
 

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  
p-ISSN: 2348-795X  

Volume 05 Issue-01 
January 2018 

 

Available online:http://edupediapublications.org/journals/index.php/IJR/ P a g e  | 2678 

A Traffic Minimization Approach for Big Data in Map Reduce 

Job by Intermediate Data Partition Technique 

K.Mounika
  
& J.Rajashekar

 

mounikabtech.komirelli@gmail.com,  Mail Id: rajcse504@gmail.com 
1 PG Scholar, Dept of CSE, VBIT College of engineering, Aushapur (v),  Ghatkasar (m), Medchal Dist, 

Telangana, India, 
2 Assistant Professor, Dept of CSE, VBIT College of engineering, Aushapur (v),  Ghatkasar (m), Medchal Dist, 

Telangana, India 

ABSTRACT: 

MapReduce is a programming model and an 

associated implementation for processing and 

generating large datasets that is amenable to a broad 

variety of real-world tasks. Scheduling map tasks to 

improve data locality is crucial to the performance of 

MapReduce. Many works have been devoted to 

increasing data locality for better efficiency. 

However, to the best of our knowledge, fundamental 

limits of MapReduce computing clusters with data 

locality, including the capacity region and theoretical 

bounds on the delay performance, have not been 

studied. we propose the on traffic aware partition 

and aggregation in order to reduce the network cost 

for map reduce jobs by designing an intermediate 

data partition scheme. Moreover, we together 

consider the aggregator placement issue, where each 

aggregator can reduce merged traffic from more than 

one map duties. A decomposition-primarily based 

distributed algorithm is proposed to address the 

large-scale optimization trouble for a big data 

application and an online algorithmic rule is also 

designed to adjust network data partition and 

aggregation in a dynamic way. 

 

1. INTRODUCTION 

Processing large-scale datasets has become an 

increasingly important and challenging problem as 

the amount of data created by online social networks, 

healthcare industry, scientific research, etc., 

explodes. MapReduce/Hadoop is a simple yet  

powerful framework for processing large-scale 

datasets in a distributed and parallel fashion, and has 

been widely used in practice, including Google,  

 

Yahoo!, Facebook, Amazon and IBM. A production 

MapReduce cluster may even consist of tens of 

thousands of machines .The stored data are typically 

organized on distributed file systems (e.g., Google 

File System (GFS) , Hadoop Distributed File System 

(HDFS), which divide a large dataset into data 

chunks (e.g., 64 MB) and store multiple replicas (by 

default 3) of each chunk on different machines. A 

data processing request under the MapReduce 

framework, called a job, consists of two types of 

tasks: map and reduce.  

Map Task Execution: 

Each map task is assigned a portion of the input file 

called a split. By default, a split contains a single 

HDFS block (64MB by default), so the size of the 

input file determines the number of map tasks. The 

execution of a map task is divided into two phases. 

The map phase reads the task’s split from HDFS, 

parses it into records (key/value pairs), and applies 

the map function to each record. After the map 

function has been applied to each input record, the 

commit phase registers the final output with the 

TaskTracker, which then informs the JobTracker that 

the task has finished executing. After a map task has 

applied the map function to each input record, it 

enters the commit phase. To generate the task’s final 

output, an in-memory buffer is flushed to disk, and 

mailto:mounikabtech.komirelli@gmail.com
mailto:rajcse504@gmail.com


 

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  
p-ISSN: 2348-795X  

Volume 05 Issue-01 
January 2018 

 

Available online:http://edupediapublications.org/journals/index.php/IJR/ P a g e  | 2679 

all of the spill files generated during the map phase 

are merge sorted into a single data file. The final 

output file is registered with the TaskTracker before 

the task completes. The TaskTracker will read these 

files when servicing requests from reduce tasks. 

Reduce Task Execution: 

The execution of a reduce task is divided into three 

phases. The shuffle phase fetches the reduce task’s 

input data. Each reduce task is assigned a partition of 

the key range produced by the map step, so the 

reduce task must fetch the content of this partition 

from every map task’s output. The sort phase groups 

records with the same key together. The reduce phase 

applies the user-defined reduce function to each key 

and corresponding list of values. In the shuffle phase, 

a reduce task fetches data from each map task by 

issuing HTTP requests to a configurable number of 

TaskTrackers at once (5 by default). The JobTracker 

relays the location of every TaskTracker that hosts 

map output to every TaskTracker that is executing a 

reduce task. In traditional batch-oriented Hadoop, a 

reduce task cannot fetch the output of a map task 

until the map has finished executing and committed 

its final output to disk. After receiving its partition 

from all map outputs, the reduce task enters the sort 

phase. The map output for each partition is already 

sorted by key. The reduce task merges these runs 

together to produce a single run that is sorted by the 

key. The task then enters the reduce phase, in which 

it invokes the user-defined reduce function for each 

distinct key in sorted order, passing it the associated 

list of values. The output of the reduce function is 

written to a temporary location on HDFS. After the 

reduce function has been applied to each key in the 

reduce task’s partition, the task’s HDFS output file is 

atomically renamed from its temporary location to its 

final location. 

In this paper, we jointly consider data partition and 

aggregation for a MapReduce job with an objective 

that is to minimize the total network traffic. In 

particular, we propose a distributed algorithm for big 

data applications by decomposing the original large-

scale problem into several subproblems that can be 

solved in parallel. Moreover, an online algorithm is 

designed to deal with the data partition and 

aggregation in a dynamic manner. Finally, extensive 

simulation results demonstrate that our proposals can 

significantly reduce network traffic cost in both 

offline and online cases. 

2.RELATED WORK 

J. Dean and S. Ghemawat explained MapReduce is a 

programming model and an associated 

implementation for processing and generating large 

data sets. Users specify a map function that processes 

a key/value pair to generate a set of intermediate 

key/value pairs, and a reduce function that merges all 

intermediate values associated with the same 

intermediate key. Many real world tasks are 

expressible in this model, as shown in the paper. 

Programs written in this functional style are 

automatically parallelized and executed on a large 

cluster of commodity machines. The run-time system 

takes care of the details of partitioning the input data, 

scheduling the program’s execution across a set of 

machines, handling machine failures, and managing 

the required inter-machine communication. This 

allows programmers without any experience with 

parallel and distributed systems to easily utilize the 

resources of a large distributed system. Our 



 

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  
p-ISSN: 2348-795X  

Volume 05 Issue-01 
January 2018 

 

Available online:http://edupediapublications.org/journals/index.php/IJR/ P a g e  | 2680 

implementation of MapReduce runs on a large cluster 

of commodity machines and is highly scalable: a 

typical MapReduce computation processes many 

terabytes of data on thousands of machines. 

Programmers find the system easy to use: hundreds 

of MapReduce programs have been implemented and 

upwards of one thousand MapReduce jobs are 

executed on Google’s clusters every day. 

W. Wang, K. Zhu, L. Ying, J. Tan, and L. Zhang, 

explained Scheduling map tasks to improve data 

locality is crucial to the performance of MapReduce. 

Many works have been devoted to increasing data 

locality for better efficiency. However, to the best of 

our knowledge, fundamental limits of MapReduce 

computing clusters with data locality, including the 

capacity region and theoretical bounds on the delay 

performance, have not been studied. In this paper, we 

address these problems from a stochastic network 

perspective. Our focus is to strike the right balance 

between data-locality and load-balancing to 

simultaneously maximize throughput and minimize 

delay. We present a new queuing architecture and 

propose a map task scheduling algorithm constituted 

by the Join the Shortest Queue policy together with 

the MaxWeight policy. We identify an outer bound 

on the capacity region, and then prove that the 

proposed algorithm stabilizes any arrival rate vector 

strictly within this outer bound. It shows that the 

algorithm is throughput optimal and the outer bound 

coincides with the actual capacity 

Region. Further, we study the number of backlogged 

tasks under the proposed algorithm, which is directly 

related to the delay performance based on Little’s 

law. We prove that the proposed algorithm is heavy-

traffic optimal, i.e., it asymptotically minimizes the 

number of backlogged tasks as the arrival rate vector 

approaches the boundary of the capacity region. 

Therefore, the proposed algorithm is also delay 

optimal in the heavy-traffic regime. 

 

  F. Chen, M. Kodialam, and T. Lakshman proposed 

MapReduce has achieved tremendous success for 

large-scale data processing in data centers. A key 

feature distinguishing MapReduce from previous 

parallel models is that it interleaves parallel and 

sequential computation. Past schemes, and especially 

their theoretical bounds, on general parallel models 

are therefore, unlikely to be applied to MapReduce 

directly. There are many recent studies on 

MapReduce job and task scheduling. These studies 

assume that the servers are assigned in advance. in 

current data centers, multiple MapReduce jobs of 

different Importance levels run together. In this 

paper, we investigate a schedule problem for 

MapReduce taking server assignment in to 

consideration as well. We formulate a MapReduce 

server-job organizer problem (MSJO) and show that 

it is NP-complete. We develop a 3-approximation 

algorithm and a fast heuristic. We evaluate our 

algorithms through both simulations and experiments 

on Amazon EC2 with an implementation in Hadoop. 

The results confirm the advantage of our algorithms 

 

FRAMEWORK 

The network traffic is reducing the inside of a 

MapReducejob. Wehave to consider the aggregate 

information with similar keys since mailing them to 

remote reduce tasks. Although we've asimilar 

perform, referred to as combiner, that has been 



 

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  
p-ISSN: 2348-795X  

Volume 05 Issue-01 
January 2018 

 

Available online:http://edupediapublications.org/journals/index.php/IJR/ P a g e  | 2681 

alreadyadopted by Hadoop, it operates directly when 

a map taskindividually for its generated information, 

failing to use the informationaggregation 

opportunities among multiple tasks on completely 

differentmachines.Objective is to reduce the overall 

network traffic byData partition and aggregation for a 

MapReduce job as shownin fig. Distributed 

algorithmic program is planned for big 

dataapplications by decomposing the initial large-

scale drawbackinto many subproblems and these 

subproblems is solvedin parallel. Another is on-line 

algorithmic program that is additionally designed to 

deal with the information partition and aggregation 

during a dynamicmanner.Finally demonstrated 

suggest thatour proposals will considerably reduce 

network traffic price inboth offline and on-line cases. 

The network trafficminimization drawback is being 

developed. To encourage ouranalysis, we want to 

construct an auxiliary graph with a layer structure. 

 

 

 

Another extra challenge that arises in managingthe 

MapReduce job is for big data. To solve the problem 

onmultiple machines during a parallel manner we use 

distributedalgorithm. The only basic plan behind this 

can be to decomposethe original large-scale 

drawback into many distributedsolvable subproblems 

that are coordinated by a high-levelmaster drawback. 

 

 

Fig.2. Map Reduce Task with Aggregation 

Map and reduce tasks might partly overlap under 

somecases however the execution is to extend system 

throughput, and itis troublesome to estimate system 

parametersat a high accuracy forbig 

informationapplications.  

A. Distributed Algorithm(rewrite this content) 

We propose a distributed algorithm for big data 

applications by decomposing the original large-scale 

problem into several subproblems that can be solved 

in parallel.Our basic idea is to decompose the original 

large-scale problem into several distributively 

solvable sub problems that are coordinated by a high-

level master problem.We executed our distributed 

algorithm using the same data source for comparison. 

Since our distributed algorithm is based on a known 

aggregation ratio 

a, we have done some experiments to evaluate it in 

Hadoop environment. 

B. Online Algorithm(rewrite this content) 

In this section, we design an online algorithm whose 

basic idea is to postpone the migration operation until 



 

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  
p-ISSN: 2348-795X  

Volume 05 Issue-01 
January 2018 

 

Available online:http://edupediapublications.org/journals/index.php/IJR/ P a g e  | 2682 

the cumulative traffic cost exceeds a threshold.In 

each of the following time slot, we check whether the 

accumulative traffic costis greater than g times of 

𝐶𝑀(𝑡^) .If it is, we solve an optimization problem with 

the objective of minimizing traffic cost.We conduct 

migration operation according to the optimization 

results and update 𝐶𝑀(𝑡^). 

A web algorithmic program to dynamically adjust 

information partition and aggregation throughout the 

execution ofmap and reduce tasks is therefore driven. 

The fundamental plan of thisalgorithm is to postpone 

the migration operation till thecumulative traffic 

price exceeds a threshold.Extensive simulations are 

carried toevaluate theperformance of our projected 

distributed algorithmic program Distributed 

Algorithm. We have a tendency to then compare DA 

with HNA that is that thedefault technique in 

Hadoop. To our best data, wepropose the placement 

algorithmic program, and comparedwith the HRA 

that focuses on a random somebody placement. 

 

3. EXPERIMENTAL RESULTS 

Network traffic by planning a novel intermediate 

information partition scheme we aim toreduce 

network traffic price.Aggregator placement is 

decomposition based mostly distributed algorithmic 

rule is plannedto with the largescale optimization 

problem for big data application.In reducer location 

you are givenfor particular location we are taking the 

latitude and longitude values,after upload any 

documents and start MapReduce Aggregation. The 

request has been processed by Reducers, because 

which reducer is nearer to the mapped location it 

receives input and response sent that 

reducer.Compare the aggregation and non 

aggregation network traffic cost graph. 

 

 

 

 

4. CONCLUSION 

The MapReduce programming model has been 

successfully used at Google for many different 

purposes. We attribute this success to several reasons. 

First, the model is easy to use, even for programmers 

without experience with parallel and distributed 

systems, since it hides the details of parallelization, 

fault tolerance, locality optimization, and load 

balancing.Those key/value pairs are saved on local 

system and organized into more than one data 

partitions, one per reduce challenge. Within the 

reduce section, every reduce task fetches its very own 

proportion of records partitions from all map tasks to 

generate the final end result. There may be a shuffle 

step between map and reduce segment. On this step, 

the information produced with the aid of the map 

phase are ordered, partitioned and transferred to the 



 

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  
p-ISSN: 2348-795X  

Volume 05 Issue-01 
January 2018 

 

Available online:http://edupediapublications.org/journals/index.php/IJR/ P a g e  | 2683 

suitable machines executing the reduce phase. The 

resulting network traffic patterns from all map 

responsibilities to all reduce tasks can motive a top 

notch volume of network visitors, imposing a critical 

constraint at the efficiency of data analytic 

applications and programs.To address big-scale 

formulation due to large data, we recommend a 

distributed algorithm to resolve the trouble on more 

than one machine. Moreover, we enlarge our 

algorithm to handle the MapReduce process in an 

online way while some system parameters are not 

given. Finally, we conduct significant simulations to 

evaluate our proposed set of rules beneath both 

offline instances and on-line cases. 

REFERENCES 

[1] J. Dean and S. Ghemawat, “Mapreduce: 

simplified data processing on large 

clusters,”Communications of the ACM, vol. 51, 

no. 1, pp. 107–113, 2008.  

[2] W. Wang, K. Zhu, L. Ying, J. Tan, and L. 

Zhang, “Map task scheduling in mapreduce with 

data locality: Throughput and heavy-traffic 

optimality,” in INFOCOM, 2013 Proceedings 

IEEE. IEEE, 2013, pp. 1609–1617.  

[3] F. Chen, M. Kodialam, and T. Lakshman, 

“Joint scheduling of processing and shuffle 

phases in mapreduce systems,” in 

INFOCOM,2012 Proceedings IEEE. IEEE, 

2012, pp. 1143–1151.  

[4] Y. Wang, W. Wang, C. Ma, and D. Meng, 

“Zput: A speedy data uploading approach for the 

hadoop distributed file system,” inCluster 

Computing (CLUSTER), 2013 IEEE 

International Conferenceon. IEEE, 2013, pp. 1–

5.  

[5] T. White, Hadoop: the definitive guide: the 

definitive guide. ” O’Reilly Media, Inc.”, 2009. 

[6] S. Chen and S. W. Schlosser, “Map-reduce 

meets wider varieties of applications,” Intel 

Research Pittsburgh, Tech. Rep. IRP-TR-08-05, 

2008. 

[7] J. Rosen, N. Polyzotis, V. Borkar, Y. Bu, M. 

J. Carey, M. Weimer, T. Condie, and R. 

Ramakrishnan, “Iterative mapreduce for large 

scale machine learning,” arXiv preprint 

arXiv:1303.3517, 2013. 

[8] S. Venkataraman, E. Bodzsar, I. Roy, A. 

AuYoung, and R. S. Schreiber, “Presto: 

distributed machine learning and graph 

processing with sparse matrices,” in 

Proceedings of the 8th ACMEuropean 

Conference on Computer Systems. ACM, 2013, 

pp. 197– 210. 

[9] A. Matsunaga, M. Tsugawa, and J. Fortes, 

“Cloudblast: Combining mapreduce and 

virtualization on distributed resources for 

bioinformatics applications,” in eScience, 2008. 

eScience’08. IEEEFourth International 

Conference on. IEEE, 2008, pp. 222–229. 



 

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  
p-ISSN: 2348-795X  

Volume 05 Issue-01 
January 2018 

 

Available online:http://edupediapublications.org/journals/index.php/IJR/ P a g e  | 2684 

[10] J. Wang, D. Crawl, I. Altintas, K. Tzoumas, 

andV. Markl, “Comparison of distributed data 

parallelization patterns for big data 

analysis: A bioinformatics case study,” 

inProceedings of the FourthInternational 

Workshop on Data Intensive Computing in the 

Clouds 

(DataCloud), 2013.  

[11] R. Liao, Y. Zhang, J. Guan, and S. Zhou, 

“Cloudnmf: A mapreduceimplementation of 

nonnegative matrix factorization for largescale 

biological datasets,” Genomics, proteomics 

&bioinformatics, vol. 12, no. 1, pp. 48–51, 

2014. 

[12] G. Mackey, S. Sehrish, J. Bent, J. Lopez, S. 

Habib, and J. Wang, 

“Introducing map-reduce to high end 

computing,” in PetascaleData Storage 

Workshop, 2008. PDSW’08.3rd. IEEE, 2008, pp. 

1–6.  

[13] W. Yu, G. Xu, Z. Chen, and P. Moulema, 

“A cloud computing based architecture for cyber 

security situation awareness,” 

inCommunications and Network Security (CNS), 

2013 IEEE Conferenceon. IEEE, 2013, pp. 488–

492. 


