
International Journal of Research
Available at https://edupediapubli c a ti ons .org/j ourna l s

e-I SSN: 2348 -6848

p-I SSN: 23 48-795X

Vol ume 0 5 I s s ue 01

Ja nua ry 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3255

Design a Cryptography Algorithm Using Shiftrow Mixcolun Technique

ABSTRACT—One of the most efficient system in
encryption is public key encryption system. This public
key encryption method is based on the Rijndae
algorithm. The main intent of this algorithm is to create
faster and efficient cryptographic keys. At first to
generate the AES keys we use the conventional method
but for faster operation we use Rijnadel algorithm
properties. generation of AES keys are obtained from the
properties of Rijndael algorithm. By using the xilinx
software many number of encryption algorithms are
implemented for the purpose of cryptographic
processors. The proposed

technique provides high security compared to existed
technique.

Keywords: Cryptography, Rijndael, Encryption, Decryption,
Cypher, Inverse cypher.

I.INTRODUCTION

Several techniques, such as cryptography,
steganography, watermarking, and scrambling, have
been developed to keep data secure, private, and
copyright protected [1], [2]. Cryptography is an essential
tool underlying virtually all networking and computer
protection, traditionally used for military and espionage.
However, the need for secure transactions in ecommerce,
private networks, and secure messaging has moved
encryption into the commercial realm [3].

Advanced encryption standard (AES) was issued as
Federal Information Processing Standards (FIPS) by
National Institute of Standards and Technology (NIST)
as a successor to data encryption standard (DES)
algorithms. In recent literature, a number of architectures
for the VLSI implementation of AES Rijndael algorithm
are reported [4], [5], [6], [7], [8]. It can be observed that
some of these architectures are of low performance and
some provide low throughput. Further, many of the
architectures are not area efficient and can result in
higher cost when implemented in silicon.

In this paper, we propose a high performance, high
throughput and area efficient VLSI architecture for
Rijndeal algorithm that is suitable for low cost silicon
implementation. The proposed architecture is optimized

for high throughput in terms of the encryption and
decryption data rates using pipelining. Polynomial
multiplication is implemented using XOR operation
instead of using multipliers to decrease the hardware
complexity. In the proposed architecture both the
encryption and decryption modes use common hardware
resources, thus making the design area efficient.
Selective use of look-up tables and combinational logic
further enhances the architecture’s memory optimization,
area, and performance. An important feature of our
proposed architecture is an effective solution of online
(real-time) round key generation needing significantly
less storage for buffering.

II.EXISTED SYSTEM

FIG. 1 EXIST ED SYST EM

The substitution box is part of a unit in Pomaranch
cipher
which implements a key-dependent filter function,
containing a 9-to-7-bit box and a balanced nonlinear
Boolean functionof seven variables. The 9-bit output of
the substitution box isconverted into a 7-bit one with
deletion of the most significant and the least significant
bits, as shown in Fig 1.
The operations are done in composite fields to achieve
the inverse which is then retransformed tobinary field
using an inverse transformation matrix
(M−1).Eventually, the two most and least significant bits
are discardedto get to the uneven structure of the
substitution box of Pomaranch.

1G MADHUSUDHANA RAO, 2P JAYA BABU, 3CH. MANI TEJA
1H.O.D, 2M.Tech Incharge, 3M.Tech Scholar

Dept. Of E.C.E,
N.V.R College of Engineering & Technology, Tenali, A.P

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapubli c a ti ons .org/j ourna l s

e-I SSN: 2348 -6848

p-I SSN: 23 48-795X

Vol ume 0 5 I s s ue 01

Ja nua ry 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3256

III.PROPOSED SYSTEM

The data unit consists of: the initial round of key
addition, Nr − 1 standard rounds, and a final round. The
architecture for a standard round composed of four basic
blocks is shown in Fig. 1(b). For each block, both the
transformation and the inverse transformation needed for
encryption and decryption, respectively are performed
using the same hardware resources. This implementation
generates one set of subkey and reuses it for calculating
all other subkeys in real-time.

Fig . 2. Top Level View of the Rijndael

1) ByteSub: In this architecture each block is replaced
by its substitution in an S-Box table consisting of the
multiplicative inverse of each byte of the block state in
the finite field GF(28). In order to overcome the
performance bottleneck,control Flow Round in the
Data Unitthe implementation of multiplicative inverses
is carried out using look-up tables (stored in a table of 8
× 256). The implementation includes the affine mapping
of the input in both encryption and decryption processes
as follows:

2) ShiftRow: In this transformation the rows of the
block state are shifted over different offsets. The amount
of shifts is determined by the block length. The proposed
architecture implements the shift row operation using
combinational logic considering the offset by which a
row should be shifted.

3) MixColumn: In this transformation each column
of the block state is considered as a polynomial over
GF(28). It is multiplied with a constant polynomial C(x)

or D(x) over a finite field in encryption or decryption,
respectively. In hardware, the multiplication by the
corresponding polynomial is done by XOR operations
and multiplication of a block by X. This is implemented
using a multiplexer, the control being the MSB is 1 or 0.
The equations implemented in hardware for MixColumn
in encryption and decryption are as follows.
In encryption process,

In0 is the least significant 8 bits of a column of a matrix.
Architecture of different units are shown in Fig. 2 and
the architecture of MixColumn transformation is shown
in the Fig. 3.

Fig . 3. Arch itectu re fo r Units us ed in Mix Column

Trans format ion

Y[0]

Z

Z

Z

32

32

32

32

Fourth Column of State Matrix

Matrix

MatrixSecond Column of State

Third Column of State

 MatrixFirst Column of State

Z [0]

MI

X

C

O

L

U

M

N

C

O

M

P

U

T

A

TI

O

N

O

F

Y,

Z

(E

nc

ry

pti

on,

De

cr

yp

tio

n) Out[3][2]

Out[2][1] Out[2][2]

Out[1][3] Out[1][2]Out[1][1]

Out[2][3]

Out[3][3] Out[3][1]Out[3][0]

Out[2][0]

Out[1][0]

Out[0][3]Out[0][2]Out[0][1]Out[0][0]

[3]
Y[3]

[2]

Y[2]

[1]

Y[1]

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/
pc
Stamp

International Journal of Research
Available at https://edupediapubli c a ti ons .org/j ourna l s

e-I SSN: 2348 -6848

p-I SSN: 23 48-795X

Vol ume 0 5 I s s ue 01

Ja nua ry 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3257

Fig . 4. Architecture for Mix Column Transformation for 128

b it s

4) AddRoundKey: In this transformation (architecture
represented in Fig. 4), the round key obtained from the
key scheduler is XORed with the block state obtained
from the MixColumn transformation or ShiftRow
transformation based on the type of round being
implemented. In the standard round, the round key is
XORed with the output obtained from the MixColumn
transformation. In the final round the round key is
XORed with the output obtained from the ShiftRow
transformation. In the initial round, bitwise XOR
operation is performed between the initial round key and
the initial state block.

Fig . 5 Architecture for Round Key Addition Trans format ion

B. Memory Optimization

Since the design is based on one clock cycle for each
encryption round, the memory modules had to be
duplicated. For example, in the ByteSub, the S-boxes
need to be duplicated 16 times. Consequently, the choice
of memory architecture is very critical. Since all the
table entries are fixed and defined in the standard, the
usage of ROM is preferred. Specifically, the architecture
requires several small ROM modules instead of one
large module, since each lookup will only be based on a
maximum of 8-bit address, which translates to 256
entries. We implemented the multiplicative inverse
function using the look-up table of size 8×256. We have
a total of 20 copies of the S-boxes in our design; 16 of
them in encryption module and 4 in the key scheduling
module.

D. Performance Evaluation

An AES-128 encryption / decryption of a 128-bit
block was done in 11 clock cycles using the feedback
logic. In each clock cycle, one transformation is
executed and, at the same time, the appropriate key for
the next round is calculated. The whole process
concludes after 10 rounds of transformations. The
outputs is shown in below figure 5 RTL and waveform.

Fig .6RTL, ou tpu t wave fo rm

IV. DISCUSSIONS AND CONCLUSIONS

To perform the both operations of encryption and
decryption in VLSI architecture we proposed an
algorithm that is Rijndael AES algorithm. To implement
the multiplicative inverses between encryption and

decryption we use S-boxes. As discussed earlier that
round keys are used for implementation of each round
which is generated in real time. Forward and reverse

scheduling is implemented on the device to minimise the
area. But here the encryption algorithm is less complex

when compared to decryption algorithm.

V.REFERENCES

K (i) 00 K (i) 01 K (i) K (i) 02 03 K (i) 31 K (i) 32 K (i) 33
00 B (i) 01 02 B (i) B (i) 03 B (i)

31 32 B (i) B (i) 33 B (i)

00 B (i+1) 01 B (i+1) 02 B (i+1) 03 B (i+1) 31 B (i+1) 32 B (i+1) 33 B (i+1)

Ist byte nd byte 2 rd byte 4 3 th byte 16 th byte th byte 15 14 th byte

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

International Journal of Research
Available at https://edupediapubli c a ti ons .org/j ourna l s

e-I SSN: 2348 -6848

p-I SSN: 23 48-795X

Vol ume 0 5 I s s ue 01

Ja nua ry 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 3258

[1] S. P. Mohanty, K. R. Ramakrishnan, and M. S.
Kankanhalli, “A DCT Domain Visible
Watermarking Technique for Images,” in Proc of
the IEEE International Conf on Multimedia and
Expo, 2000, pp. 1029–1032.

[2] M. S. Kankanhalli and T. T. Guan, “Compressed-
Domain Scrambler / Descrambler for Digital
Video,” IEEE Transactions on Consumer
Electronics, vol. 48, no. 2, pp. 356–365, May 2002.

[3] B. M. Macq and J. J. Quisquater, “Cryptography for
Digital TV Broadcasting,” Proceedings of the IEEE,
vol. 83, no. 6, pp. 944–957 , Jun 1995.

[4] H. Kuo and I. Verbauwhede, “Architectural
Optimization for a 1.82

Gbits/sec VLSI Implementation of the AES Rijndael
Algorithm,” in Proceedings of the Workshop on
Cryptographic Hardware and Embedded Systems,
2001, vol. 2162, pp. 51–64.

[5] M. McLoone and J. V. McCanny, “Rijndael FPGA
Implementation Utilizing Look-up Tables,” in
Proceedings of the IEEE Workshop on Signal
Processing Systems, 2001, pp. 349–360.

[6] A. Satoh, S. Morioka, K. Takano, and S. Munetoh,
“A Compact Rijndael Hardware Architecture with
S-Box Optimization,” in Proceedings of Advances
in Cryptology - ASIACRYPT 2001, 2001, pp. 171–
184.

[7] S. Mangard, M. Aigner, and S. Dominikus, “A
Highly Regular and Scalable AES Hardware
Architecture,” IEEE Transactions on Computers,
vol. 52, no. 4, pp. 483–491, April 2003.

[8] T. Sodon O. J. Hernandez and M. Adel, “Low-Cost
Advanced Encryption Standard (AES) VLSI
Architecture: A Minimalist Bit-Serial Approach,” in
Proc of IEEE Southeast Conference, 2005, pp. 121–
125.

[9] J. Daemen and V. Rijmen, The Design of Rijndael,
Springer-Verlag, 2002.

[10] A. J. Elbirt, W. Yip, B. Chetwynd, and
ChristofPaar, “An FPGAImplementation and
Performance Evaluation of the AES Block Cipher
Candidate Algorithm Finalists,” in Proceedings of
the Third Advanced Encryption Standard (AES)
Candidate Conference, 2000, pp. 13–27.

https://edupediapublications.org/journals
https://edupediapublications.org/journals/index.php/IJR/

