the spectral lines of longer wavelength and of lower 

order. 

Let the angle of diffraction  be the same for- 

(I) the spectral line of wavelength 1in the first order 

(II) the spectral line of wavelength in.2 in the second order 

(III) the spectral line of wavelength in 3 in the third order 

then 

 (e+d) sin = 1.1=2.2=3. 3       ……..(17) 

as (1 23 ) 

 

 

Resolving power of grating. 

Rayleigh Criterion of resolutions 

In order to express the resolving power of an optical instruments lord Raleigh proposed a universal 

criterion known as Raleigh’s Criterion of resolution. This criterion is the generally accepted criterion for 

the minimum resolvable detail. According to Raleigh two nearby point source images are said to be just 

resolved if the position of the central maxima of one point source coincides (overlaps) with the minimum 

of another point source. It is possible to resolve the two objects as long as the central maxima of the two 

diffraction patterns do not overlap. If the two central maxima overlap the two objects look like one. 

 

Let P and Q be principle (central) maxima of diffraction pattern  of two spectral lines of wavelength say    

and   + d  . If the difference in the angle of diffraction is quite large then two maxima can be seen 

distinctly and both the spectral lines will appear well resolved. As shown in fig.   
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 Now if the difference in wavelength of spectral lines decreases both the spectral lines gets closer. A situation comes when the positions of principle maxima of spectral line of wavelength coincides (overlap) with the 

position of spectral line of wavelength or vice-versa. Then the resultant intensity of both diffraction 

patterns will only be observed. This is known as condition of just-resolution. The resultant intensity curve 

is shown in fig. A dip in the intensity curve in the middle of enctral maxima of P and central maxima of Q 

is found, where the intensity is approximately 20% less than that of any intensity peak individually. This 

position of spectral lines where the intensity in the middle is 80% approximately of any spectral lines is 

known as condition of just resolution for spectral line, also known as spectral resolution. 

 Now if the difference in wavelength d  is more decreases then the diffraction pattern of both the spectral lines collapse to each other and resultant intensity curves show that there is only one maxima. Hence in result 

we are not able to resolve these spectral lines. As shown in fig.  

 

(b) Expression for resolving power of a grating 

Let AB is the grating surface and XY is the screen. P1 is the nth principle maxima of a spectral line of 

wavelength  at an angle of diffraction n. P2 is the nth principal wavelength (  + d) at angle of 

diffraction (n +dn ) position of principal maximum given by- 

 

(e+d) sinn = n          (21) 

 

(e+d) sin(n +dn ) = n (  + d)      (22) 

 

According to reyleigh criterion, these spectral lines will appear just resolved if the principal maxima due 

to (  + d) or vice- versa. 

First minimum of wavelength  formed in the direction (n +dn ) it at P2. 

 

N(e+d) sin(n +dn ) = m         (23) 

The first minimum adjacent to the nth principal maxima in the direction (n +dn) will be obtained for 

m=nN  1, where N is the total number of rulings on the grating. 

 Maxima of another spectral lines of  

(e+d) sin(n dn ) = 
N

n

N

nN  


 )1(
     (24) 

 

Comparing equation (3) and (4) we get- 
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N
nddn

N
n





  );(  

Resolution limit of grating 
Nnd

1





 

And resolution power of grating R= Nn
d





 

Thus, the resolving power of grating is equal to the product of the order of the spectrum and the total 

number of rulings on the grating. 

Gratings for Industrial Applications 

For several decades HORIBA Scientific’s OEM division has developed a range of manufacturing 

processes to produce diffraction gratings that are used in a variety of industrial applications. These 

established processes are optimised to ensure high volume production capacity and the expected level of 

industrial component quality, at competitive prices.  

 

Our gratings are replicas which offer consistent optical performance that is often essential for industrial 

applications, where the same product is manufactured for many years. It also allows more flexibility to 

match the range of expected environmental conditions (temperature, humidity etc.). Although we have a 

standard range of gratings we can also customise these to offer different sizes or coatings. Contact us to 

discuss your specific requirements 

Our gratings are typically used in Biomedical devices, HPLC systems, Telecommunication active & 

passive modules, Sensing equipment, Control process monitors, Laboratory spectroscopy systems, Colour 

analysis instruments, Lasers, Life science products, Photovoltaic production and control machines, 

Mineralogy controllers, Analytical chemistry application, to name a few. 

Aberration Corrected Concave Spectrograph (Flat Field) Gratings 

Aberration Corrected Monochromator Gratings (Type IV) 

Holographic Concave Roland Circle Gratings 

Holographic Plane Gratings 

Blazed Holographic Plane Gratings 

Ruled Plane Gratings 
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