
 

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  
p-ISSN: 2348-795X  
Volume 05 Issue 04 

February 2018 

 

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e  | 626 
 
 

A Review of Embedded System Memory Management 
 

P.Suneel Kumar
 
& Dr.N.Kumarappan 

 
 

1. M.Tech., Ph.D Scholar, Detp. Of ECE, Annamalai University, Annamalai Nagar, Chidambaram, 
Tamil Nadu, India.

 
 

2. M.Tech., Ph.D, Professor, Detp. Of ECE, Annamalai Nagar, Chidambaram, Tamil Nadu, India. 
 
 

Abstract— This paper considers the 

fundamental prerequisites of embedded 

operating system memory management and 

the key issues in memory management, by 

means of dissect the points of interest and 

impediments of various memory management 

calculation, as indicated by the highlights of 

the embedded system, for example, the mount 

of the memory is few, and has no MMU, and 

has continuous necessities generally, Then 

proposed a strategy that can appropriate and 

reuse the memory quickly, and the operation 

time to the memory is sure, so It's ready to 

address the issues of embedded operating 

system's constant execution necessities viably, 

in addition utilize this way to deal with 

oversee memory can keep away from 

intemperate memory sections. 
Keywords-component; memory 

management; buddy algorithm; embedded 

operating system, Embedded OS 
 

I. INTRODUCTION  
The Embedded System configuration has 

turned into a noteworthy field of current 
computer application, and the course of present 
day computer advancement. Embedded system 
can use in numerous spaces, for example, 
robotization field, vehicle field, Portable 
hardware, aviation, weapon types of gear and 
also different perspectives throughout everyday 
life, so the Embedded system has a decent 
prospect of use. With a specific end goal to 
adjust expanding assorted variety and 
multifaceted nature of the application, utilizing 
Embedded operating systems in the embedded 
systems has turned into a bearing for the future 
improvement of embedded systems. Since 
utilizing the embedded ongoing operating 

system (RTOS) can be all the more soundly 
and productively to convey the CPU asset and 
different assets, streamline the outline of use 
programming, abbreviate the season of system 
improvement, guarantee the constant execution 
and unwavering quality of the system. 

The exploration of embedded operating 
system memory management procedure has 
turned into a key area in embedded operating 
system, in light of the fact that the Embedded 
operating systems and the broadly useful 
operating system has a ton of contrasts. Most 
embedded system has the constant prerequisites, 
with a specific end goal to meet that point, the 
dispersion and reuse of system memory must be 
quick and solid. So it is difficult to utilize 
confuse memory assignment methodologies in 
the embedded operating system, yet ought to be 
as basic and quick as could be allowed. 
Additionally, numerous embedded processors 
don't have virtual memory management 
units(MMU), without the virtual memory 
management unit, the entrance of memory is 
specifically, and the addresses the undertaking 
need to get to are real physical address. There is 
likewise no address security for the operating 
system when without MMU, all running 
undertaking Sharing a similar memory space. 
The errand keeping in mind the end goal to 
execute must get sufficient ceaseless memory 
space and load all code and information to that 
memory before it run. Amid the running of the 
undertaking , if the assignment absence of 
memory , it can't get more by trading the 
substance in memory to the plate, on the grounds 
that the system does not bolster this procedure. 
For a system that has virtual memory 
management strategy, for example, Linux , there 
is no compelling reason to designate all memory 
for the errand in the meantime, likewise the 
memory disseminated for the assignment does 



 

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  
p-ISSN: 2348-795X  
Volume 05 Issue 04 

February 2018 

 

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e  | 627 
 
 

not should be a piece of constant physical space, 
what the system require is to guarantee the 
virtual memory address consistent ,that is will be 
alright. In the system without virtual memory 
management procedure, the client application 
and the portion has a similar space [2], when 
build up the program, the software engineer must 
guarantee one assignment does not get to the 
next errand's space, generally the system will 
breakdown. 
 

II. MEMORY MANAGEMENT 

APPROACHES 
 

There are two sorts of Memory management 
methodologies, one is static memory designation 
procedure, and another is dynamic memory 
portion technique. In the event that utilization 
Static assignment methodology the extent of the 
memory space was resolved when accumulate 
the system. While the system introduce, a settled 
measure of memory required to store the 
question and information was apportioned. The 
undertakings utilize the memory assigned for 
them when they run, notwithstanding when the 
errands was finished, the memory that was 
involved by the undertaking won't be discharged. 
So static portion procedure will squander a 
considerable measure of memory, in light of the 
fact that the memory assigned for the errand 
must as indicated by the most exceedingly awful 
condition, actually, the undertaking will utilize 
just a little piece of the memory, and a lot of the 
memory was squandered. Additionally, adding a 
few capacities to the system that utilizing static 
memory management methodology isn't 
generally helpful, so that, redesigning the system 
turns out to be extremely troublesome. 

 
he dynamic memory distribution procedure 

will get the memory just when it's vital amid the 
errand running, and discharge the memory while 
the undertaking was finished [3]. All memory 
management operations are given by the 
operating system's memory management 
module.  

 
Both of Static and dynamic distribution 

procedure has their own particular focal points 
and impediments. The trial of the program that 

utilization static memory distribution 
methodology will be simpler, and the execution 
will be more effective, yet takes more memory. 
Furthermore, the dynamic allotment 
methodology is more adaptable, the main 
hindrance is that it ought to apportion some 
memory space to store the management data, 
and possesses extra system assets and inclined to 
bring forth more memory pieces, more finished 
the season of dynamic memory dissemination 
and reuse is indeterminate.  
 

III. THE DESIGN OF EMBEDDED SYSTEM 

MEMORY MANAGEMENT 

 

  
Contrasted with the work area operating system, 

embedded operating system's memory 
management has its own highlights. Initially, the 
embedded system was bound by a few variables, 
for example, the costs, the size et cetera, the 
memory in the system generally little, so the 
utilization of memory must utilize effectively. 
Furthermore, embedded system as a rule have the 
necessities of continuous, consequently, memory 
portion and reuse must be expeditious, in the 
meantime embedded system equipment from 
time to time redesign after the item was issued, 
so don't require consider the memory grow. We 
should utilize distinctive memory management 
procedure in Embedded systems as per the 
particular application. 
 

A. Buddy algorithm  
Buddy algorithm is a sort of memory 

management strategy, this procedure through 
merger and split the memory square to deal with 
the memory. The system merger two little 
squares to shape an extensive piece that the 
memory address is constant so it can address the 
issue of errand which must get a vast memory 
piece. What's more, part the extensive square 
when it's essential at that point give a piece to 
assignment that request that size memory, and 
the remained was leaved for others, so the system 
can spare the memory. The primal buddy 
algorithm have a few issues, since when one 
assignment discharge a piece then the system 
endeavor to combine it with others instantly, and 



 

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  
p-ISSN: 2348-795X  
Volume 05 Issue 04 

February 2018 

 

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e  | 628 
 
 

if simply after the blending, some undertaking 
demand that size of square once more, however 
the system does not have that size of memory at 
present, so the system should part a substantial 
piece once more, if the consolidating and part 
activity happen too every now and again, the 
buddy algorithm may cause stun, in the most 
pessimistic scenario the system's execution will 
drop. Obviously, we can enhance the buddy 
algorithm to enhance the system's execution, one 
enhanced buddy algorithm is called sluggish 
buddy algorithm, the perfect of the lethargic 
buddy algorithm is to defer the union time when 
the errand discharge the piece, and let the 
blending activity happen just when it's important. 
 

B. The design of buddy algorithm 

control structure 
In this paper, we outlined a memory 

management system utilizing the paired 

accomplice algorithm. The system separated the 

memory space with the exception of the space as 

of now apportioned for the system bit and the 

stack to N allotments. The span of each square is 

2nKB, the n was the parcel number, and 

connection the pieces inside the segment to shape 

a bidirectional chain[3][4]. The information 

structure for the parcel control 

MEMEY_PARTITION_CB and the memory 

square MEMERY_ BLOCK_CB are as per the 

following :  

Typedef struct 

memery_partition_cb{ 

MEMERY_BLOCK_CB 

*first_block_pt;; 

/*the first block in the 
partition*/ UINT32 
*start_addr_pt; 

/* partition start address*/  
UINT32 *end_addr_pt; /*partition end 
address*/ UINT16 total_num; /* block 
number */  
UINT16 free_num; /*free block 
number*/ UINT16 block_size; /*the 
size of the block*/ 
}MEMEY_PARTITION

_CB Typedef struct 
memery_block_cb{  

MEMEY_BLOCK_CB 
*block_pre_pt; /*point to the 

previous block*/ 
MEMEY_BLOCK_CB 

*block_next_pt; 
/*point to the next block*/  

UINT16 size; /* block primitive size, equal to 
block _size*/  

UINT16 current_size; /*block current 
size*/ UINT32 *start_addr_pt; /* block 
start address */ UINT32 *end_addr_pt; 
/* block end address */ UINT8 state; 
/*the state of the block */ UINT16 
task_id; /* task id that is using the 
block*/ }MEMEY_BLOCK_CB 

 
The buddy algorithm memory management 

strategy is easy to implement, and the efficient of 

memory allocation and recycle is very high, can 

satisfy the embedded system‘s requirement of 

real-time. The relationship between partitions 

and blocks within the partition was show as 

figure 1. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Relationship between partition and 

block  

At the point when the undertaking approach 

the system for memory, the system will compute 

the measure of memory that the assignment 

demand to figure out which segment the littlest 

memory obstruct that can address the issue of the 



 

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  
p-ISSN: 2348-795X  
Volume 05 Issue 04 

February 2018 

 

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e  | 629 
 
 

errand will be in, if that parcel have free pieces, 

at that point the system will get a free square for 

that assignment, generally the system will part a 

substantial piece in the following allotment, one 

section for the undertaking and the other part 

leave for different errands. Expecting the 

assignment require 1KB memory space, the 

system will test segment 0 to begin with ,in light 

of the fact that the square size of parcel is 1KB,if 

the segment 0 has pieces accessible ,at that point 

the system take a piece for the errand. in the 

event that parcel 0 does not have squares 

accessible, at that point the system will seek 

segment 1,if segment 1 has pieces accessible at 

that point get one piece and split the piece into 

two sections, so each of them is 1KB,the initial 

segment put to segment 0's piece chain, and the 

second part designate for the assignment. On the 

off chance that the segment 1 still have no free 

pieces, at that point test parcel 2,if it can get free 

square in segment 2,the square size will be 

4KB,then first split the 4KB piece into two 

sections ,each of them was 2KB,the initial 

segment 2KB piece put to the segment 1 piece 

chain, and keep on splitting the second 2KB 

square into two sections, the initial 1KB piece 

put to segment 0 piece chain, and the second part 

distribute to the undertaking demand for the 

memory. In the event that parcel 2 additionally 

don't have free pieces, at that point rehash the 

means like some time recently, until there is no 

free squares expansive than the undertaking 

request in all segments, at that point suspend the 

errand.  
When release a block, the system will search 

the block chain it current belong to according to 
current size , if the chain have buddy block, then 
merge the two buddy blocks to form a large 
block ,and to the next partition to find buddy of 
the formed block again, if there has buddy too 
then merge the two buddy blocks again to form a 
even large block, repeat these operations until 
there has no buddy block. The two block to 
become buddy blocks, they must satisfy three 
conditions simultaneously: first, they must have 
the same size. Second, the physical address of 

the two blocks must adjacent. Third, the two 
block must split from the same partition. 
 

C. The design of the partition bitmap  
With a specific end goal to discover the 

square fulfill the necessities quickly, the system 
utilize a bitmap to demonstrate the condition of 
the parcel's piece chain. There are two factors: 
MemGrp and MemTbl[8], MemGrp is a Byte, 
has 8 bits, and MemTbl[8] is an exhibit, has 8 
components, every component is a Byte, so the 
cluster MemTbl[8] has 64 bits, each piece in it 
shows the condition of a parcel's square chain. 
On the off chance that the chain has free squares 
then the bit Associate to it was set 1, else it was 
set 0. Keeping in mind the end goal to enhance 
the hunt speed, we plan a pursuit table in the 
system, when to discover the square chain fulfill 
the need, just needs utilize MemGrp and 
compare component in the cluster MemTbl[ ] to 
look into the inquiry table SearchBit[ ]. 
SearchBit[ ]is a const exhibit, its estimation was 
traversed ascertain. The exhibit SearchBit[ ] was 
appear as take after: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

D. Search the block chain   
he operation to look into the piece affixes is to 

locate the main square chain that has free squares 
and the piece estimate fulfill the requirements. In 
the system it has numerous piece chains ,if cross 
all chains one by one then it will require a ton of 
investment, in the interim the time is 



 

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  
p-ISSN: 2348-795X  
Volume 05 Issue 04 

February 2018 

 

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e  | 630 
 
 

questionable, this won't permitted in the constant 
system. So we utilize a bitmap said in 3.3 to 
tackle the issue. the connection amongst 
MemGrp and MemTbl[ ] appear as figure 2.  
 
 
 
 
 
 
 
 
 

 
 Figure 2. bitmap 

 

The bitmap is similar to a 8 branches tree, 
every hub has 8 leaves, the root is MemGrp ,its 
leaves are MemTbl[0] ~ MemTbl[7], and the 
components MemTbl[0] ~ MemTbl[7] likewise 
has 8 bits in each of them as their leaves, each 
piece partner to a square chain. When we need to 
discover the chain we require , do operations as 
take after:  

 
(1) according to the memory estimate the 

undertaking solicitation can get the segment 
number, utilize PN to indicate it. 

  
 

 
 

(2)  use PN to get which block chain group it 

might in, use CG to denote the chain group, CG= 

PN / 8 = PN>> 
 
3, and the bit position in the group use GP to 
denote, GP=PN&0x07  

(3) N=MemTbl[PN]&(~((1<<GP)-1)) so it can 

mask the bits in MemTbl[PN] lower than GP, if 
N≠0, then use SearchBit[ ]to get the position of 
the lowest bit in N, so the block chain number 
R= CG<<3+SearchBit[N],and R is the result we 
want.  

(4)If N=0 then,M= MemGrp&(~((1<<CG) -
1)), use this method can mask the bits in 
MemGrp lower than the bit position CG the task 
request. If M=0 then there is no block chain 
available, the system will return an error message 

and suspend the task ask for the memory. If 
M≠0, then B=SearchBit[M], 
R=B<<3+SearchBit[MemTbl[B]], and the R is 
the result we want.  

If allocate a block and the chain become 
empty, then the system must modify the bit 
associate to it, meanwhile if group become 
empty also, then the correspond bit in MemGrp 
should be modified too. 
 

IV. CONCLUSION 
 

In this paper we talked about a sort of 

memory management technique in view of 

twofold accomplice algorithm. what's more, 

utilizing the bitmap to demonstrate the piece 

chains, makes the operations of memory 

assignment more effective and quick, the 

execution is superior to navigate the square 

chains, and the season of the operation to the 

memory is sure. At the point when the system do 

the operation of designating memory, it can 

handicap intrudes, in light of the fact that the 

season of it is short. Utilizing the technique for 

empower/incapacitate hinder can maintain a 

strategic distance from the need reversal issues 

 

V. REFERENCES  
[1] Preeti Ranjan Panda and Nikil D. Dutt,Memory 

Architectures for Embedded Systems-On-Chip[J], 

Springer-Verlag Berlin Heidelberg 2002 

[2] Liu Dong-dong. Research and Improvement of 

VxWorks Memory Management Mechanism[J]. 

Science Technology and Engineering. 2007(6) .  
[3] Zeng Fei-yi ， Sang nan ， Xiong Gong-ze. 

Memory management research of embedded 
system[J]. Microcontrollers & Embedded Systems. 
2005(1) .  

[4] Huang Xian-ying , Wang Yue , Chen Yuan. 

Memory management strategy in embedded real-

time system[J]. computer engineering and 

design.2004(10)  

[5] Zhao  Yue-hua,  Cai  Gui-xian,  Huang  Wei-ju.  

Design  and implementation of embedded and 

secure memory management[J].Computer 

Engineering and Design.2006(16) .  

 


