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Abstract— In this paper we present a high-performance, high 
throughput, and area efficient architecture for the VLSI imple- 
mentation of the AES algorithm. The subkeys, required for each 
round of the Rijndael algorithm, are generated in real-time by the 
key-scheduler module by expanding the initial secret key, thus 
reducing the amount of storage for buffering. Moreover, pipelining is 
used after each standard round to enhance the throughput. A 
prototype chip implemented using 0.35µ CMOS technology resulted 

in a throughput of 232M bps for iterative architecture and 1.83ttbps 
for pipelining architecture. 

I. INTRODUCTION 

Several techniques, such as cryptography, steganography, 

watermarking, and scrambling, have been developed to keep 

data secure, private, and copyright protected [1], [2]. Cryptog- 

raphy is an essential tool underlying virtually all networking 

and computer protection, traditionally used for military and 

espionage. However, the need for secure transactions in e- 

commerce, private networks, and secure messaging has moved 

encryption into the commercial realm [3]. 

Advanced encryption standard (AES) was issued as Federal 

Information Processing Standards (FIPS) by National Institute 

of Standards and Technology (NIST) as a successor to data 

encryption standard  (DES)  algorithms.  In  recent  literature, 

a number of architectures for the VLSI implementation of 

AES Rijndael algorithm are reported [4], [5], [6], [7], [8].      

It can be observed that some of these architectures are of low 

performance and some provide low throughput. Further, many 

of the architectures are not area efficient and can result in 

higher cost when implemented in silicon. 

In this paper, we propose a high performance, high through- 

put and area efficient VLSI architecture for Rijndeal algo- 

rithm that is suitable for low cost  silicon  implementation. 

The proposed architecture is optimized for high throughput   

in terms of the encryption and decryption data rates using 

pipelining. Polynomial multiplication is implemented using 

XOR operation instead of using multipliers to decrease the 

hardware complexity. In the proposed architecture both the 

encryption and decryption modes use common hardware re- 

sources, thus making the design area efficient. Selective use of 

look-up tables and combinational logic further enhances the ar- 

chitecture’s memory optimization, area, and performance. An 

important feature of our proposed architecture is an effective 

solution of online (real-time) round key generation needing 

significantly less storage for buffering. 

II. RIJNDAEL ALGORITHM 

Rijndael algorithm is an iterated block cipher [9] supporting 

a variable data block and a variable key length of 128, 192 or 

256 bits. The algorithm consists of three distinct phases: (i)  

an initial data/key addition, (ii) nine (128-bits), eleven (192- 

bits) or thirteen (256-bits) standard rounds, (iii) a final round 

which is a variation of a standard round. The number of 

standard rounds depends on the data block and key length.     

If the maximum length of the datablock or key is 128, 192 or 

256, then the number of rounds is 10, 12 or 14, respectively. 

The initial key is expanded to generate the round keys, each  

of size equal to block length. Each round of the algorithm 

receives a new round key from the key schedule module. 

Each standard round includes four fundamental algebraic 

function transformations on arrays of bytes. These transforma- 

tions are: byte substitution, shift row, mix column, and round 

key addition. The final round of the algorithm is similar to   

the standard round, except that it does not have MixColumn 

operation. Decryption is performed by the application of the 

inverse transformations of the round functions. The sequence 

of operations for the standard round function differs from 

encryption. The computational performance differs between 

encryption and decryption because the inverse transformations 

in the round function is more complex than the corresponding 

transformation for encryption. 

III. THE PROPOSED VLSI ARCHITECTURE FOR RIJNDAEL 

The proposed architecture showing the order of operation 

and control between the transformations is shown in Fig. 1(a). 

A. Architecture of the Data Unit 

The data unit consists of: the initial round of key addition, 

Nr   1 standard rounds, and a final round. The architecture   

for a standard round composed of four basic blocks is shown 

in Fig. 1(b). For each block, both the transformation and the 

inverse transformation needed for encryption and decryption, 

respectively are performed using the same hardware resources. 

This implementation generates one set of subkey and reuses   

it for calculating all other subkeys in real-time. 

1) ByteSub: In this architecture each block is replaced by 

its substitution in an S-Box table consisting of the multiplica- 

tive inverse of each byte of the block state in the finite field 

ttF (28). In order to overcome the performance bottleneck, 
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Where, In2T rans(K) is the multiplication of  the byte by   X 

(hexadecimal value 02) over ttF (28). In0 is the least 

significant 8 bits of a column of a matrix. Architecture of 

different units are shown in Fig. 2 and the architecture of 

MixColumn transformation is shown in the Fig. 3. 
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the implementation of multiplicative inverses is carried out 

using look-up tables (stored in a table of 8 256). The 

implementation includes the affine mapping of the input in 

both encryption and decryption processes as follows: 

 
a7 a6 a5 

 
a4 a3 a2 a1 a0 0 

Affine Mapping: Out[i] = In[i] In[(i + 4)mod8] In[(i + 
5)mod8] In[(i+ 6)mod8] In[(i+ 7)mod8] CE[i], where 

CE = 01100011 is a constant, leftmost bit the being MSB. 

Inverse Affine Mapping: Out[i] = In[(i + 2)mod8] In[(i + 
5)mod8] In[(i + 7)mod8] CD[i], where CD = 00000101 
is a constant, leftmost bit being the MSB. 

2) ShiftRow: In this transformation the rows of the block 

state are shifted over different offsets. The amount of shifts   

is determined by the block length. The proposed architecture 

implements the shift row operation using combinational logic 

considering the offset by which a row should be shifted. 

3) MixColumn: In this transformation each column of the 

block state is considered  as  a  polynomial  over  ttF (28). It 

is multiplied with a constant polynomial C(x) or D(x) over   

a finite field in encryption or decryption, respectively. In 

hardware, the multiplication by the corresponding polynomial 

is done by XOR operations and multiplication of a block by 

X. This is implemented using a multiplexer, the control being 

the MSB is 1 or 0. The equations implemented in hardware  

for MixColumn in encryption and decryption are as follows.  

In encryption process, 

Y = In0 ⊕ In1 ⊕ In2 ⊕ In3 and Z = Y . 

In decryption process, T 0 = In0 ⊕ In1 ⊕ In2 ⊕ In3, T 1 = 
T 0 ⊕ [In2T rans(In2T rans(T 0))], 
Y = T 1 ⊕ [In2T rans(In2T rans(In0 ⊕ In2))], and Z = 
T 1 ⊕ [In2T rans(In2T rans(In1 ⊕ In3))]. 
Out0 = In0 ⊕ [Y ⊕ In2T rans(In0 ⊕ In1)], Out1 = 
In1 ⊕ [Z ⊕ In2T rans(In1 ⊕ In2)] 
Out2 = In2 ⊕ [Y ⊕ In2T rans(In2 ⊕ In3)], and Out3 = 

In3 ⊕ [Z ⊕ In2T rans(In3 ⊕ In0)]. 

 

(b) For Multiplication by X (hex “02”) 
 

Fig. 2. Architecture for Units used in Mix Column Transformation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3. Architecture for Mix Column Transformation for 128 bits 

 
4) AddRoundKey: In this transformation (architecture rep- 

resented in Fig. 4), the round key obtained from the key 

scheduler is XORed with the block state obtained from the 

MixColumn transformation or ShiftRow transformation based 

on the type of round being implemented. In the standard 

round, the round key is XORed with the output obtained from 

the MixColumn transformation. In the final round the round 

key is XORed with the output obtained from the ShiftRow 

transformation. In the initial round, bitwise XOR operation is 
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performed between the initial round key and the initial state 

block. 

generate the last key value. Since the Rijndael algorithm allows 

different key lengths and block lengths, each round key is 

carefully set to have the same length as the data block. In 
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Fig. 4. Architecture for Round Key Addition Transformation 

 

 

B. Architecture for Key Scheduling 

In the key scheduling module (Fig. 5), the initial key is 

expanded and the generated round keys are stored in four 32- 

bit registers. Both the forward and reverse key scheduling are 

done in the same device. The ByteSub required in the key 

expansion unit is implemented using the S-Boxes. Four S- 

Boxes are needed for a 128-bit key and 128-bit data block 

implemented using 8 256 ROM cells. Multiplexers are used 

as a control signal to distinguish between the initial key and 

the round key (obtained from the initial key using a “key 

expansion unit”). The least significant 32 bits of the 128-bit 

key is cyclically shifted to the left by a byte, implemented 

using combinational logic. The resulting word after the left 

shift operation is sent through the S-boxes and the affine 

mapping operation, in order to perform ByteSub. The key 

resulting from the ByteSub is XORed with the Round Constant 

(RCON). In this architecture, the round constant is generated 

using the combinational logic. The round constant should be 

symmetric with the round key being generated. 
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IV. A PROPOTYPE CHIP IMPLEMENTATION FOR RIJNDAEL 

We now present the methodology used to design, simulate, 

and verify the proposed architecture. 

A. Implementation Analysis 

It is evident that the Rijndael’s S-Boxes are the dominant 

element of the round function in terms of required logic 

resources. Each Rijndael round requires sixteen  copies  of  

the S-Boxes, each of which is an 8-bit 8-bit look-up-table, 

requiring more hardware resources. However, the remaining 

components of the Rijndael round function – byte swapping, 

constant multiplication by an element of Galois Field , and key 

addition – were found to be simpler in structure, resulting in 

these elements of the round function requiring fewer hardware 

resources. Additionally, it was found that the synthesis tools 

could not minimize the overall size of a Rijndael round 

sufficiently to allow for a fully unrolled or fully pipelined 

implementation of the entire ten rounds of the algorithm within 

the target FPGA [10]. Partially pipelined implementation with 

one sub-pipeline stage provided one area-optimized solution. 

As compared to a one-stage implementation with no sub- 

pipelining, the addition of a sub-pipeline stage afforded the 

synthesis tool greater flexibility in its optimizations, resulting 

in a more area efficient implementation. The 2-stage loop 

unrolling was found to yield the highest throughput when 
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encryption round, the memory modules had to be duplicated. 

For example, in the ByteSub, the S-boxes need to be duplicated 

16 times. Consequently, the choice of memory architecture is 

very critical. Since all the table entries are fixed and defined  

in the standard, the usage of ROM is preferred. Specifically, 

the architecture requires several small ROM modules instead 

of one large module, since each lookup will only be based on 

Fig. 5. Architecture for Key Scheduling Unit 

 
The total number of round constants that need to be gener- 

ated is equal to the number of rounds. The round constant      

is obtained in real-time by multiplying the previous round 

constant by X. This is amenable for implementation in the 

hardware using XOR operations. For the reverse key schedul- 

ing, the last round key should be generated with forward key 

scheduling for the first time. The last round key is expanded  

to generate the reverse round keys. Decryption requires more 

cycles than encryption because it needs pre-scheduling to 

a maximum of 8-bit address, which translates to 256 entries. 

We implemented the multiplicative inverse function using the 

look-up table of size 8 256. We have a total of 20 copies of 

the S-boxes in our design; 16 of them in encryption module 

and 4 in the key scheduling module. 

C. Design Flow 

The proposed architecture was implemented using the CA- 

DENCE virtuoso layout design tool. The method adopted was 

a custom designed at the transistor level based on a custom cell 

library of 0.35µ CMOS primitive standard cells. A hierarchical 
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. Σ 

total clock cycles 11 

total delay 70ns 

 

TABLE I 
put = 

. 
block size∗clock frequency 

Σ 
= 

. 
128∗20MHz 

Σ 
= 

232.7M bps, [where, clock frequency = 1 / clock period for 

the critical path]. When the pipelining technique is used 

instead of the iterative feedback logic, the standard rounds are 

duplicated for Nr times cascaded by the pipelining registers. 

This increases the effective area. At a particular clock cycle, 

Nr blocks of data can be encrypted or decrypted using the 

pipelining technique. Based on the critical path obtained using 

our implementation, the throughput achieved with pipelining 

can be calculated as: Throughput = block size = 128 
 

 

 
TABLE II 

SUMMARY OF THE PERFORMANCE OF THE AES-128 MODULE 

 
Architecture Clock cycles Throughput [Mbps] 

Proposed Architecture 11 232 

Mangard et. al. [7]-Standard 64 128 

Mangard et. al. [7]-High Performance 34 241 

 

 
 

approach was followed in the  implementation.  The  layout 

for each module was generated and later integrated to obtain 

the final chip. The generated netlist was then simulated with 

HSPICE using the MOSIS CMOS model. Once the creation  

of layout design is finished, the I/O pins have to be added to 

the circuit. The design layouts of different architectural units 

are shown in the Fig. 6. 
 

(a) Multiplicative Inverse (b) Affine Mapping (c) Round Constants 

Fig. 6. Layout of Different Architectural Units 

 

D. Performance Evaluation 

An AES-128 encryption / decryption of a 128-bit block was 

done in 11 clock cycles using the feedback logic. In each clock 

cycle, one transformation is executed and, at the same time, 

the appropriate key for the next round is calculated. The whole 

process concludes after 10 rounds of transformations. The 

analysis of the components used for the proposed architecture 

is shown in the Table I. The architecture proposed by Mangard 

et. al. [7] uses multipliers for the implementation of the 

MixColumn, while ours uses XOR, multiplexors, inverters  

etc. to reduce the complexity. Kuo et. al. [4]  uses lookup 

table for the implementation of the shift row module and for 

the generation of the round constants in the key scheduling 

module, but we used the combinational logic instead of the 

look-up tables, thus reducing the area. 

The frequency of the external clock with which the 

architecture operates was 20M Hz; the  critical  delay  be-  

ing 50ns. The throughput is calculated as: Through- 

= 1.83ttbps, [where, total delay is the delay of the single 

round including the delays caused by the pipelined registers]. 

The summary of the performance in the Table II shows that 

our proposed architecture minimizes the needed number of 

clock cycles and achieves high throughput. 

V. DISCUSSIONS AND CONCLUSIONS 

We have presented a VLSI architecture for the Rijndael AES 

algorithm that performs both the encryption and decryption. 

S-boxes are used for the implementation of the multiplicative 

inverses and shared between encryption and decryption. The 

round keys needed for each round of the implementation are 

generated in real-time. The forward and reverse key scheduling 

is implemented on the same device, thus allowing efficient 

area minimization. Although the algorithm is symmetrical, the 

hardware required is not, with the encryption algorithm being 

less complex than the decryption algorithm. The implementa- 

tion of the key unit in the proposed architecture, can be scaled 

for the keys of length 192 and 256 bits easily. 
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COMPONENTS OF THE AES-128 MODULE 

Module/Component Number of Components 
Proposed Architecture 

Mangard et. 
Architectutre 

al. 
[7] 

DATA UNIT 
S-Boxes 16 16 

32-bit Registers using D-cells 8 16 
Multiplexers 240 384 

32-bit Multiplexers 180 NA 
128-bit Multiplexers 60 NA 

Multipliers 0 16 

KEY UNIT 
S-Boxes 4 NA 

32-bit Registers using D-cells 4 NA 

32-bit Multiplexers 4 NA 

 


