Design of a Packed Scrubber

T. Sindhuja, T. Tejaswini, K. Gnaneswar, T. Gautam Singh

B. Tech, Dept of Chemical Engineering, Chaitanya Bharathi Institute of Technology, Gandipet, Hyderabad, INDIA

Abstract

Zirconium dioxide is dried to reduce its moisture content. The wet cake of 15000 kg for 24 hrs is dumped in the dryer and the fee consists of 20% Zirconium dioxide, 65% water, 10% Ammonium nitrate and 5\% Ammonium sulphate. Ambient air is heated to $240{ }^{\circ} \mathrm{C}$ using a heater and is allowed to come in contact with the wet cake. The contact time for each batch is 18 hours. Moisture along with certain particles of ammonium nitrate is removed through the exhaust at $90^{\circ} \mathrm{C}$. The remaining cake is collected and the composition of the dry cake of 4200kg for 24 hrs includes 70\% Zirconium dioxide, 2% water, 20% Ammonium nitrate and 8% Ammonium sulphate. The inlet flow rate of ambient air for each dryer is $2800 \mathrm{~m}^{3} / \mathrm{h}$. design a packed scrubber for the exhaust gas.

I. MATERIAL BALANCE

The exhaust gas is input to the packed scrubber and is scrubbed with de- mineralized water as it has highest solubility of NO_{2}.

BASIS: $15000 \mathrm{~kg} / 24 \mathrm{hr}$ wet cake
Tie Material: Zirconium dioxide is taken as the tie material as the amount of ZrO_{2} in the wet cake and the dry cake remains same.

Feed (wet cake) stream:
Amount of ZrO_{2} in wet cake $=0.2 * 15000=$ $3000 \mathrm{~kg} / 24 \mathrm{hr}$
Amount of $\mathrm{H}_{2} \mathrm{O}$ in wet cake $=0.65^{*} 15000=$ $9750 \mathrm{~kg} / 24 \mathrm{hr}$
Amount of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ in wet cake $=0.1 * 15000=$ $1500 \mathrm{~kg} / 24 \mathrm{hr}$
Amount of ANS in wet cake $=0.05 * 15000=750 \mathrm{~kg} / 24 \mathrm{hr}$
Product (dry cake) stream:
Amount of ZrO_{2} in dry cake $=0.7 * 4200=$ $2940 \mathrm{~kg} / 24 \mathrm{hr}$

Amount of $\mathrm{H}_{2} \mathrm{O}$ in dry cake $=0.02 * 4200=84$ kg/24hr
Amount of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ in dry cake $=0.2 * 4200=$ $840 \mathrm{~kg} / 24 \mathrm{hr}$
Amount of ANS in dry cake $=0.08 * 4200=$ $336 \mathrm{~kg} / 24 \mathrm{hr}$

Exhaust stream:

Total amount of exhaust $=15000-4200=10800$ $\mathrm{kg} / 24 \mathrm{hr}$
Amount of ZrO_{2} in exhaust $=3000$ $2940=60 \mathrm{~kg} / 24 \mathrm{hr}$
Amount of $\mathrm{H}_{2} \mathrm{O}$ in exhaust $=9750-$ $84=9666 \mathrm{~kg} / 24 \mathrm{hr}$
Amount of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ in exhaust $=1500-$ $840=660 \mathrm{~kg} / 24 \mathrm{hr}$
Amount of ANS in exhaust $=750-336=414 \mathrm{~kg} / 24 \mathrm{hr}$
Total amount of exhaust $=10800 / 24=450 \mathrm{~kg} / \mathrm{hr}$
Amount of $\mathrm{H}_{2} \mathrm{O}$ in gas stream $=450 / 18=25 \mathrm{~kg} / \mathrm{hr}$
Given flow rate for one drier $=2800 \mathrm{~kg} / \mathrm{hr}$
Therefore along with gas with gas from drier $=2800+25=2825 \mathrm{~kg} / \mathrm{hr}$
Hence for 10 driers $=2825^{*} 10=28250 \mathrm{~kg} / \mathrm{hr}$

Feed to the scrubber

The exhaust from the dryer consists of ammonium nitrate along with dry air which has to be scrubbed before being let out into the atmosphere. The outlet from the dryer acts as a feed to the scrubber. Each dryer gives out 2825 kg / h and there are 10 such dryers installed. So the total feed into the scrubber consists of $28250 \mathrm{~kg} / \mathrm{h}$ of gas flow. The scrubbing liquid used is water. The efficiency of the scrubber is taken as 95% as the solubility of ammonium nitrate in water is very high. The temperature is assumed to be $25^{\circ} \mathrm{C}$.
Total amount of gas in inlet $=28250 \mathrm{~kg} / \mathrm{h}$
Amount of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ from 10 dryers $=660 \mathrm{~kg} / 24 \mathrm{~h}$ $=27.5 \mathrm{~kg} / \mathrm{h}$

Amount of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ from each dryers $=27.5 / 10=2.75 \mathrm{~kg} / \mathrm{hr}$
Molecular weight of ammonium nitrate $=80$
Total amount of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ entering (from 10 dryers) $=27.5 / 80=0.34375 \mathrm{kmol} / \mathrm{h}$
Amount of pure gas entering $=28250-27.5=$
$28222.5 \mathrm{~kg} / \mathrm{h}=28222.5 / 29 \mathrm{kmol} / \mathrm{h}=$ $973.18 \mathrm{kmol} / \mathrm{h}$
Reaction: $\quad \mathbf{N H}_{\mathbf{4}} \mathbf{N O}_{\mathbf{3}} \quad \mathbf{N H}_{\mathbf{3}}+$

HNO_{3}

1 mole of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is equivalent to 1 mole of $\mathrm{NO} 2=1$ mole of HNO_{3}.
Hence, moles of NO2 $=0.34375 \mathrm{kmol} / \mathrm{h}$
Amount of $\mathrm{HNO}_{3}=46 * 0.343=15.81 \mathrm{~kg} / \mathrm{h}$
Mole fraction of NO 2 in the inlet stream $=$ $0.34375 /(0.34375+973.18)=3.5 * 10^{-4}$
Mole fraction of gas in the inlet stream=973.18/ $(0.34375+973.18)=0.9996$
Recovery $=95 \%$
Moles of NO2 in the outlet stream = $0.34375 * 0.05=0.0171 \mathrm{kmol} / \mathrm{h}$
Mole fraction of NO2 in the outlet stream $=$ $(0.0171) /(0.0171+973.18)=1.75 * 10^{-5}$
Assuming that the system is ideal and follows Raoult's law,
Partial pressure of HNO_{3} in the feed $=\mathrm{pl}=$ $3.75 * 10^{-4} * 760=0.226 \mathrm{mmHg}$
Partial pressure of HNO_{3} in the exit $=\mathrm{p} 2=$ $1.75 * 10^{-5} * 760=0.0133 \mathrm{mmHg}$
From the paper published by Idaho National Engineering laboratory titled Physical property parameter set for modeling ICPP aqueous wastes with ASPEN electrolyte NRTL model , the equilibrium curve data for the vapor liquid equilibrium of HNO_{3} and $\mathrm{H}_{2} \mathrm{O}$ system at 760 torr and $25^{\circ} \mathrm{C}$ is depicted in the graph below.
The slope of the equilibrium curve is hence found out as follows.
Slope $=\mathrm{m}=\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right) /\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)=(\log (0.1)-\log$ $(0.01)) /(0.26-0.11)=6.66$

II. DETERMINATION OF NUMBER OF STAGES

Performing mass balance around the scrubber at the inlet and outlet, we get,
$\mathrm{L}_{\mathrm{m}}{ }^{*} \mathrm{x}_{1}=\mathrm{G}_{\mathrm{m}}{ }^{*}\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)$
Where,
$\mathrm{L}_{\mathrm{m}}=$ Liquid flow rate in inlet in $\mathrm{kmol} / \mathrm{s}$
$\mathrm{G}_{\mathrm{m}}=$ Gas flow rate in inlet in kmol/s
$\mathrm{x}_{1}=$ Moles of HNO_{3} in the outlet liquid stream
$\mathrm{y}_{1}=$ moles of HNO_{3} in the inlet gas stream $=$
Partial pressure of HNO_{3} in inlet gas stream $=0.226 \mathrm{mmHg}$
$\mathrm{y}_{2}=$ moles of HNO_{3} in the outlet gas stream $=$
Partial pressure of HNO_{3} in outlet gas stream $=$ 0.0133 mmHg
$\mathrm{L}_{\mathrm{m}}{ }^{*} \mathrm{x}_{1}=\mathrm{G}_{\mathrm{m}}{ }^{*}\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)$
$\mathrm{x}_{1}=\quad\left(\mathrm{G}_{\mathrm{m}} / \mathrm{L}_{\mathrm{m}}\right) *\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right) *(\%$ Recovery $) \quad=$
$\left(\mathrm{G}_{\mathrm{m}} / \mathrm{L}_{\mathrm{m}}\right) *(0.226-0.0133) * 0.95$
$\left(\mathrm{G}_{\mathrm{m}} / \mathrm{L}_{\mathrm{m}}\right) * 0.2020$
$\mathrm{x}_{1}=\quad\left(\mathrm{m} * \mathrm{G}_{\mathrm{m}} / \mathrm{L}_{\mathrm{m}}\right) *(0.2020 / \mathrm{m}) \quad=$
$\left(\mathrm{m}^{*} \mathrm{G}_{\mathrm{m}} / \mathrm{L}_{\mathrm{m}}\right) *(0.2020 / 6.66)=\left(\mathrm{m} * \mathrm{G}_{\mathrm{m}} / \mathrm{L}_{\mathrm{m}}\right) * 0.0306$
Our aim here is to determine the flow rate of water such that it accounts for maximum separation in an economical way. From Coulson and Richardson volume 6, figure 11.40, a graph is plotted for approximate number of stages v / s ($\mathrm{m} * \mathrm{G}_{\mathrm{m}} / \mathrm{L}_{\mathrm{m}}$).
To determine the number of stages at different flow rates, an optimization is done based on the graph below as follows.

$\mathrm{y}_{1} / \mathrm{y}_{2}=\mathrm{p}_{1} / \mathrm{p}_{2}=0.226 / 0.0133=17$								
$\left(\mathbf{m}^{*} \mathbf{G}_{\mathbf{m}} /\right.$	0.	0.	0.	0.	0.	0.	0.	1.
$\left.\mathbf{L}_{\mathbf{m}}\right)$	3	4	5	6	7	8	9	0
$\mathbf{N}_{\mathbf{O G}}$	3.	4.	4.	5.	5.	7.	9.	14
	8	1	5	1	8	2	5	

From the graph it is evident that for the selection of optimum number of stages the value of ($\mathrm{m}^{*} \mathrm{G}_{\mathrm{m}} / \mathrm{L}_{\mathrm{m}}$) should be around 0.4 and 0.7 . If smaller values of $\left(\mathrm{m}^{*} \mathrm{G}_{\mathrm{m}} / \mathrm{L}_{\mathrm{m}}\right)$ are chosen, then for a small change in number of stages requires a large variation in the liquid flow rate. Similarly, if $\left(\left(\mathrm{m}^{*} \mathrm{G}_{\mathrm{m}} / \mathrm{L}_{\mathrm{m}}\right)\right.$ is chosen above 0.7 , then for a small decrease in liquid rate, the increase in the number of stages is very high.
At $\left(\mathrm{m}^{*} \mathrm{G}_{\mathrm{m}} / \mathrm{L}_{\mathrm{m}}\right)=0.4, \mathrm{x} 1=0.0303 * 0.4=0.0121$
$\operatorname{At}\left(\mathrm{m}^{*} \mathrm{G}_{\mathrm{m}} / \mathrm{L}_{\mathrm{m}}\right)=0.7, \mathrm{x} 1=0.0303 * 0.7=0.0212$

Among the two, a higher value of x_{1} is given by $\left(m^{*} G_{m} / L_{m}\right)=0.7$. Hence we consider the number of stages to be equal to $5-8$. Since the number of stages cannot be a decimal, we can either approximate it to 5 or 6 . Considering N_{OG} as 5 for calculations.

III. ESTIMATION OF COLUMN DIAMETER

Gas flow rate into the scrubber $=\mathrm{G}=28250 \mathrm{~kg} / \mathrm{h}=$ $7.8470 \mathrm{~kg} / \mathrm{s}=0.27 \mathrm{kmol} / \mathrm{s}$
Liquid flow rate $=\mathrm{L}=(\mathrm{m} * \mathrm{G}) / 0.6=$ $(6.66 * 0.270) / 0.7=2.578 \mathrm{kmol} / \mathrm{s}=46.34 \mathrm{~kg} / \mathrm{s}$
Gas flow rate in $\mathrm{kg} / \mathrm{s}=\mathrm{G}^{*}=7.842 \mathrm{~kg} / \mathrm{s}$
Liquid flow rate in $\mathrm{kg} / \mathrm{s}=\mathrm{L}^{*}=46.34 \mathrm{~kg} / \mathrm{s}$
Gas density at $25^{\circ} \mathrm{C}=\rho_{\mathrm{v}}=(29 / 22.4) *(273 / 298)=$ $1.186 \mathrm{~kg} / \mathrm{m}^{3}$
Liquid density $=$ Density of water $=\rho_{\mathrm{L}}=1000$ $\mathrm{kg} / \mathrm{m}^{3}$
Liquid viscosity $=$ Viscosity of water $=\mu_{\mathrm{L}}=0.001$ $\mathrm{Ns} / \mathrm{m}^{2}$
Gas viscosity $=\mu_{\mathrm{v}}=1.98 * 10^{-5} \mathrm{Ns} / \mathrm{m}^{2}$
A factor known as K_{4} is found which correlates the liquid and gas flow rates, physical properties of the system and packing characteristics, F_{LV}, with the gas mass flow rate per unit cross sectional area for a constant pressure drop system.
$\mathrm{F}_{\mathrm{LV}}=\left(\mathrm{L}_{\mathrm{w}} * / \mathrm{G}_{\mathrm{w}} *\right) *\left(\rho_{\mathrm{v}} / \rho_{\mathrm{L}}\right)^{0.5=}$
$(46.34 / 7.847) *(1.186 / 1000)^{0.5}=0.203$
From the graph, figure 11.44, Coulson and Richardson volume $6, \mathrm{k}_{4}$ for $\mathrm{F}_{\mathrm{LV}}=0.203$ is found to be
K_{4} at flooding $=0.65$
K_{4} at pressure drop 21 mm of water/meter of packed bed $=0.8$
Percentage flooding $=\left(\mathrm{K}_{4} / \mathrm{K}_{4}\right.$ at flooding $) * 100$ $=(0.65 / 0.8)^{\wedge} 0.5^{*} 100=80.25 \%$
Gas mass flow rate per unit column cross sectional area, $\mathrm{V}_{\mathrm{w}}{ }^{*}$, is found in $\mathrm{kg} / \mathrm{m}^{2} \mathrm{~s}$.
$\left.\mathrm{V}_{\mathrm{w}} *=\left(\mathrm{K}_{4}{ }^{*} \rho_{\mathrm{v}} *\left(\rho_{\mathrm{L}}-\rho_{\mathrm{v}}\right)\right) /\left(13.1 * \mathrm{~F}_{\mathrm{p}} *\left(\mu_{\mathrm{L}} / \rho_{\mathrm{L}}\right)^{0.1}\right)\right)^{0.5}$
$\mathrm{F}_{\mathrm{p}}=$ Packing factor

The material chosen for packing is ceramic intalox saddles of 38 mm diameter whose packing factor is 170 .
$\mathrm{V}_{\mathrm{w}} *=1.17 \mathrm{~kg} / \mathrm{m}^{2} \mathrm{~s}$
Column required $=($ Actual gas flow rate $) /($ Gas mass flow rate per unit column cross sectional area)

$$
=(7.847 / 1.17)=6.684 \mathrm{~m}^{2}
$$

Diameter of column $=((4 * \text { column area }) / \pi)^{0.5}=$ 2.9 m

Actual column area $=\left(\pi *\right.$ diameter $\left.^{2}\right) / 4=7.064$ m^{2}
Column diameter to packing size ratio $=$ diameter/size of packing $=2.9 \mathrm{~m} / 38 \mathrm{~mm}=76.94$
Percentage flooding at the given diameter $=$ 80.25*(Column required/Actual column area) $=$ 76.87\%

IV. ESTIMATION OF COLUMN HEIGHT

Cornell's Method

The Cornell's method is helpful for developing the heights of liquid and gas phase transfer units based on an empirical correlation which takes into account the physical properties of the system along with the liquid and gas mass flow rates. Several factors are to be calculated from the equations or from the corresponding points from the graph and these depend on the value of percentage flooding.
The graphs referred are figure $11.41,11.42$, and 11.43, Coulson and Richardson volume 6.

Where: $\mathrm{H}_{\mathrm{G}}=$ height of a gas-phase transfer unit, m,
$\mathrm{H}_{\mathrm{G}}=$ height of a liquid-phase transfer unit, m ,
$\mathrm{Sc}_{\mathrm{v}}=$ gas Schmidt number $=\left(\mu_{\mathrm{v}} / \rho_{\mathrm{v}} \mathrm{D}_{\mathrm{v}}\right)$,
$\mathrm{Sc}_{\mathrm{L}}=$ liquid Schmidt number $=\left(\mu_{\mathrm{L}} / \rho_{\mathrm{L}} \mathrm{D}_{\mathrm{L}}\right)$,
$\mathrm{D}_{\mathrm{c}}=$ column diameter, m ,
$\mathrm{Z}=$ column height, m ,
$\mathrm{K}_{3}=$ percentage flooding correction factor, from Figure 11.41,
$\Psi_{h}=\mathbf{H}_{\mathbf{G}}$ factor from Figure 11.42, $\phi_{\mathrm{h}}=\mathbf{H L}$ factor from Figure 11.43,
$\mathrm{L}^{*}{ }_{\mathrm{w}}=$ liquid mass flow-rate per unit area column cross-sectional area, $\mathrm{kg} / \mathrm{m}^{2} \mathrm{~s}$,
$\mathrm{f}_{1}=$ liquid viscosity correction factor $=\left(\mu_{\mathrm{v}} / \mu_{\mathrm{w}}\right)^{0.16}$
$\mathrm{f}_{2}=$ liquid density correction factor $=\left(\rho_{\mathrm{w}} / \rho_{\mathrm{v}}\right)^{1.25}$
$\mathrm{f}_{3}=$ surface tension correction factor $=\left(\sigma_{w} / \sigma_{L}\right)^{0.8}$
At percentage flooding $=77 \%$,
$\mathrm{K}_{3}=0.6$
$\Psi_{\mathrm{h}}=80$
$\mathrm{D}_{\mathrm{c}}=$ column diameter $=2.9 \mathrm{~m}$
$\mathrm{Z}=$ column height $($ predicted $)=15 \mathrm{~m}$
$\mathrm{D}_{\mathrm{L}}=$ diffusivity of liquid = diffusivity of water $=$ $1.64 * 10^{-9} \mathrm{~m}^{2} / \mathrm{s}$
$\mathrm{D}_{\mathrm{v}}=$ diffusivity of vapor $=$ diffusivity of air $=$ $22.07 * 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$
$\mathrm{Sc}_{\mathrm{v}}=$ gas Schmidt number $=\left(\mu_{\mathrm{v}} / \rho_{\mathrm{v}} \mathrm{D}_{\mathrm{v}}\right)$,
$\mathrm{Sc}_{\mathrm{L}}=$ liquid Schmidt number $=\left(\mu_{\mathrm{L}} / \rho_{\mathrm{L}} \mathrm{D}_{\mathrm{L}}\right)$,
$\mathrm{L}_{\mathrm{w}} *=$ liquid mass flow rate per unit column cross sectional area $=L^{*} /$ column area $=46.34 / 6.68=$ $6.93 \mathrm{~kg} / \mathrm{m}^{2} \mathrm{~s}$
At $\mathrm{L}_{\mathrm{w}}{ }^{*}=46.34 \mathrm{~kg} / \mathrm{s}, \Phi_{\mathrm{h}}=$ correlation parameter $=$ 0.065

Height of gas phase transfer unit $=\mathrm{H}_{\mathrm{G}}$
$\mathrm{f}_{1}=$ liquid viscosity correction factor $=$ ($\left.\mu_{\mathrm{v}} / \mu_{\mathrm{w}}\right)^{0.16}=1$
$\mathrm{f}_{2}=$ liquid density correction factor $=\left(\rho_{\mathrm{w}} / \rho_{\mathrm{v}}\right)^{1.25}=1$
$\mathrm{f}_{3}=$ surface tension correction factor $=$ $\left(\sigma_{\mathrm{w}} / \sigma_{\mathrm{L}}\right)^{0.8}=1$
$\mathbf{H}_{\mathrm{G}}=$
$\left.* \operatorname{Sc}_{V}{ }^{0.5} *\left(\mathrm{D}_{\mathrm{c}} / 0.305\right)^{1.11 *}(\mathrm{Z} / 3.05)^{0.33}\right) /$
$\left(\left(\mathrm{L}_{\mathbf{w}}{ }^{*}\right) * \mathbf{f}_{1} * \mathbf{f}_{\mathbf{2}} * \mathbf{f}_{\mathbf{3}}\right)=3.24 \mathrm{~m}$
Height of liquid phase transfer unit $=\mathrm{H}_{\mathrm{L}}$
$\mathbf{H}_{\mathbf{L}}=\mathbf{0 . 3 0 5} * \boldsymbol{\Phi}_{\mathbf{h}}{ }^{*} \mathbf{S c}_{\mathrm{L}}{ }^{\mathbf{0 . 5}}{ }^{*} \mathbf{K}_{\mathbf{3}} *(\mathbf{Z} / \mathbf{3 . 0 5})^{0.15}=0.35$
Total height of the column $=\mathrm{H}_{\mathrm{OG}}=\mathrm{H}_{\mathrm{G}}+$
$\mathrm{H}_{\mathrm{L}} * \mathrm{~m}\left(\mathrm{G}_{\mathrm{m}} / \mathrm{L}_{\mathrm{m}}\right)=3.46 \mathrm{~m}$
$\mathbf{Z}=\mathbf{N}_{\mathbf{O G}} * \mathbf{H}_{\mathbf{O G}}=5 * 3.46=17.34 \mathrm{~m}$
The total height of packing's in the column is 4.74 m which approximates to 5 m . Hence the assumption made in the beginning of the calculations is right.

Onda's Method:

Onda et al. (1968) published useful correlations for the film mass-transfer coefficients k_{G} and k_{L} and the effective wetted area of the packing a_{w}, which can be used to calculate H_{G} and H_{L}. The equation for the effective area is:
$\frac{\mathrm{aw}}{a}=1-\exp \left[-1.45\left(\frac{\sigma c}{\sigma L}\right)^{0.75}\left(\mathrm{~L}_{\mathrm{w}} * / \mathrm{a}_{\mathrm{L}}\right)^{0.1}\left(\mathrm{~L}_{\mathrm{w}} *{ }^{2} \mathrm{a} / \rho^{2} \mathrm{~L} \mathrm{~g}\right)^{-}\right.$ ${ }_{0.05}^{a}\left(\left(\mathrm{~L}_{\mathrm{w}} *{ }^{2} / \rho_{\mathrm{L}} \sigma_{\mathrm{L}} \mathrm{a}\right)^{0.2}\right]$
$\mathrm{L}_{\mathrm{w}}{ }^{*}=$ liquid mass flow rate per unit cross-section area $\mathrm{kg} / \mathrm{m}^{2} \mathrm{~s}=6.93 \mathrm{~kg} / \mathrm{m}^{2} \mathrm{~s}$,
$\mathrm{a}_{\mathrm{w}}=$ effective interfacial area of packing per unit volume, $\mathrm{m}^{2} / \mathrm{m}^{3}$,
$a=$ actual area of packing per unit volume (see table 11.3), $\mathrm{m}^{2} / \mathrm{m}^{3}=194 \mathrm{~m}^{2} / \mathrm{m}^{3}$,
$\mathrm{d}_{\mathrm{p}}=$ packing size, $\mathrm{m}=38^{*} 10^{-3} \mathrm{~m}$,
$\sigma_{\mathrm{c}}=$ critical surface tension for the particular packing material $=61 * 10^{-3} \mathrm{~N} / \mathrm{m}$,
$\sigma_{L}=$ liquid surface tension, $\mathrm{N} / \mathrm{m}=72 * 10^{-3} \mathrm{~N} / \mathrm{m}$,
$\mu_{\mathrm{L}}=10^{-3} \mathrm{~kg} / \mathrm{ms}$,
$\rho_{\mathrm{L}}=1000^{3} \mathrm{~kg} / \mathrm{m}^{3}$,
$\mathrm{g}=9.81 \mathrm{~m}^{2} / \mathrm{s}$,
Therefore $\mathbf{a}_{\mathbf{w}}=\mathbf{1 0 9 . 7 2} \mathbf{m}^{2} / \mathbf{m}^{\mathbf{3}}$. And the mass coefficients:
$\mathrm{k}_{\mathrm{L}}\left(\rho_{\mathrm{L}} / \mu_{\mathrm{L}} \mathrm{g}\right)^{1 / 3}=0.0051\left(\mathrm{~L}_{\mathrm{w}} * / \mathrm{a} \mu_{\mathrm{L}}\right)^{2 / 3}\left(\mu_{\mathrm{L}} / \rho_{\mathrm{L}} \mathrm{D}_{\mathrm{L}}\right)^{-1 / 2}$ $\left(\mathbf{a d}_{\mathrm{p}}\right)^{0.4}$
$\mathrm{k}_{\mathrm{L}}=$ liquid film mass transfer coefficient, $\mathrm{kmol} / \mathrm{m}^{2} \mathrm{~s}\left(\mathrm{kmol} / \mathrm{m}^{3}\right)=\mathrm{m} / \mathrm{s}$.
$\mu_{\mathrm{L}}=10^{-3} \mathrm{~kg} / \mathrm{ms}$,
$\rho_{\mathrm{L}}=1000^{3} \mathrm{~kg} / \mathrm{m}^{3}$,
$\mathrm{g}=9.81 \mathrm{~m}^{2} / \mathrm{s}$,
$\mathrm{D}_{\mathrm{L}}=$ diffusivity of liquid = diffusivity of water $=$ $1.64 * 10^{-9} \mathrm{~m}^{2} / \mathrm{s}$,
$\mathrm{L}_{\mathrm{w}}{ }^{*}=$ liquid mass flow rate per unit cross-section area $\mathrm{kg} / \mathrm{m}^{2} \mathrm{~s}=6.93 \mathrm{~kg} / \mathrm{m}^{2} \mathrm{~s}$,
$\mathrm{a}=$ actual area of packing per unit volume (see table 11.3), $\mathrm{m}^{2} / \mathrm{m}^{3}=194 \mathrm{~m}^{2} / \mathrm{m}^{3}$,
$\mathrm{d}_{\mathrm{p}}=$ packing size, $\mathrm{m}=38^{*} 10^{-3} \mathrm{~m}$,
Therefore
$\mathbf{k}_{\mathrm{L}}=1.55^{*} 10^{-4} \mathrm{~m} / \mathrm{s}$.

Where
$\mathrm{K}_{5}=5.23$ for packing sizes above 15 mm , and 2.00 for the sizes below 15 mm
$\mathrm{k}_{\mathrm{G}}=$ gas film mass transfer coefficient, $\mathrm{kmol} / \mathrm{m}^{2} \mathrm{~s}$ bar,
$\mathrm{V}_{\mathrm{w}}{ }^{*}=$ gas mass flow rate per unit column cross section area $\mathrm{kg} / \mathrm{m}^{2} \mathrm{~s}$,

$$
\begin{aligned}
& =7.8472 / 7.06 \\
& =1.11 \mathrm{~kg} / \mathrm{m}^{2} \mathrm{~s},
\end{aligned}
$$

$\mathrm{R}=0.08314 \mathrm{bar}^{3} / \mathrm{kmol} \mathrm{K}$, $\mathrm{T}=$ considering @ $25^{\circ} \mathrm{C}=298 \mathrm{~K}$,
$\mathrm{D}_{\mathrm{v}}=$ diffusivity of vapor $=$ diffusivity of air $=$ $22.07 * 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$,
$\mathrm{a}=$ actual area of packing per unit volume (see table 11.3), $\mathrm{m}^{2} / \mathrm{m}^{3}=194 \mathrm{~m}^{2} / \mathrm{m}^{3}$,
$\mathrm{d}_{\mathrm{p}}=$ packing size, $\mathrm{m}=38^{*} 10^{-3} \mathrm{~m}$,
$\mu_{\mathrm{v}}=1.95 * 10^{-3} \mathrm{~kg} / \mathrm{ms}$,
$\rho_{\mathrm{v}}=1.186 \mathrm{~kg} / \mathrm{m}^{3}$
Therefore
$\mathbf{k}_{\mathbf{G}}=8.04 * 10^{-4} \mathrm{kmol} / \mathrm{m}^{2} \mathrm{~s}$ bar
$\mathbf{G}_{\mathbf{m}}=0.038 \mathrm{kmol} / \mathrm{m}^{2} \mathrm{~s}$,
$\mathbf{L}_{\mathbf{m}}=2.574 \mathrm{kmol} / \mathrm{m}^{2} \mathrm{~s}$,
The film transfer unit heights are given by:
$H_{G}=G_{m} / k_{G} \mathbf{a}_{w} \mathbf{P}$
$H_{L}=L_{m} / \mathbf{k}_{L} \mathbf{a}_{w} \mathbf{C}_{t}$
$\mathrm{G}_{\mathrm{m}}=$ molar gas flow rate per unit cross sectional area, $\mathbf{G}_{\mathbf{m}}=0.038 \mathrm{kmol} / \mathrm{m}^{2} \mathrm{~s}$,
$\mathrm{L}_{\mathrm{m}}=$ molar liquid flow rate per unit cross sectional area, $\mathbf{L}_{\mathbf{m}}=2.574 \mathrm{kmol} / \mathrm{m}^{2} \mathrm{~s}$,
$\mathrm{P}=$ column operating pressure, atm or bar,
$\mathrm{C}_{\mathrm{t}}=$ total concentration, $\mathrm{kmol} / \mathrm{m}^{3}=\rho_{\mathrm{L}} /$ molecular
weight solvent $=1000 / 18=55.6 \mathrm{~mol} / \mathrm{m}^{3}$
$\mathbf{H}_{\mathbf{G}}=0.038 /\left(8.04 * 10^{-4} * 109.72 * 1.1013\right)$
$\mathbf{H}_{\mathrm{G}}=0.43 \mathrm{~m}$
$\mathbf{H}_{\mathbf{L}}=2.574 /\left(55.6 * 1.55 * 10^{-4} * 109.72\right)$
$\mathbf{H}_{\mathrm{L}}=2.7221 \mathrm{~m}$
$\mathbf{H}_{\mathbf{O G}}=0.43+0.7 * 2.7221=2.94 \mathrm{~m}$
$\mathrm{Z}=\mathrm{N}_{\mathrm{OG}} * \mathrm{H}_{\mathrm{OG}}=5 * 2.94=14.7 \mathrm{~m}$ approx. $=15 \mathrm{~m}$

Results

By using intaloxsaddles as packing material the parameters of column by following methods are:
i) Cornell's method $\mathrm{Z}=$

18 meters
ii) Onda's method $\mathrm{Z}=$ 15meters
iii) Column diameter $\quad D_{c}=$ 3meters
By assuming height (z) as 15 meters

V. MATERIAL OF CONSTRUCTION

Determined by application because most contaminants involve corrosive gases and fumes,
material must be able to withstand continuous contact with high and low pH gases and scrubbing solutions.
Standard construction materials include polypropylene, PVC and Fiberglass .Optional materials include high alloy metals such as stainless steel and hastelloy. Dual-laminate structures incorporating FRP over PVC, PP, PVDF and Teflon liners are also available.
Fiberglass Reinforced Plastic (FRP): is mostly used because of it is economical, easily fabricated lightweight, and has good resistance to both alkaline and acid environment. Where necessary, a FRP scrubber can be used as liner material for steel equipment which is subject to corrosion.
Cast iron may also be used in pilot plant scrubbing applications or where corrosion problems are not severe. Normal water supplies and air will not cause problems. However NO_{2} or similar gases in the fluid being scrubbed will cause the formation of dilute acids which will attack cast iron.

Objectives

- To reduce the NO_{2} fumes from 80100 ppm to $50-60 \mathrm{ppm}$.
- $\quad \mathrm{HNO}_{3}$ obtained as the byproduct, can be reused in the operation again at dissolution there by reducing the cost factor
In addition to this our major focus remained on optimizing the height and diameter of the tower in a given pressure drop. The next challenge was to search a material of construction of scrubber which is economically viable, resistant to corrosion and the chemicals that it is exposed to inside the scrubber, and also able to withstand the required temperature. In order to get more efficiency we can use $5 \% \mathrm{NaOH}$ as scrubbing agent and increasing the diameter of the scrubber increases the residence time which leads to intimate contact of gas and scrubbing agent.
Through this entire Training period at Nuclear Fuel Complex, we got an immensely extravagant opportunity to get exposed to several techniques and industrial processes which, otherwise, would
have been impossible. We learnt a great deal of knowledge working with the overly helpful people around, thus improving our familiarity with several industrial practices. It further helped us to enhance our experimental skills and hence helped us get exposed to practical understanding.

VI. CONCLUSION

During our study here at NFC, we were exposed to a number of techniques involved in the course of chemical engineering. It was enthralling to see all the operations that we studied in the books actually running in reality. Our project was inclined towards the design of a packed scrubber for absorption of NO_{2} fumes which is the exhaust of drier where in, the exhaust gas can be purified before being let out into the atmosphere. It explains the detail process of gas absorption accompanied by chemical reaction with its chemical kinetics.

BIBLIOGRAPHY

[1] Perry's Chemical
Engineer's Handbook, eighth edition, by Green, Don, Perry, Robert
[2] Unit Operations of Chemical Engineering; Textbook by Warren LMcCabe, Julian C Smith, and Peter Harriott; McGraw Hill Publications
[3] Coulson \& Richardson's Chemical Engineering, Chemical Engineering, Volume 6, Third edition, Chemical Engineering Design, R. K. Sinnott.
[4] Robert E.Treybal "Mass Transfer Operation"
[5] Paper published by OSTI on October 07 1996, titled Physical Property Parameter set for modeling ICPP Aqueous Wastes with ASPEN Electrolyte NRTL Model by the Idaho National Engineering Laboratory

