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Design a Cryptography Algorithm Using Shiftrow Mixcolun Technique 

  

ABSTRACT—One of the most efficient system in 
encryption is public key encryption system. This public 
key encryption method is based on the Rijndae 
algorithm. The main intent of this algorithm is to create 
faster and efficient cryptographic keys. At first to 
generate the AES keys we use the conventional method 
but for faster operation we use Rijnadel algorithm 
properties. generation of AES keys are obtained from the 
properties of Rijndael algorithm. By using the xilinx 
software many number of encryption algorithms are 
implemented for the purpose of cryptographic 
processors. The proposed 

technique provides high security compared to existed 
technique. 

Keywords: Cryptography, Rijndael, Encryption, Decryption, 
Cypher, Inverse cypher. 

I.INTRODUCTION 

Several techniques, such as cryptography, 
steganography, watermarking, and scrambling, have 
been developed to keep data secure, private, and 
copyright protected [1], [2]. Cryptography is an essential 
tool underlying virtually all networking and computer 
protection, traditionally used for military and espionage. 
However, the need for secure transactions in ecommerce, 
private networks, and secure messaging has moved 
encryption into the commercial realm [3]. 

Advanced encryption standard (AES) was issued as 
Federal Information Processing Standards (FIPS) by 
National Institute of Standards and Technology (NIST) 
as a successor to data encryption standard (DES) 
algorithms. In recent literature, a number of architectures 
for the VLSI implementation of AES Rijndael algorithm 
are reported [4], [5], [6], [7], [8]. It can be observed that 
some of these architectures are of low performance and 
some provide low throughput. Further, many of the 
architectures are not area efficient and can result in 
higher cost when implemented in silicon. 

In this paper, we propose a high performance, high 
throughput and area efficient VLSI architecture for 
Rijndeal algorithm that is suitable for low cost silicon 
implementation. The proposed architecture is optimized 

for high throughput in terms of the encryption and 
decryption data rates using pipelining. Polynomial 
multiplication is implemented using XOR operation 
instead of using multipliers to decrease the hardware 
complexity. In the proposed architecture both the 
encryption and decryption modes use common hardware 
resources, thus making the design area efficient. 
Selective use of look-up tables and combinational logic 
further enhances the architecture’s memory optimization, 
area, and performance. An important feature of our 
proposed architecture is an effective solution of online 
(real-time) round key generation needing significantly 
less storage for buffering. 

II.EXISTED SYSTEM

FIG. 1 EXIST ED SYST EM  

The substitution box is part of a unit in Pomaranch 
cipher 
which implements a key-dependent filter function, 
containing a 9-to-7-bit box and a balanced nonlinear 
Boolean functionof seven variables. The 9-bit output of 
the substitution box isconverted into a 7-bit one with 
deletion of the most significant and the least significant 
bits, as shown in Fig 1. 
The operations are done in composite fields to achieve 
the inverse which is then retransformed tobinary field 
using an inverse transformation matrix 
(M−1).Eventually, the two most and least significant bits 
are discardedto get to the uneven structure of the 
substitution box of Pomaranch. 
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III.PROPOSED SYSTEM

The data unit consists of: the initial round of key 
addition, Nr − 1 standard rounds, and a final round. The 
architecture for a standard round composed of four basic 
blocks is shown in Fig. 1(b). For each block, both the 
transformation and the inverse transformation needed for 
encryption and decryption, respectively are performed 
using the same hardware resources. This implementation 
generates one set of subkey and reuses it for calculating 
all other subkeys in real-time. 

Fig . 2. Top  Level View of the Rijndael 

1) ByteSub: In this architecture each block is replaced 
by its substitution in an S-Box table consisting of the 
multiplicative inverse of each byte of the block state in 
the finite field GF(28). In order to overcome the 
performance bottleneck,control Flow Round in the 
Data Unitthe implementation of multiplicative inverses 
is carried out using look-up tables (stored in a table of 8 
× 256). The implementation includes the affine mapping 
of the input in both encryption and decryption processes 
as follows: 

2) ShiftRow: In this transformation the rows of the 
block state are shifted over different offsets. The amount 
of shifts is determined by the block length. The proposed 
architecture implements the shift row operation using 
combinational logic considering the offset by which a 
row should be shifted. 

3) MixColumn: In this transformation each column 
of the block state is considered as a polynomial over 
GF(28). It is multiplied with a constant polynomial C(x) 

or D(x) over a finite field in encryption or decryption, 
respectively. In hardware, the multiplication by the 
corresponding polynomial is done by XOR operations 
and multiplication of a block by X. This is implemented 
using a multiplexer, the control being the MSB is 1 or 0. 
The equations implemented in hardware for MixColumn 
in encryption and decryption are as follows. 
In encryption process, 

In0 is the least significant 8 bits of a column of a matrix. 
Architecture of different units are shown in Fig. 2 and 
the architecture of MixColumn transformation is shown 
in the Fig. 3. 

Fig . 3. Arch itectu re fo r Units  us ed  in  Mix Column 
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Fig . 4. Architecture for Mix Column Transformation for 128 

b it s  

4) AddRoundKey: In this transformation (architecture 
represented in Fig. 4), the round key obtained from the 
key scheduler is XORed with the block state obtained 
from the MixColumn transformation or ShiftRow 
transformation based on the type of round being 
implemented. In the standard round, the round key is 
XORed with the output obtained from the MixColumn 
transformation. In the final round the round key is 
XORed with the output obtained from the ShiftRow 
transformation. In the initial round, bitwise XOR 
operation is performed between the initial round key and 
the initial state block. 

 

Fig . 5 Architecture for Round Key Addition Trans format ion  

B. Memory Optimization 

Since the design is based on one clock cycle for each 
encryption round, the memory modules had to be 
duplicated. For example, in the ByteSub, the S-boxes 
need to be duplicated 16 times. Consequently, the choice 
of memory architecture is very critical. Since all the 
table entries are fixed and defined in the standard, the 
usage of ROM is preferred. Specifically, the architecture 
requires several small ROM modules instead of one 
large module, since each lookup will only be based on a 
maximum of 8-bit address, which translates to 256 
entries. We implemented the multiplicative inverse 
function using the look-up table of size 8×256. We have 
a total of 20 copies of the S-boxes in our design; 16 of 
them in encryption module and 4 in the key scheduling 
module. 

D. Performance Evaluation 

An AES-128 encryption / decryption of a 128-bit 
block was done in 11 clock cycles using the feedback 
logic. In each clock cycle, one transformation is 
executed and, at the same time, the appropriate key for 
the next round is calculated. The whole process 
concludes after 10 rounds of transformations. The 
outputs is shown in below figure 5 RTL and waveform. 

 

 
 

 

 
 

Fig .6RTL, ou tpu t  wave fo rm 

 

 
IV. DISCUSSIONS AND CONCLUSIONS 

To perform the both operations of encryption and 
decryption in VLSI architecture we proposed an 
algorithm that is Rijndael AES algorithm. To implement 
the multiplicative inverses between encryption and 

decryption we use S-boxes. As discussed earlier that 
round keys are used for implementation of each round 
which is generated in real time. Forward and reverse 

scheduling is implemented on the device to minimise the 
area. But here the encryption algorithm is less complex 

when compared to decryption algorithm. 
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