

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

P a g e | 1033

Ability: Trade Lock in to Meta Storage

1 T. Leelavathi , 2U.Usha Rani

1M.Tech Research Scholar, Department of CSE,
2 HOD, Department of CSE

 Priyadarshini Institute of Technology & Science, Chintalapudi, India

Abstract:-Expense and versatility

advantages of Cloud storage

administrations are evident.

Notwithstanding, selecting a solitary storage

service provider limits accessibility and

versatility to the chose supplier and may

further cause a merchant lock basically. In

this paper, we introduce Meta Storage

Capacity, and unified Cloud storage

framework that can incorporate differing

Cloud storage suppliers. Meta storage

Capacity is a very accessible and versatile

circulated hash table that imitates

information on top of assorted storage

service. Meta Capacity reuses instruments

from Amazon's Dynamo for cross-supplier

replication and thus acquaints a novel

methodology with oversee consistency-

inactivity tradeoffs by amplifying the

customary majority (N; R; W) configurations

to an (np; R; W) conspire that incorporates

distinctive providers as an extra

measurement. With Metastorage, new

means to control consistency-inertness

tradeoffs are presented.

Key Terms: Trade Lock, Metastorage,

Coordinator Bootstrapping.

I.INTRODUCTION
Cloud Computing is an emerging technology

used to deliver on demand services over the

Internet. It is undoubtedly affecting the way

business is conducted and is empowering a

new Generation of products and services.

Cloud Computing can be summarized into

three keywords: elasticity, on-demand, and

(autonomously) fully-managed. These three

characteristics massively benefit

organizations by reducing both CAPEX and

OPEX while enabling them to channel their

efforts to the strategic business sector. Over

the last few years the Cloud Computing

market has grown tremendously and

frequent new service offerings are emerging

steadily. In particular, there is a large

number of Cloud storage services, each

focusing on different capabilities and

guarantees. To satisfy availability and

scalability needs of most Cloud-based

applications, NoSQL databases have be-

come very popular, owning the highest

share of Cloud storage offerings [1], [2].

Besides, in-memory databases or Cloud

relational database clusters are common

alternatives, providing high-performance

and consistency guarantees respectively.

The choices are many, but vendor lock-in is

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

P a g e | 1034

still an issue as Cloud storage offerings tie

customers to one particular offering due to

immense switching costs for data migration.

The remainder of the paper is structured as

follows: First, we introduce Meta Storage, a

Cloud storage federation system, and

describe its design and implementation

details as well as the additional parameters

we introduced to balance consistency

latency tradeoffs. Afterwards, we present

the results of a system evaluation regarding

consistency, availability and latency. Finally,

we discuss the system’s weaknesses and

strengths and end with a conclusion.

II. RELATED WORK
There is preliminary work on Cloud storage

systems to overcome vendor lock-in and to

improve availability of stored data. Bunch et

al. [23] extended the App Scale platform

with unified access to diverse Cloud storage

services using the Google App Engine

Storage API. App Scale, however, can only

connect to one data store and applications

deployed on the platform are restricted to

this connection. Bromberg et al. [24], [25]

leverage multiple Cloud storage systems to

increase the performance of content

delivery with a Meta Content Delivery

Network (Meta CDN) and developed a

prototype to evaluate performance gains of

their approach. Meta CDN focuses on read

performance needed for fast content

delivery and, therefore, replicates data to

many Cloud storage services. To improve

reads Meta CDN routes each content

request to the replica available with the

lowest expected latency. Meta CDN,

however, lacks support for adequate write

performance and immediate replication

and, thus, cannot be employed as a full-

fledged storage system. Similarly, Bowers et

al. [15] developed a High Availability and

Integration Layer (HAIL) that stores data in

encrypted files Cloud over multiple storage

services and returns decrypted data upon

read requests with low compute effort. HAIL

improves data security by utilizing

encryption and data distribution over

multiple Cloud storages but disregards

scalability and introduces a bottleneck as it

excludes a component comparable to our

Coordinator. With Redundant Array of Cloud

Storage (RACS) Abu Libode et al. [26]

propose a Cloud storage overlay system

which acts as a proxy that uses erasure

coding [32] to distribute files over multiple

Cloud storages, simulating a Redundant

Array of Independent Disks (RAID) system.

However, every write operation terminates

only when all Cloud storage services have

completed the operation, leading to high

latencies for data that is Cloud world-wide.

Furthermore, as RACS is not based on full

replication it requires huge numbers of

storage offerings which might not even exist

in the first place. Also, built on top of

eventually consistent [28] storage services

RACS might fail in retrieving any data at all

while other systems should at least return

an outdated version.

III.OVER VIEW OF METASTORAGE

MetaStorage is a highly scalable, highly

available, Cloud hash table, layered on top

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

P a g e | 1035

of different Cloud storage providers. For this

purpose, MetaStorage reuses mechanisms

from Amazon’s Dynamo [3], but elevates

these for cross provider data replication to

maximize scalability, availability, vendor

independence and fault tolerance.

MetaStorage replicates data across several

providers despite using machines of a single

provider only. By integrating diverse Cloud

storage providers, MetaStorage extends

traditional quorum systems that use (N;

R;W) configurations to balance not only

consistency-availability but also to balance

consistency-latency tradeoffs. Now, we can

still use (N; R; W)but also add the dimension

of providers as an additional knob to tweak

consistency-latency tradeoffs. We suggest

novel (NP; R; W)configurations where NP 1

is the total number of replica NP that is

hosted with the set of nproviders.The

providers host a set of replica, formally

defined as NP=N1 ::: Nn where each

provider I {1……n} ghosts│Ni│replica.

A. Meta Storage Architecture

The Meta Storage architecture (figure 1) is

based on nodes which act as wrappers for

Cloud storage services. A set of nodes is

aggregated within a Distributor which

includes all functionality to replicate and

retrieve data as well as assert availability of

replica. To avoid the Distributor becoming a

bottleneck we attached a Coordinator

component to each Distributor which is

responsible for periodically exchanging state

between Distributors. Meta Storage

components internally communicate using

an asynchronous messaging protocol which

can be seen as a subset of the staged event-

driven architecture (SEDA) [4]. The main

advantage of SEDA is that it degrades

gracefully under heavy load as the overhead

for thread synchronization stays constant no

matter how many requests have to be

processed per second. This is the reason

why it was also internally used within

Dynamo and reused in our context. The

Meta Storage architecture (figure 1) is based

on nodes which act as wrappers for Cloud

storage services. A set of nodes is

aggregated within a Distributor which

includes all functionality to replicate and

retrieve data as well as assert availability of

replica. To avoid the Distributor becoming a

bottleneck we attached a Coordinator

component to each Distributor which is

responsible for periodically exchanging state

between Distributors. Meta Storage

components internally communicate using

an asynchronous messaging protocol which

can be seen as a subset of the staged event-

driven architecture (SEDA) [4]. The main

advantage of SEDA is that it degrades

gracefully under heavy load as the overhead

furthered synchronization stays constant no

matter how many requests have to be

processed per second. This is the reason

why it was also internally used within

Dynamo and reused in our context.

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

P a g e | 1036

Fig.1. Meta Storage architecture

B.Meta Storage Nodes

Within the Meta Storage system the nodes

are situated at the lowest layer. Their most

important task is to offer a generic interface

to the Distributor so that all technical details

of the underlying infrastructure are hidden.

Thus, they are basically wrappers for Cloud

storage services like Amazon S3 (see also [5]

and [6]). So far, we have built nodes for

Amazon S3 (which can also connect to

Walrus [7]), Google App Engine (plus the

corresponding service running there, which

is compatible to App Scale [8]), and for local

hard disks. Further nodes are planned. In

theory, there are no system limitations to

extensibility.

Every node shares two message queues with

its corresponding Distributor. Incoming

messages are checked for their request type

and then mapped to the respective methods

which return a response message. The

methods provided by the nodes are GET,

PUT, LISTFILES and DELETE of which each

node assumes that they can be invoked

multiple times simultaneously, i.e. all

synchronization issues on this level are

pushed to the underlying infrastructure

services.

C.Distributor

The Distributor is situated in the second

layer from the bottom and it is the

component within Meta Storage which is

"doing the actual work". The Distributor

alone is responsible for replication and

retrieval of files. All components on a higher

layer are usually granted fragmentation

transparency. Requests to the Distributor

are also sent asynchronously for which

purpose every Distributor holds an input

and output queue. All operations offered by

the Distributor are idempotent, so, if an

error occurs one may just resend the

request.

The Distributor implementation bases its

distribution mechanism on an approach

presented by DeCandiaetal. [3] as well as

Lakshman and Malik [9] which describes the

concept of a preference list based on the

hash of the key. Depending on the preferred

Cloud storage services and their order

within the preference list files are stored on

the first N nodes and, thereby, Cloud to

multiple providers. Since Meta Storage is a

quorum-based system [10] already R

successful reads (and W for writes

respectively) are sufficient to return success.

Whereas in Dynamo the preference list

originally contained physical and later on

logical nodes we adopted and changed the

approach to fit into our scenario: N, R and W

can still be configured but the preference

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

P a g e | 1037

list is identical for the entire key range,

which makes sense because an entire Cloud

storage service is less likely to fail than a

single machine and is also expected to have

a load balancing scheme of its own. We,

thus, have no need for partitioning

algorithms like consistent hashing [11], [12].

So, every Distributor instance contains a

preference list which is an ordered list of

Meta Storage nodes. Changes to the

preference list and the (NP; R; W)

configuration are also possible at runtime.

Whenever this is done the system halts and

waits until all active requests have

germinated. Upon completion the changes

are applied and all processes get restarted.

Apart from removing the need of

partitioning algorithms the static preference

list also gives us the second knob to balance

consistency-latency tradeoffs awe already

pointed out. There is one difference to [10],

though: Quorum-based systems usually

require a configuration where R+W > N to

avoid reading stale data as well as W >N/2to

avoids conflicts arising from concurrent

writes. Since this also affects availability

these requirements have been ignored in

both Dynamo and MetaStorage.In the

following we will present the design of the

GET and PUT operations of the Distributor.

See also table I for a brief overview of all

supported operations.

PUT: Whenever the Distributor receives a

PUT request it rebroadcasts it to the first N

nodes of the preference list. Afterwards, the

Distributor waits for responses. Whenever a

response is of type error a new PUT request

is created and sent to the next node of the

preference list which has so far not

TABLE I OPERATIONS

As soon as W nodes have returned a success

message the PUT operation terminates and

responds to the requester. But while W < NP

the system continues in the Background to

bring up the number of replica from W to N.

In any case, if less than W nodes respond

with success and every node has already

been contacted, an error message is

returned. When the file has finally been

stored on N nodes the system checks

whether those N nodes are identical to the

first N nodes of the preference list. If not so-

called Hinted Handoffs [3] are created and

kept locally in memory. A Hinted Handoff

contains three pieces of information: The

node of the first N nodes of the preference

list which reported an error, the node which

stored the file instead and the affected file

key .The Distributor includes several sub

processes which periodically try to resolve

the existing Hinted Handoffs. Details are

beyond the scope of this paper. There is one

special case for which we have not been

able to find a solution so far: If W nodes

acknowledge storing the data but all other

nodes in the preference list fail, a success

message has already been returned because

the algorithm could not know in advance

that it would not be possible to bring the

number of replica up to N. So far, there will

not be more than W replica until the point

where more nodes are available again And

another GET or a PUT request is issued. To

reduce the chance of such a situation

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

P a g e | 1038

occurring we propose sufficiently long

preference lists combined with a few local

file system nodes to cache the data in

between.

2) GET: Whenever GET is invoked the

operation retrieves the preference list and

queries the list of Hinted Handoffs. Based on

the request’s key an updated temporary

preference List is created which contains all

N nodes which hold a copy of the requested

file. Future versions might query the first R

healthy nodes in the absence of Hinted

Handoffs. This would allow a lazier

synchronization with other Distributor

instances. Next, messages containing GET

requests for the respective key are sent to

all nodes on the temporary preference list.

Afterwards, the Distributor waits for the

node’s responses. Further Operations: Apart

from GET and PUT Meta Storage also

provides two operations to list all stored

files (comparable to the Linux command less

or the DOS command dir) as well as to

delete specific files. We propose to choose

one of the two versions based on the

specific use case. For more information on

all operations see table I. In section V- A we

discuss the latency-consistency tradeoffs

which can be addressed by choosing among

the two delete operations DELETE and

ASSERTEDDELETE. This small knob exists

independent of the provider selection.

A. Coordinator

Fig.2.Overview of Coordinator

Bootstrapping

When we combine a Distributor instance

with some nodes we already have a running

system which processes incoming messages,

evaluates and executes their requests and

returns responses. There is one issue,

though: We are in a highly scalable

environment and every underlying storage

infrastructure is presumed to be scaling as

well (Elson and Howell [13] reason why

scalability is so much of importance). But if

we use only one Distributor we will create a

perfect bottleneck in our application

landscape. To avoid this, we thought about

adding independent Distributor instances

but quickly discovered that some

coordination between them is necessary.

For example, every Distributor should have

the same preference list and (NP; R; W)

configuration. Also, with every PUT request

the set of Hinted Handoffs might change but

other instances would not know about it.

So, we finally added another layer on top of

the Distributor: the Coordinator. Essentially,

the task of our Coordinator is to manage the

state of the underlying Distributors and to

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

P a g e | 1039

keep them all up-to-date in terms of

configuration or membership changes.

Figure 1 shows how Meta Storage becomes

scalable by the use of Coordinators.

In order to avoid a fully centralized system

but also, for ease of implementation, a

completely decentralized system we

propose a semi-decentralized solution:

There is a master Coordinator which

determines all other Coordinator’s state.

Now we had to cope with failing master

Coordinators instead and solved this by

giving every Coordinator a complete

ordered list of all Coordinators within a

system. Whenever the master cannot be

reached for a certain period of time the

remaining Coordinators each assumes the

master to be offline and remove it from

their list of Coordinators (Lindsay [14]

provides arguments in favor of local action

in case of failures). Thus, the former No. 2

becomes the new No. 1 and master. Since

Coordinators know about all other

Coordinators and Their specific order every

one of them can decide – without central

control – which the new master is as well as

when it becomes a master.New

Coordinators are always appended to the

list of Coordinators so that the list is ordered

by the total length of server uptime. This

guarantees that every Coordinator which

knows of more than three Coordinators (the

master, some other Coordinator and itself)

always knows No. 2. So, this implies that –

when the master fails – every Coordinator

which was not only known to the master

before it failed also knows about No.2.

This leaves only two issues:

1) What happens if a Coordinator registers

with the master but the master fails before

it can respond?

2) What happens if a Coordinator registers

with the master, the master responds but

fails before it can forward the Meta Storage

Host:

Surrounding the Coordinator there is an

entire collection of utility classes or

functions. One of the most useful ones is the

Meta Storage Host. Basically, it is a local

registry for local Meta Storage instances

and, hence, allows running more than one

Coordinator-Distributor pair within the

same Java Virtual Machine. This could be

useful to fully take advantage of machines

with lots of CPU cores. Since all instances

are identified by unique IDs a Meta Storage

Host can forward incoming requests to the

specific instance associated with the ID.

Apart from its function as a registry the

Meta Storage Host is also responsible for

information and functionality shared by all

Coordinators running within the same Java

VM. This includes hosting the Web Service

interfaces as well as handling all incoming

and outgoing requests for which it also

provides parameter transformations, syntax

checks and authentication. Furthermore,

the host includes message handlers to map

from synchronous SOAP requests to

asynchronous internal messaging. Future

versions might also allow asynchronous

SOAP requests with callbacks.

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

P a g e | 1040

F. Security:

Security measures in Meta Storage include a

role-based user management which allows

distinguishing between different rights as

well as several security levels with the

corresponding demands on the system and

(as a future extension) the option to enable

encryption before persisting data in the

Cloud.

While some nodes already communicate via

https every single Web Service call is still

unencrypted. This is due to limitations of the

used JAX-WS implementation which only

supports http. Of course, this critically

affects security so that we plan to include

another JAX-WS server implementation in

future versions. Another aspect is file

encryption: Right now, many enterprises

avoid (public) Cloud offerings as internal

guidelines forbid storing internal data off-

premises. To offer Meta Storage also in this

context it could easily be achieved that

every file passing Meta Storage is encrypted

before writing it to the Cloud, i.e. before it

leaves the responsibility of the customer.

The latter approach is also taken in other

systems which are “paranoid” in the sense

that they consider their storage nodes to be

an, at least potentially, hostile environment.

Examples include Far site [19], HAIL [20],

Ocean store [21] or Antiquity [17].

IV.CONCLUSION
In this paper, we presented the design and

implementation of the Meta Storage

system, a federated architecture that

utilizes diverse Cloud storage providers.

Meta Storage implements a replication

scheme based on Amazon’s Dynamo, but

elevates concepts to a network of

(autonomous and heterogeneous) storage

providers. We have shown that Meta

Storage increases overall availability

compared to any individual provider.

Furthermore, Meta Storage introduces

provider configurations (in preference lists)

as a new means beyond existing

configurations of traditional quorum

systems and thus provides additional

control mechanisms to manage consistency-

latency tradeoffs.

REFERENCES

[1] A. Lenk, M. Klems, J. Nimis, S. Tai, and T.

Sandholm, “What’s inside the Cloud? An

architectural map of the Cloud landscape,”

in Software Engineering Challenges of Cloud

Computing, 2009. CLOUD’09. ICSE

Workshop on. IEEE, 2009, pp. 23–31.

[2] C. Baun, M. Kunze, J. Nimis, and S.

Tai,Cloud Computing: Web-basierte

dynamische IT-Services, ser. Informatik im

Fokus. Berlin:Springer, 2010.

[3] G. DeCandia, D. Hastorun, M. Jampani,

G. Kakulapati, A. Lakshman,A. Pilchin, S.

Sivasubramanian, P. Vosshall, and W.

Vogels, “Dynamo:amazon’s highly available

key value store,” inProc. SOSP, 2007

[4] M. Welsh, D. Culler, and E. Brewer,

“SEDA: architecture forwell-conditioned,

scalable Internet services,”ACM SIGOPS

OperatingSystems Review, vol. 35, no. 5, pp.

230–243, 2001.

[5] S. Garfinkel, “An Evaluation of Amazon’s

Grid Computing Services:EC2, S3, and SQS,”

inCenter for. Citeseer, 2007

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

P a g e | 1041

[6] A. T. Velte, T. J. Velte, and R.

Elsenpeter,Cloud Computing: A Practical

Approach. Upper Saddle River, NJ: McGraw-

Hill, 2010.

[7] D. Nurmi, R. Wolski, C. Grzegorczyk, G.

Obertelli, S. Soman, L. Yous-eff, and D.

Zagorodnov, “The eucalyptus open-source

cloud-computing system,” in Proceedings of

the 2009 9th IEEE/ACM International

Symposium on Cluster Computing and the

Grid. IEEE, 2009, pp.124–13

[8] N. Chohan, C. Bunch, S. Pang, C. Krintz,

N. Mostafa, S. Soman,and R. Wolski,

“Appscale: Scalable and open appengine

applicationdevelopment and

deployment,”First International Conference

on CloudComputing, 2009.

[9] A. Lakshman and P. Malik, “Cassandra: a

decentralized structuredstorage

system,”ACM SIGOPS Operating Systems

Review, vol. 44, no. 2,pp. 35–40, 2010.

[10] R. Thomas, “A majority consensus

approach to concurrency controlfor multiple

copy databases,” ACM Transactions on

Database Systems(TODS), vol. 4, no. 2, pp.

180–209, 1979

[11] D. Karger, E. Lehman, T. Leighton, R.

Panigrahy, M. Levine, andD. Lewin,

“Consistent hashing and random trees:

Cloud cachingprotocols for relieving hot

spots on the World Wide Web,” in

Proceedings of the twenty-ninth annual

ACM symposium on Theory ofcomputing.

ACM, 1997, pp. 654–663.

[12] I. Stoica, R. Morris, D. Karger, M.

Kaashoek, and H. Balakrishnan,“Chord: A

scalable peer-to-peer lookup service for

internet applications,”in Proceedings of the

2001 conference on Applications,

technologies,architectures, and protocols

for computer communications. ACM,

2001,pp. 149–160.

[13] J. Elson and J. Howell, “Handling flash

crowds from your garage,”in USENIX 2008

Annual Technical Conference on Annual

TechnicalConference. USENIX Association,

2008, pp. 171–184.

[14] S. Bourne, “A conversation with Bruce

Lindsay,”Queue, vol. 2, no. 8,pp. 22–33,

2004.

[15] T. Chandra, R. Griesemer, and J.

Redstone, “Paxos made live: anengineering

perspective,” inProceedings of the twenty-

sixth annual ACMsymposium on Principles

of Cloud computing. ACM, 2007, pp.398–

407

[16] L. Lamport, “The part-time

parliament,”ACM Transactions on

ComputerSystems (TOCS), vol. 16, no. 2, pp.

133–169, 1998

[17] H. Weatherspoon, P. Eaton, B. Chun,

and J. Kubiatowicz, “Antiquity:exploiting a

secure log for wide-area Cloud

storage,”ACM SIGOPSOperating Systems

Review, vol. 41, no. 3, pp. 371–384, 2007.

[18] M. Burrows, “The Chubby lock service

for loosely-coupled Cloudsystems,” in

Proceedings of the 7th symposium on

Operating systemsdesign and

implementation. USENIX Association, 2006,

pp. 335–350.

[19] A. Adya, W. Bolosky, M. Castro, G.

Cermak, R. Chaiken, J. Douceur,J. Howell, J.

Lorch, M. Theimer, and R. Wattenhofer,

International Journal of Research (IJR) Vol-1, Issue-11 December 2014 ISSN 2348-6848

P a g e | 1042

“FARSITE:Federated, available, and reliable

storage for an incompletely

trustedenvironment,”ACM SIGOPS

Operating Systems Review, vol. 36, no. SI,

pp. 1–14, 2002

[20] K. Bowers, A. Juels, and A. Oprea,

“HAIL: A high-availability andintegrity layer

for cloud storage,” in Proceedings of the

16th ACMconference on Computer and

communications security. ACM, 2009,pp.

187–198.

[21] J. Kubiatowicz, D. Bindel, Y. Chen, S.

Czerwinski, P. Eaton, D. Geels,R. Gummadi,

S. Rhea, H. Weatherspoon, C. Wellset al.,

“Oceanstore: An architecture for global-

scale persistent storage,”ACM SIGARCH

Computer Architecture News, vol. 28, no. 5,

pp. 190–201, 2000

