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Abstract: Making new connections 

according to personal preferences is a 

crucial service in mobile social networking, 

where the initiating user can find matching 

users within physical proximity of him/her. 

In existing systems for such services, usually 

all the users directly publish their complete 

profiles for others to search. However, in 

many applications, the users’ personal 

profiles may contain sensitive information 

that they do not want to make public. In this 

paper, we propose Find U, the first privacy-

preserving personal profile matching 

schemes for mobile social networks. In Find 

U, an initiating user can find from a group 

of users the one whose profile best matches 

with his/her; to limit the risk of privacy 

exposure, only necessary and minimal 

information about the private attributes of 

the participating users is exchanged. 

Matching user profiles using their physical 

proximity via mobile social networking is a 

critical thing. We propose Find U, the 

concept used to limit the privacy levels and 

also to find the best matching profiles. To 

realize the user privacy levels here we are 

using secure multiparty computation (SMC) 

techniques. We also propose protocols such 

as PSI, PCSI to prove their security proofs. 

We evaluate the efficiency of the protocols 

by adopting the total run time and energy 

consumption. 

 

Index Terms-- Private profile matching, 

Shamir secret sharing algorithm, secure 

multi-party computation, set inflation 

attack, Honest but curious model, Blind and 

permute model. 

 

I.INTRODUCTION 
 

With the proliferation of mobile 

devices, mobile social networks (MSNs) are 

becoming an inseparable part of our lives. 

Leveraging networked portable devices 

such as smart phones and PDAs as 

platforms, MSN not only enables people to 

use their existing online social networks 

(OSNs) at anywhere and anytime, but also 

introduces a myriad of mobility-oriented 

applications, such as location-based 

services and augmented reality. Among 

them, an important service is to make new 

social connections/friends within physical 

proximity based on the matching of 

personal profiles. For example, Magnet U 

[1] is a MSN application that matches one 
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with nearby people for dating or friend-

making based on common interests. In such 

an application, a user only needs to input 

some (query) attributes in her profile, and 

the system would automatically find the 

persons around with similar profiles. The 

scopes of these applications are very broad, 

since people can input anything as they 

want, such as hobbies, phone contacts and 

places they have been to. The latter can 

even be used to find “lost connections” [2] 

and “familiar strangers” [3]. However, such 

systems also raise a number of privacy 

concerns. Let us first examine a motivating 

scenario. In a hospital, patients may include 

their illness symptoms and medications in 

their personal profiles in order to find 

similar patients, for physical or mental 

support. In this scenario, an initiating user 

(initiator) may want to find out the patient 

having the maximum number of identical 

symptoms to her, while being 

 

Fig. 1. Private profile matching in mobile 

social networks 

Reluctant to disclose her sensitive illness 

information to the rest of the users, and the 

same for the users being matched with. If 

users’ private profiles are directly 

exchanged with each other, it will facilitate 

user profiling where that information can 

be easily collected by a nearby user, either 

in an active or passive way; and those user 

information may be exploited in 

unauthorized ways. For example, a 

salesman from a pharmacy may submit 

malicious matching queries to obtain 

statistics on patients’ medications for 

marketing purposes. To cope with User 

profiling in MSNs, it is essential to disclose 

minimal and necessary personal 

information to as few users as possible. In 

fact, the ideal situation is to let the initiator 

and its best matching user directly and 

privately find out and connect to each 

other, without knowing anything about 

other users’ profile attributes, while the 

rest of the users should also learn nothing 

about the two user’s matching attributes. 

The scenario is illustrated in Fig. 1, where 

the party P1 is the initiator and the others 

are called “candidates”. P1’s best matching 

user is P3, who shares the maximum 

number of symptoms with her. Since 

directly publishing all the profile attributes 

is undesirable, it is challenging to find out 

the matching users privately. One may think 

of simply turning off the cell phone or input 

very few attributes, but these would 

interfere with the system usability. 

Recently, Yang et. al. proposed E Small 

Talker [4], a practical system for matching 
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people’s interests before initiating a small-

talk. However, E-Small Talker 

reveals the exact common attributes 

between the initiator and every other user, 

which could be more than necessary. 

Another difficulty of private matching under 

a MSN setting is the lack of a centralized 

authority. Lu et. al. [5] proposed a symptom 

matching scheme for mobile health social 

networks, assuming the existence of a semi-

online central authority. 

 

In this paper, we overcome the above 

challenges and makethe following main 

contributions. 

(1) We formulate the privacy preservation 

problem of profile matching in MSN. Three 

increasing levels of privacy are defined, 

where the information learnt by the 

initiator and each candidate includes: the 

intersection set between their profile 

attributes, the size of their intersection set, 

and the rank of their intersection set size, 

respectively. 

(2) We propose two fully distributed 

privacy-preserving profile matching 

protocols. The basic ideas come from 

private set-intersection (PSI) techniques. 

However, solutions based on existing PSI 

schemes are less efficient. We leverage 

secure multi-party computation (SMC) 

based on polynomial secret sharing, and 

propose several key enhancements to 

improve the computation and 

communication efficiency. Also, userscan 

choose personalized privacy levels when 

running the samematching instance. 

(3) We provide thorough security analysis 

and performance evaluation for our 

schemes. Our schemes achieve several 

security properties not achieved by 

previous works, i.e., theyare not only secure 

under the honest-but-curious (HBC) model 

but can also prevent several key malicious 

attacks. Meanwhile,they are shown to be 

more efficient under the settings of MSN. 

 

II.RELATED WORK 

Privacy preserving profile matching 

protocols, without relying on a client-server 

relationship nor any central server. We 

propose novel methods to reduce energy 

consumption and protocol run time, while 

achieving reasonable security levels. 

Specifically, we exploit the homomorphic 

properties of Shamir secret sharing to 

compute the intersection between user 

profiles privately, and due to the smaller 

computational domain of secret sharing, 

our protocols achieve higher performance 

and lower energy consumption for practical 

parameter settings of an MSN. Such a 

framework is also applicable to many 

scenarios beyond the motivating problems 

in this paper, for example, in patient 

matching in online healthcare social 

networks. 

Algorithm: 

In this section, we first outline the idea of 

Find U, and then present two core designs 

for the PSI and PCSI protocols. 
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Finally we address practical issues including 

user discovery. 

 

A. Overview 

 

      We present two protocols that aim at 

realizing one level of privacy requirement 

each. We start with the basic scheme 

realizing PSI under PL-1, which is based on 

secure polynomialevaluation using secret 

sharing. At a high level, for P1 andeach Pi (2 

≤ i ≤ N), their inputs are shared among a 

subsetPi of 2t + 1 parties (the computing 

set) using (t, 2t + 1)-SS, based on which they 

cooperatively compute shares of the 

function Fi(xj) = Rij · fi(xj) + xj for each 1 ≤ j ≤ 

n, where fi(y) is the polynomial 

representing Pi’s set, and Rijis a random 

number jointly generated by P1 and Pi but 

notknown to any party. We have xj∈ I1,i iff. 

Fi(xj) = xj . 

The values of {Fi(xj)}1≤j≤n remain in secret-

shared formsbetween P1 and Pi before 

their shares are revealed to each other. To 

reduce the communication complexity, we 

proposean enhancement that aggregates 

multiple multiplication and addition 

operations into one round during the 

secure polynomial evaluation computation. 

For PL-2, the advanced scheme achieves 

efficient PCSI. The main idea is that, the 

parties in Pi first compute the (t, 2t+1) 

shares of the function Fi(xj) = Rij ·  fi(xj), 1 ≤ j 

≤ nsecurely using the basic scheme, 

whereas xj∈ I1,i iff. Rij · fi(xj) = 0. In order to 

blind from P1 the correspondencebetween 

its inputs {xj} (j ∈ {1, · · · , n}) and the 

outputs Fi(xj′ ) (j′ ∈ {1, · · · , n}), we employ a 

blind-and-permute(BP) method. To reduce 

the number of invocations of the 

BPprotocol, we use share conversion to 

convert the (t, t + 1)-shares of {Fi(xj)}1≤j≤n 

(held by parties in the reconstructionset P′ 

i) into (1, 2)-shares shared between P1 and 

Pi, so thatonly one BP invocation is needed 

between P1 and each Pi.B. The Basic 

SchemeWe first gives two definitions that 

capture the idea to involvethe minimum 

number of parties during computation. 

 

Definition 3 (Computing set of Pi): A set of 

2t+1 partiesPi ⊂ P, who help P1 and Pi to 

compute the shares of Fi(xj),1 ≤ j ≤ n. Pi 

includes P1 and Pi, and the rest 2t−1 parties 

are chosen as Pi+1, Pi+2, · · · with indices 

wrapping around. 

 

Definition 4 (Reconstruction set of Pi): A 

set of t+1 parties P′i⊂ Pi, who will 

contribute the shares of Fi(xj),1 ≤ j ≤ n to P1 

and Pi for reconstruction, P′i also includesP1 

and Pi, and the rest t − 1 parties are chosen 

in the sameway as in the computing set. 

As input, each party has a set of attributes: 

P1 hasS1 = {x1, x2, ..., xn} and Pi has Si = 

{yi1, yi2, ..., yim},respectively, where each 

element is an encoded attribute inFp. For 

example, a hash algorithm can be used for 

encoding. 

Rather than publishing the sets as they are, 

each Pi firstgenerates an m-degree 

polynomial based on Si as follows: 
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fi(y) = (y − yi1) · (y − yi2) · · · (y − yim) = Σmk 

= 0aikyk, (1)where {aik} 0≤k≤m − 1 are 

coefficients. We require aim ≡ 1 sothat Pi 

cannot give an all-zero polynomial. The 

function to be computed is: Fi(xj) = Rij · fi(xj) 

+ xj for each 1 ≤ j ≤ n,where Rij = rijr′ij , rij 

and r′ij are random numbers generatedby 

P1 and Pi, respectively. In this way, if Fi(xj) ∈ 

Si, xj∈I1,i with high probability, and if Fi(xj) 

/∈S1 then xj /∈I1,i.The basic scheme 

consists of three phases, describes one run 

between two parties - P1 and Pi. Thewhole 

protocol between P1 and P2, ..., PN consists 

of  N – 1 instances of the two-party 

protocol, which can be 

parallelized/aggregated to save time 

(details are shown in [1]). In the data share 

distribution phase, P1 shares the 1 to m 

powersof each of its set elements, while Pi 

shares its private inputs among Pi’s 

computing set. In addition, P1 and Pi also 

sharetheir n random numbers, respectively. 

 

In the computation phase, the parties in Pi 

participatein secure computation of the 

shares of {Fi(xj)}1≤j≤n. In particular, to 

evaluate fi(xj), a straightforward way is to 

compute m − 1 multiplications of aikxkj , 1 ≤ 

k ≤ m − 1 by invoking the SS-multiplication 

protocol m−1 times. However, 

this will introduce too much communication 

cost.Therefore, we propose to aggregate 

those multiplicationsinto one round. That is, 

each party Pl ∈ Pi first locallycompute a 

product-sum of shares zijl =Σm−1k=1 

[aik]l[xkj]l based on m − 1 pairs of local 

shares {[aik]l, [xkj]l}1≤k≤m−1. 

Then, after computing zijl, each party Pl ∈ Pi 

proceeds inthe same way as in SS-Mul. 

Specifically, each Pl shares the value zijl to 

others by choosing a t-degree random 

polynomialhl(x), and then locally computes 

the same linear combination (Σ2t+1k=1 

λkhk(l)) of the received secondary shares to 

get itsown share of the product-sum - 

[Σm−1k=1 aikxkj]l. We denote this variant of 

SS-Mul as SS-Mul-Add, whose correctness 

follows from the homomorphic properties 

of SS-Add and SSMul. 

Since Fi(xj) = rijr′ij(ai0 +Σm−1k=1 aikxkj+ 

xmj) + xj , Pl’s share of Fi(xj) can then be 

easily computed by invoking two more SS-

Mul. 

In the reconstruction phase, at least t + 1 

shares of Fi(xj) are needed to reconstruct 

Fi(xj). To this end, the parties reveal their 

shares to P1 and Pi, who can obtain Fi(xj) by 

polynomial interpolation. P1 and Pi can test 

if Fi(xj) = xj , 1 ≤ j ≤ n and Fi(xj) = yj , 1 ≤ j ≤ m 

respectively, to determine their intersection 

set. 

III.PROBLEM DEFINITION 
 

A. System Model 

Our system consists of N users (or parties) 

denoted as P1...PN, each possessing a 

portable device. We denote theinitiating 

party (initiator) as P1. P1 launches the 

matching process and its goal is to find one 

party that best “matches” with it, from the 

rest of the parties P2,..., PN which are called 

candidates. Each party Pi’s profile consists 
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of a set of attributes Si, which can be strings 

up to a certain length. P1 defines a 

matching query to be a subset of S1, and in 

the following we use S1 to denote the query 

unless specified. Also, we denote n = |S 1| 

and m = |S i|, i> 1, assuming each candidate 

has the same set size for simplicity. 

There could be various definitions of 

“match”. In this paper, to keep it simple, we 

consider |S1 ∩ Si| > 0 as match (same with 

[4]). The best match, Pi∗  is defined as the 

party having the maximum intersection set 

size with P1. P1 will first find out Pi∗  via our 

protocols, and then they decide whether to 

connect with each other based on their 

actual intersection set. For the network, we 

assume devices communicate through 

wireless interfaces such as Bluetooth or 

WIFI. For simplicity, we assume every 

participating device is in the communication 

range of each other. In addition, we assume 

that a secure communication channel has 

been established between each pair of 

users, which can be done easily if each 

device has public/private key pair. 

Otherwise, we can use the group device 

pairing technique [6] to establish pair wise 

session keys. We do not assume the 

existence of a trusted third party during the 

protocol run; all parties carry out profile 

matching in a completely distributed way. 

They may cooperate with eachother, i.e., 

when P1 runs the protocol with each Pi, a 

subset ofthe rest of parties would help 

them to compute their results. 

 

 

B. Adversary Model 

An outsider can eaves drop the 

communication channel or modify, replay 

and inject messages; however it is not our 

main focus to prevent against active attacks 

from outsiders. From now on, we will deal 

with insiders who are participators of the 

matching protocol. An insider’s goal is to 

conduct userprofiling, i.e., obtain as much 

personal profile information of other 

nearby users as possible. With a user’s 

attributes, a bad guy could correlate and 

identify that user via its MAC addresses or 

public keys. However, we cannot absolutely 

prevent user profiling, because at least the 

initiator and its best matching user will 

mutually learn the intersection set between 

them to make connections. Thus we focus 

on minimizing the amount of private 

information revealed in one protocol run. 

The parties could try to learn more 

information than allowed, by either 

inferring from the results but honestly 

following the protocol, or actively deviating 

from it. The former corresponds to the 

honest-but-curious (HBC) model, while the 

latter corresponds to the malicious model 

[7]. In this paper, the proposed protocols 

are proven secure under the HBC model; 

although not proven secure under the 

malicious model, we analyze a number of 

active attacks and show how they are 

secure against them.The adversary may act 

alone (be any single party) or several parties 

may collude. We assume that the size of a 

coalition is smaller than a threshold t, 
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where t is a parameter. And we shall also 

assume N ≥ 2t + 1 for our proposed 

schemes. 

C. Design Goals 

1. Security Goals 

Our main security goal is to thwart user 

profiling attack. Since the users may have 

differentprivacy requirements and it takes 

different amount of efforts in protocol run 

to achieve them, we hereby define three 

levels of privacy where a higher level leaks 

less information to the adversaries. Note 

that, by default, all of the following include 

letting P1 and the best match Pi∗learn the 

intersection set between them at the end of 

a protocol run. 

Definition 1 (Privacy Level 1 (PL-1)) 

When the protocol ends, P1 and each 

candidate Pi, 2 ≤ i≤ N mutually learn the 

intersection set between them: I1,i = S1∩Si. 

An adversary A (whose behavior is defined 

in Sec. II-B) should learn nothing beyond 

what can be derived from the above 

outputs and its private inputs. If we assume 

the adversary has unbounded 

computingpower, PL-1 actually corresponds 

to unconditional security for all the parties 

under the HBC model. Obviously, in PL-1, P1 

can obtain all candidates’ intersection sets 

just in one protocol run. Thus it reveals too 

much user information to the attacker if he 

assumes the role of P1. Therefore we define 

privacy level 2 in the following. 

Definition 2 (Privacy Level 2 (PL-2)) 

When the protocol ends, P1 and each 

candidate Pi, 2 ≤ i≤ N mutually learn the size 

of their intersection set: m1,i = |S1 ∩ Si|. In 

addition, the best match Pi∗  is allowed to 

know the m1, i values with other Pis. The 

adversary A should learn nothing beyond 

what can be derived from the above 

outputs and its private inputs. In PL-2, 

except when m1,i = |S1| or |Si|, P1 and 

each Pi both will not learn exactly which 

attributes are in I1,i. The additional 

information for Pi∗  is intended for it to 

learn whether itself is the best match under 

active attacks. In PL-2, the adversary needs 

to run the protocol multiple times to obtain 

the same amount of information with what 

he can obtain under PL-1 when he assumes 

the role of P1. However, PL-2 still allows A 

to guess which attributes are in the 

matching setwith non-negligible probability, 

especially when the attribute sets are small.  

Definition 3 (Privacy Level 3 (PL-3)) 

When the protocol ends, P1 and each Pi 

should only learn the ranks of each value 

m1,i, 2 ≤ i≤ N. A should learn nothing more 

than what can be derived from the outputs 

and its private inputs. In PL-3, we can 

require that P1 only contacts the best 

matchPi∗  , such that it only obtains the 

intersection set I1,i∗  with the best match. If 

there is a tie, then the party with lowest ID 

is chosen as the best match. In this way, A 

will need at least N−1 protocol runs to learn 

all other user’s exact profile attributes, and 

thus A’s profiling capability is much limited. 
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2) Usability and Efficiency 

For profile matching in MSN, it is desirable 

to involve as few human interactions as 

possible. In this paper, human user only 

needs to explicitly participate in the end of 

the protocol run, e.g., decide whether to 

connect when he/she becomes the best 

match. In addition, the system design 

should be lightweight and practical, i.e., 

being efficientEnough in computation and 

communication to be used in MSN. Finally, 

the users (especially the candidates) shall 

have the option to flexibly personalize their 

privacy levels. 

 

D. Challenges 

 

          It is very challenging to achieve all the 

design goals simultaneously, especially if we 

desire high level of securityBut are unwilling 

to pay the high costs of computation and 

communication. Similar problems to ours 

can be found in the literature, namely 

private set intersection (PSI) and private 

cardinality of set intersection (PCSI) [7], and 

they are mostly tackled under the 

framework of Secure Multi-party 

Computation (SMC). The general SMC 

techniques [8] are often far from efficient. 

Researchers have proposed various 

customized solutions for those problems, 

but when applied to the ones defined here, 

they lead to high energy consumption and 

long protocol run time. In this paper, we 

explore novel methods with higher 

efficiency, while achieving reasonable 

security (resist a threshold number of 

colluders). 

 

E. Relations to Existing Problems 

 In PL-1, each sub-protocol (between 

P1 and Pi) relates to the two-party PSI 

problem [7], [9], [10], while the PL-2 relates 

to two-party PCSI [7], [9], [11]. PL-3 is most 

related to the privacy-preserving nearest 

neighbor search problem [12], [13]. Unlike 

most existing problems in PSI and PCSI, we 

require the output of the sub-protocol 

between P1 and each Pi be secret-shared 

between them, so that the result can be 

revealed to both party at once to prevent 

cheating. This turns out to be an essential 

idea to minimize user profiling under 

malicious behavior. In addition, we define 

our security under the threshold 

cryptography model, which allows us to 

explore more 

Efficient solutions. Finally, our problems are 

defined under the distributed setting, 

where there is no Client-server 

relationshipnor any central party. Such 

framework is applicable to many scenarios 

beyond the motivating problems in this 

paper. 

A. Overview 

We present two protocols that aim at 

realizing one level of privacy requirement 

each. We start with the basic 

schemerealizing PL-1. We base our idea on 

the FNP scheme [7], but use secret sharing 

to compute polynomial evaluation securely. 

At a high level, for P1 and each Pi (2 ≤ i≤ N), 

their inputs are shared among a subset Pi of 
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2t + 1 parties (the computing set) using (t, 

2t + 1)-SS, based on which they 

cooperatively compute shares of the 

function Fi(xj) = Ri j · fi(xj) + xjfor each 1 ≤ j ≤ 

n, where fi(y) is the polynomial 

representing Pi’s set, and Rij is a random 

number jointly generated by P1 and Pi but 

not known to any party. We have xj∈  I1,Iiff. 

Fi(xj) = xj. The values of {Fi(xj)}1≤j≤n remain 

in secret shared forms between P1 and Pi 

before their shares are revealed to each 

other, to provide verifiability. To reduce the 

communication complexity, we propose an 

enhancement to the secure polynomial 

evaluation computation. 

 

For PL-2, the advanced scheme achieves 

efficient PCSI. The main idea is that, the 

parties in Pi first compute the (t,2t+1)- 

shares of the function Fi(xj) = Ri j · fi(xj), 1 ≤ j 

≤ n securely using the basic scheme, 

whereas xj∈  I1,i iff. Ri j · fi(xj) = 0. In order 

to blind from P1 the correspondence 

between its inputs {xj} ( j ∈  {1, · · · , n}) and 

the outputs Fi(xj_) (j_ ∈  {1, · · · , n}), we 

employ a blind-and-permute (BP) method. 

To reduce the number of invocations of the 

BP protocol, we use share conversion to 

convert the (t, t+1)-shares of {Fi(xj)}1≤j≤n 

(held by parties in the reconstruction set 

P_i) into (2, 2)-shares shared between P1 

and Pi, so that only one BP invocation is 

neededbetween P1 and each Pi. The 

security of both the basic and advanced 

schemes is proven. Finally, we also discuss 

possible solutions to achieve PL-3,and leave 

practical solutions that achieve PL-3 as 

future work. 

The SMC has been a problem that has 

attracted the attention of scholars and the 

industry for quite some time. Although a 

vast amount of work has been done upon 

the subject, the perpetual implementation 

of the endeavors hasonly yielded a 

perennial hornet’s nest. Having said that, it 

should be acknowledged that to compute 

results upon data whose source is not 

known is not child’s play; and the works 

undertaken until now have served a great 

purposein enlightening the industry of the 

subtleties of this so-called SMC problem. 

Thus motivated with the intention of 

solving this SMC problem we proposed a 

new protocol Encrytpo_Random through 

which we had put forwardwhat we 

perceived, to be the most appropriate and 

seemingly plausible solution to the SMC 

conundrum. Themethodology followed was 

quite elementary yet very comprehensible. 

Encrytpo_Random worked on a two layer 

basis; it consisted of the parties (1st layer) 

who aspire to draw out a result collectively 

and beingapprehensive of each-others 

intentions appoint an assumedly unbiased 

third party (2nd layer) to carry out the 

Computation and announce the result. 

In Extended Encrytpo_Randomthe domain 

of the 2nd layer has been extended from a 

single third-party to multiple third-parties, 

from whom a single entity is chosen at run 

time and given the responsibility of 

performing the required computation. A 

proposal sounds overtly hyperbolic without 
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a thorough layout of the architecture to 

aptly implement it. Thus, here we also 

present a meticulously worked-out 

architecture to realize the protocols and 

also to showcase and answer the pertinent 

queries that are bound to arise in the minds 

of the audience. The modus-operandi of the 

protocol deters the bodies involved to 

exhibit any malicious conduct by presenting 

thoroughly planned impediments in the 

path of the transfer of data among 

themselves. The security of information of 

the parties is of utmost importance in any 

approach seeking to solve the SMC enigma. 

In our protocols we have taken adequate 

precautions so as to guarantee the security 

of data of the involved parties. Instead of 

sending the entire data blocks the parties 

break. Them into packets and randomly 

distribute amongst themselves, for a 

stipulated number of times. Provisions 

Have been done so as to ensure that the 

parties do not get to know whose data 

packets they are forwarding, and inStark 

contrast, the third party also doesn’t have 

even a Lilliputian hint as to whose data 

packet a particular partyis sending. This 

necessitates the need of a secure channel 

to transfer the data packets which have 

been dealt with inthe deftly formed and 

apposite architecture. To further conceal 

the identity of the data packets we apply 

anencrypting function upon the data 

packets; these encrypting functions also 

reach to the third party throughthe same 

path and are used to decode the packets 

and rearrange them to form data blocks. 

IV. IMPLEMENTATION  
1. Security 

Since the users may have different privacy 

requirements and it takes different amount 

of efforts to achieve them, we hereby 

(informally) define two levels of privacy 

where the higher level leaks less 

information to the adversaries. 

 

2. Usability and Efficiency 

   For profile matching in MSN, it is desirable 

to involve as few human interactions as 

possible. In this paper, a human user only 

need to explicitly participate in the end of 

the protocol run, e.g., decide whom to 

connect to based on the common interests. 

In addition, the system design should be 

lightweight and practical, i.e., being enough 

efficient in computation and 

communication to be used in MSN. Finally, 

different users (especially the candidates) 

shall have the option to flexibly personalize 

their privacy levels. 

3. Shamir secret sharing scheme 

   Secret sharing schemes are multi-party 

protocols related to key establishment. The 

original motivation for secret sharing was 

the following. To safeguard cryptographic 

keys from loss, it is desirable to create 

backup copies. The greater the number of 

copies made, the greater the risk of security 

exposure; the smaller the number, the 

greater the risk that all are lost. Secret 

sharing schemes address this issue by 

allowing enhanced reliability without 

increased risk. 
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4. Preventing Malicious Attacks.  

  Our protocols in this paper are only proven 

secure in the HBC model; it would be 

interesting to make it secure under the 

stronger malicious model, i.e., to prevent an 

adversary from arbitrarily deviating from a 

protocol run. we showed that with an 

additional commitment round before final 

reconstruction (which adds little additional 

overhead), a specific type of “set inflation 

attack” can be easily prevented where a 

malicious user influences the final output in 

her favourable way by changing her shares 

after seeing others’. 

 

V.CONCLUSION 
 

Secure Multi-Party Computation is a 

well researchedtopic. Quite a few protocols 

already exist, and work isgoing-on on 

another handful. Through Extended 

EncryptoRandom we have endeavored to 

present aconcept that emphasizes the need 

to keep the structure of the proposed 

solution to the problem very forthright so 

as to avoid ambiguities; at the same time 

ensuring thesecurity of information by 

taking efficient and intricatemeasures. The 

data is first distributed and then 

sentforward; assuring that no party 

becomes victim tosabotage by other parties 

and also that, no party getsundue privilege, 

as the sole responsibility of thecomputation 

process is not vested upon a single 

entity.The encrypted nature of data further 

hinders anypossibility of spiteful conduct. 

The possibility ofcollaborative malefic 

behavior by some party and the TTPhas 

been completely curbed by concealing the 

identity ofthe TTP until runtime. Our 

protocol also reduces the complexities that 

are encountered in three and four layer 

protocols. 
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