

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 05 Issue-01

January 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2566

−

VLSI Implementation of AES Algorithm using Rijndael algorithm
M.Srujana & B.Parameshwari

Assistant Professor Department of Electronics and Communication Engineering, CJITS, Yeshwanthapur,T.S

E-mail:mittapallysrujana814@gmail.com & E-mail:parameshwari.bhoomigari@gmail.com

Abstract— In this paper we present a high-performance, high
throughput, and area efficient architecture for the VLSI imple-
mentation of the AES algorithm. The subkeys, required for each
round of the Rijndael algorithm, are generated in real-time by the
key-scheduler module by expanding the initial secret key, thus
reducing the amount of storage for buffering. Moreover, pipelining is
used after each standard round to enhance the throughput. A
prototype chip implemented using 0.35µ CMOS technology resulted

in a throughput of 232M bps for iterative architecture and 1.83ttbps
for pipelining architecture.

I. INTRODUCTION

Several techniques, such as cryptography, steganography,

watermarking, and scrambling, have been developed to keep

data secure, private, and copyright protected [1], [2]. Cryptog-

raphy is an essential tool underlying virtually all networking

and computer protection, traditionally used for military and

espionage. However, the need for secure transactions in e-

commerce, private networks, and secure messaging has moved

encryption into the commercial realm [3].

Advanced encryption standard (AES) was issued as Federal

Information Processing Standards (FIPS) by National Institute

of Standards and Technology (NIST) as a successor to data

encryption standard (DES) algorithms. In recent literature,

a number of architectures for the VLSI implementation of

AES Rijndael algorithm are reported [4], [5], [6], [7], [8].

It can be observed that some of these architectures are of low

performance and some provide low throughput. Further, many

of the architectures are not area efficient and can result in

higher cost when implemented in silicon.

In this paper, we propose a high performance, high through-

put and area efficient VLSI architecture for Rijndeal algo-

rithm that is suitable for low cost silicon implementation.

The proposed architecture is optimized for high throughput

in terms of the encryption and decryption data rates using

pipelining. Polynomial multiplication is implemented using

XOR operation instead of using multipliers to decrease the

hardware complexity. In the proposed architecture both the

encryption and decryption modes use common hardware re-

sources, thus making the design area efficient. Selective use of

look-up tables and combinational logic further enhances the ar-

chitecture’s memory optimization, area, and performance. An

important feature of our proposed architecture is an effective

solution of online (real-time) round key generation needing

significantly less storage for buffering.

II. RIJNDAEL ALGORITHM

Rijndael algorithm is an iterated block cipher [9] supporting

a variable data block and a variable key length of 128, 192 or

256 bits. The algorithm consists of three distinct phases: (i)

an initial data/key addition, (ii) nine (128-bits), eleven (192-

bits) or thirteen (256-bits) standard rounds, (iii) a final round

which is a variation of a standard round. The number of

standard rounds depends on the data block and key length.

If the maximum length of the datablock or key is 128, 192 or

256, then the number of rounds is 10, 12 or 14, respectively.

The initial key is expanded to generate the round keys, each

of size equal to block length. Each round of the algorithm

receives a new round key from the key schedule module.

Each standard round includes four fundamental algebraic

function transformations on arrays of bytes. These transforma-

tions are: byte substitution, shift row, mix column, and round

key addition. The final round of the algorithm is similar to

the standard round, except that it does not have MixColumn

operation. Decryption is performed by the application of the

inverse transformations of the round functions. The sequence

of operations for the standard round function differs from

encryption. The computational performance differs between

encryption and decryption because the inverse transformations

in the round function is more complex than the corresponding

transformation for encryption.

III. THE PROPOSED VLSI ARCHITECTURE FOR RIJNDAEL

The proposed architecture showing the order of operation

and control between the transformations is shown in Fig. 1(a).

A. Architecture of the Data Unit

The data unit consists of: the initial round of key addition,

Nr 1 standard rounds, and a final round. The architecture

for a standard round composed of four basic blocks is shown

in Fig. 1(b). For each block, both the transformation and the

inverse transformation needed for encryption and decryption,

respectively are performed using the same hardware resources.

This implementation generates one set of subkey and reuses

it for calculating all other subkeys in real-time.

1) ByteSub: In this architecture each block is replaced by

its substitution in an S-Box table consisting of the multiplica-

tive inverse of each byte of the block state in the finite field

ttF (28). In order to overcome the performance bottleneck,

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 05 Issue-01

January 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2567

×

⊕ ⊕
⊕

⊕ ⊕ ⊕
⊕ ⊕

Where, In2T rans(K) is the multiplication of the byte by X

(hexadecimal value 02) over ttF (28). In0 is the least

significant 8 bits of a column of a matrix. Architecture of

different units are shown in Fig. 2 and the architecture of

MixColumn transformation is shown in the Fig. 3.

Input

Output

IN0

IN1

8

IN2

8

IN3

T0

8

8

8 8

XOR

8

XOR

8

XOR

8

8

XOR

Trans

8

8 XOR

8

XOR

8

Trans

8

XOR

8

Trans

8 Trans

MULTIPLEXER (Encryption, Decryption)

8 8

(a) Rijndael Algorithm Data and Con- (b) Architecture for the Standard
8

 8

trol Flow Round in the Data Unit

Fig. 1. Top Level View of the Rijndael

XOR Y Z

8

8

(a) For Computation of Y , Z

the implementation of multiplicative inverses is carried out

using look-up tables (stored in a table of 8 256). The

implementation includes the affine mapping of the input in

both encryption and decryption processes as follows:

a7 a6 a5

a4 a3 a2 a1 a0 0

Affine Mapping: Out[i] = In[i] In[(i + 4)mod8] In[(i +
5)mod8] In[(i+ 6)mod8] In[(i+ 7)mod8] CE[i], where

CE = 01100011 is a constant, leftmost bit the being MSB.

Inverse Affine Mapping: Out[i] = In[(i + 2)mod8] In[(i +
5)mod8] In[(i + 7)mod8] CD[i], where CD = 00000101
is a constant, leftmost bit being the MSB.

2) ShiftRow: In this transformation the rows of the block

state are shifted over different offsets. The amount of shifts

is determined by the block length. The proposed architecture

implements the shift row operation using combinational logic

considering the offset by which a row should be shifted.

3) MixColumn: In this transformation each column of the

block state is considered as a polynomial over ttF (28). It

is multiplied with a constant polynomial C(x) or D(x) over

a finite field in encryption or decryption, respectively. In

hardware, the multiplication by the corresponding polynomial

is done by XOR operations and multiplication of a block by

X. This is implemented using a multiplexer, the control being

the MSB is 1 or 0. The equations implemented in hardware

for MixColumn in encryption and decryption are as follows.

In encryption process,

Y = In0 ⊕ In1 ⊕ In2 ⊕ In3 and Z = Y .

In decryption process, T 0 = In0 ⊕ In1 ⊕ In2 ⊕ In3, T 1 =
T 0 ⊕ [In2T rans(In2T rans(T 0))],
Y = T 1 ⊕ [In2T rans(In2T rans(In0 ⊕ In2))], and Z =
T 1 ⊕ [In2T rans(In2T rans(In1 ⊕ In3))].
Out0 = In0 ⊕ [Y ⊕ In2T rans(In0 ⊕ In1)], Out1 =
In1 ⊕ [Z ⊕ In2T rans(In1 ⊕ In2)]
Out2 = In2 ⊕ [Y ⊕ In2T rans(In2 ⊕ In3)], and Out3 =

In3 ⊕ [Z ⊕ In2T rans(In3 ⊕ In0)].

(b) For Multiplication by X (hex “02”)

Fig. 2. Architecture for Units used in Mix Column Transformation

Fig. 3. Architecture for Mix Column Transformation for 128 bits

4) AddRoundKey: In this transformation (architecture rep-

resented in Fig. 4), the round key obtained from the key

scheduler is XORed with the block state obtained from the

MixColumn transformation or ShiftRow transformation based

on the type of round being implemented. In the standard

round, the round key is XORed with the output obtained from

the MixColumn transformation. In the final round the round

key is XORed with the output obtained from the ShiftRow

transformation. In the initial round, bitwise XOR operation is

Initial Key

Encryption /

Decryption

Final Round /
Initial Round

MixColumn

Transformation

ShiftRow

Transformation

ByteSub

Transformation

AddRoundKey

Transformation

128

128

Round Key Addition Round key

128

128

XOR block

Y
Mix Column

XOR block

MUX

Z

128

ByteSub

128

Shift Row

Inverse

Affine

Mapping

MUX Affine

Mapping

multiplicative inverse

8 * 256 ROM cells

Multiplexer Block

XOR XOR XOR XOR XOR XOR XOR XOR

Multiplexer Multiplexer Multiplexer Multiplexer Multiplexer Multiplexer Multiplexer Multiplexer
(a7 ; a7’) (a7 ; a7’) (a7 ; a7’) (a7 ; a7’) (a7 ; a7’) (a7 ; a7’) (a7 ; a7’) (a7 ; a7’)

Y[0]

Z [0]

32

Y[1]

Z [1]

32
Second Column of State Matrix

Y[2]

Z [2]

32

Third Column of State Matrix

Y[3]

Z [3]

32

Fourth Column of State Matrix

Out[3][3] Out[3][2]

Out[3][1]

Out[3][0]

Out[2][3] Out[2][2]

Out[2][1]

Out[2][0]

Out[1][3] Out[1][2] Out[1][1] Out[1][0]

First Column of State Matrix

Out[0][3] Out[0][2] Out[0][1] Out[0][0]

M
IX

C
O

L
U

M
N

 C
O

M
P

U
T

A
T

IO
N

 O
F

 Y
,Z

 (
E

n
c
ry

p
ti

o
n

,
D

e
c
ry

p
ti

o
n

)

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 05 Issue-01

January 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2568

×

×

×

performed between the initial round key and the initial state

block.

generate the last key value. Since the Rijndael algorithm allows

different key lengths and block lengths, each round key is

carefully set to have the same length as the data block. In

K 00(i)

B 00(i)

K 01(i)

B 01(i)

K 02(i)

B 02(i)

K 03(i)

B 03(i)

K 31(i)

B 31(i)

B 32(i)

K 32(i)

K 33(i)

B 33(i)

the case where key length and the block length are not equal,

previous, current and also the next round keys are needed in

order to generate the appropriate set of round keys that are

fed into the encryption module, which is performed by a “key

B 00(i+1)

B 01(i+1)

B 02(i+1)

B 03(i+1)

B 31(i+1)

B 32(i+1)

B 33(i+1)

alignment unit”.

Fig. 4. Architecture for Round Key Addition Transformation

B. Architecture for Key Scheduling

In the key scheduling module (Fig. 5), the initial key is

expanded and the generated round keys are stored in four 32-

bit registers. Both the forward and reverse key scheduling are

done in the same device. The ByteSub required in the key

expansion unit is implemented using the S-Boxes. Four S-

Boxes are needed for a 128-bit key and 128-bit data block

implemented using 8 256 ROM cells. Multiplexers are used

as a control signal to distinguish between the initial key and

the round key (obtained from the initial key using a “key

expansion unit”). The least significant 32 bits of the 128-bit

key is cyclically shifted to the left by a byte, implemented

using combinational logic. The resulting word after the left

shift operation is sent through the S-boxes and the affine

mapping operation, in order to perform ByteSub. The key

resulting from the ByteSub is XORed with the Round Constant

(RCON). In this architecture, the round constant is generated

using the combinational logic. The round constant should be

symmetric with the round key being generated.

initialkey0 initialkey1 initialkey2 initialkey3

Encryption
32

Decryption
initial_norrmal initial_norrmal initial_norrmal initial_norrmal

IV. A PROPOTYPE CHIP IMPLEMENTATION FOR RIJNDAEL

We now present the methodology used to design, simulate,

and verify the proposed architecture.

A. Implementation Analysis

It is evident that the Rijndael’s S-Boxes are the dominant

element of the round function in terms of required logic

resources. Each Rijndael round requires sixteen copies of

the S-Boxes, each of which is an 8-bit 8-bit look-up-table,

requiring more hardware resources. However, the remaining

components of the Rijndael round function – byte swapping,

constant multiplication by an element of Galois Field , and key

addition – were found to be simpler in structure, resulting in

these elements of the round function requiring fewer hardware

resources. Additionally, it was found that the synthesis tools

could not minimize the overall size of a Rijndael round

sufficiently to allow for a fully unrolled or fully pipelined

implementation of the entire ten rounds of the algorithm within

the target FPGA [10]. Partially pipelined implementation with

one sub-pipeline stage provided one area-optimized solution.

As compared to a one-stage implementation with no sub-

pipelining, the addition of a sub-pipeline stage afforded the

synthesis tool greater flexibility in its optimizations, resulting

in a more area efficient implementation. The 2-stage loop

unrolling was found to yield the highest throughput when
MUX MUX

MUX

MUX operating in FeedBack (FB) mode.

Register 0 Register 1 Register 2 Register 3 B. Memory Optimization

Round Key 0 Round Key 1 Round Key 2 Round Key 3

MUX enc_dec
Since the design is based on one clock cycle for each

enc_dec

M

U

X

Feedback

enc_dec

M

U

X

128

enc_dec

M

U

X

leftshift

S−box

round constant

encryption round, the memory modules had to be duplicated.

For example, in the ByteSub, the S-boxes need to be duplicated

16 times. Consequently, the choice of memory architecture is

very critical. Since all the table entries are fixed and defined

in the standard, the usage of ROM is preferred. Specifically,

the architecture requires several small ROM modules instead

of one large module, since each lookup will only be based on

Fig. 5. Architecture for Key Scheduling Unit

The total number of round constants that need to be gener-

ated is equal to the number of rounds. The round constant

is obtained in real-time by multiplying the previous round

constant by X. This is amenable for implementation in the

hardware using XOR operations. For the reverse key schedul-

ing, the last round key should be generated with forward key

scheduling for the first time. The last round key is expanded

to generate the reverse round keys. Decryption requires more

cycles than encryption because it needs pre-scheduling to

a maximum of 8-bit address, which translates to 256 entries.

We implemented the multiplicative inverse function using the

look-up table of size 8 256. We have a total of 20 copies of

the S-boxes in our design; 16 of them in encryption module

and 4 in the key scheduling module.

C. Design Flow

The proposed architecture was implemented using the CA-

DENCE virtuoso layout design tool. The method adopted was

a custom designed at the transistor level based on a custom cell

library of 0.35µ CMOS primitive standard cells. A hierarchical

15th byte
16th byte

14th byte

4th byte

3rd byte 2nd byte

Ist byte

32 32 32

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848

p-ISSN: 2348-795X

Volume 05 Issue-01

January 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 2569

. Σ

total clock cycles 11

total delay 70ns

TABLE I
put =

.
block size∗clock frequency

Σ
=

.
128∗20MHz

Σ
=

232.7M bps, [where, clock frequency = 1 / clock period for

the critical path]. When the pipelining technique is used

instead of the iterative feedback logic, the standard rounds are

duplicated for Nr times cascaded by the pipelining registers.

This increases the effective area. At a particular clock cycle,

Nr blocks of data can be encrypted or decrypted using the

pipelining technique. Based on the critical path obtained using

our implementation, the throughput achieved with pipelining

can be calculated as: Throughput = block size = 128

TABLE II

SUMMARY OF THE PERFORMANCE OF THE AES-128 MODULE

Architecture Clock cycles Throughput [Mbps]

Proposed Architecture 11 232

Mangard et. al. [7]-Standard 64 128

Mangard et. al. [7]-High Performance 34 241

approach was followed in the implementation. The layout

for each module was generated and later integrated to obtain

the final chip. The generated netlist was then simulated with

HSPICE using the MOSIS CMOS model. Once the creation

of layout design is finished, the I/O pins have to be added to

the circuit. The design layouts of different architectural units

are shown in the Fig. 6.

(a) Multiplicative Inverse (b) Affine Mapping (c) Round Constants

Fig. 6. Layout of Different Architectural Units

D. Performance Evaluation

An AES-128 encryption / decryption of a 128-bit block was

done in 11 clock cycles using the feedback logic. In each clock

cycle, one transformation is executed and, at the same time,

the appropriate key for the next round is calculated. The whole

process concludes after 10 rounds of transformations. The

analysis of the components used for the proposed architecture

is shown in the Table I. The architecture proposed by Mangard

et. al. [7] uses multipliers for the implementation of the

MixColumn, while ours uses XOR, multiplexors, inverters

etc. to reduce the complexity. Kuo et. al. [4] uses lookup

table for the implementation of the shift row module and for

the generation of the round constants in the key scheduling

module, but we used the combinational logic instead of the

look-up tables, thus reducing the area.

The frequency of the external clock with which the

architecture operates was 20M Hz; the critical delay be-

ing 50ns. The throughput is calculated as: Through-

= 1.83ttbps, [where, total delay is the delay of the single

round including the delays caused by the pipelined registers].

The summary of the performance in the Table II shows that

our proposed architecture minimizes the needed number of

clock cycles and achieves high throughput.

V. DISCUSSIONS AND CONCLUSIONS

We have presented a VLSI architecture for the Rijndael AES

algorithm that performs both the encryption and decryption.

S-boxes are used for the implementation of the multiplicative

inverses and shared between encryption and decryption. The

round keys needed for each round of the implementation are

generated in real-time. The forward and reverse key scheduling

is implemented on the same device, thus allowing efficient

area minimization. Although the algorithm is symmetrical, the

hardware required is not, with the encryption algorithm being

less complex than the decryption algorithm. The implementa-

tion of the key unit in the proposed architecture, can be scaled

for the keys of length 192 and 256 bits easily.

REFERENCES

[1] S. P. Mohanty, K. R. Ramakrishnan, and M. S. Kankanhalli, “A DCT
Domain Visible Watermarking Technique for Images,” in Proc of the
IEEE International Conf on Multimedia and Expo, 2000, pp. 1029–1032.

[2] M. S. Kankanhalli and T. T. Guan, “Compressed-Domain Scrambler
/ Descrambler for Digital Video,” IEEE Transactions on Consumer
Electronics, vol. 48, no. 2, pp. 356–365, May 2002.

[3] B. M. Macq and J. J. Quisquater, “Cryptography for Digital TV
Broadcasting,” Proceedings of the IEEE, vol. 83, no. 6, pp. 944–957,
Jun 1995.

[4] H. Kuo and I. Verbauwhede, “Architectural Optimization for a 1.82
Gbits/sec VLSI Implementation of the AES Rijndael Algorithm,” in
Proceedings of the Workshop on Cryptographic Hardware and Embed-
ded Systems, 2001, vol. 2162, pp. 51–64.

[5] M. McLoone and J. V. McCanny, “Rijndael FPGA Implementation
Utilizing Look-up Tables,” in Proceedings of the IEEE Workshop on
Signal Processing Systems, 2001, pp. 349–360.

[6] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, “A Compact Rijndael
Hardware Architecture with S-Box Optimization,” in Proceedings of
Advances in Cryptology - ASIACRYPT 2001, 2001, pp. 171–184.

[7] S. Mangard, M. Aigner, and S. Dominikus, “A Highly Regular
and Scalable AES Hardware Architecture,” IEEE Transactions on
Computers, vol. 52, no. 4, pp. 483–491, April 2003.

[8] T. Sodon O. J. Hernandez and M. Adel, “Low-Cost Advanced En-
cryption Standard (AES) VLSI Architecture: A Minimalist Bit-Serial
Approach,” in Proc of IEEE Southeast Conference, 2005, pp. 121–125.

[9] J. Daemen and V. Rijmen, The Design of Rijndael, Springer-Verlag,
2002.

[10] A. J. Elbirt, W. Yip, B. Chetwynd, and Christof Paar, “An FPGA
Implementation and Performance Evaluation of the AES Block Cipher
Candidate Algorithm Finalists,” in Proceedings of the Third Advanced
Encryption Standard (AES) Candidate Conference, 2000, pp. 13–27.

COMPONENTS OF THE AES-128 MODULE

Module/Component Number of Components
Proposed Architecture

Mangard et.
Architectutre

al.
[7]

DATA UNIT
S-Boxes 16 16

32-bit Registers using D-cells 8 16
Multiplexers 240 384

32-bit Multiplexers 180 NA
128-bit Multiplexers 60 NA

Multipliers 0 16

KEY UNIT
S-Boxes 4 NA

32-bit Registers using D-cells 4 NA

32-bit Multiplexers 4 NA

