

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 751

Design and Implementation of a Hybrid Lut/Multiplexer

Architectures for Fpga

Kadiyam Sreelekha & V.Prasanth
1
PG Scholar, Email Id: sreelekha.kadiyam@gmail.com

2
M.Tech,(Ph.D), Assoc Prof, Email Id: varasalaprasanth@gmail.com

Pragati Engineering College, Surampalem, East Godavari, Andhra Pradesh.

ABSTRACT: Hybrid configurable logic

block architectures for field-programmable

gate arrays that contain a mixture of lookup

tables and hardened multiplexers are

evaluated toward the goal

of higher logic density and area reduction.

Multiple hybrid configurable logic block

architectures, both nonfracturable and

fracturable with varying MUX:LUT logic

element ratios are evaluated across two

benchmark suites (VTR and CHStone) using

a custom tool flow consisting of LegUp-

HLS, Odin-II front-end synthesis, ABC logic

synthesis and technology mapping, and VPR

for packing, placement, routing, and

architecture exploration. Technology

mapping optimizations that target the

proposed architectures are also

implemented within ABC. Experimentally,

we show that for nonfracturable

architectures, without any mapper

optimizations, we naturally save up to ∼8%

area postplace and route; both accounting

for complex logic block and routing area

while maintaining mapping depth. With

architecture-aware technology mapper

optimizations in ABC, additional area is

saved, post-place-and-route. For fracturable

architectures, experiments show that only

marginal gains are seen after place-and-

route up to ∼2%. For both nonfracturable

and fracturable architectures, we see

minimal impact on timing performance for

the architectures with best area-efficiency.

I.INTRODUCTION

Throughout the history of field-

programmable gate arrays (FPGAs), lookup

tables (LUTs) have been the primary logic

element (LE) used to realize combinational

logic. A K-input LUT is generic and very

flexible—able to implement any K -input

Boolean function. The use of LUTs

simplifies technology mapping as the

problem is reduced to a graph covering

problem. However, an exponential area

price is paid as larger LUTs are considered.

The value of K between 4 and 6 is typically

seen in industry and academia, and this

range has been demonstrated to offer a good

area/performance compromise [4], [5].

Recently, a number of other works have

explored alternative FPGA LE architectures

for performance improvement [6]–[10] to

close the large gap between FPGAs and

application-specific integrated circuits

(ASICs) [11]. In this paper, we propose

incorporating (some) hardened multiplexers

(MUXs) in the FPGA logic blocks as a

means of increasing silicon area efficiency

and logic density. The MUX-based logic

blocks for the FPGAs have seen

success in early commercial architectures,

such as the Actel ACT-1/2/3 architectures,

and efficient mapping to these structures has

been studied [12] in the early 1990s.

How ever, their use in commercial

chips has waned, perhaps partly due to the

ease with which logic functions can be

mapped into LUTs, simplifying the entire

mailto:sreelekha.kadiyam@gmail.com
mailto:varasalaprasanth@gmail.com

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 752

computer aided design (CAD) flow.

Nevertheless, it is widely understood that

the LUTs are inefficient at implementing

MUXs, and that MUXs are frequently used

in logic circuits. To underscore the

inefficiency of LUTs implementing MUXs,

consider that a six input LUT (6-LUT) is

essentially a 64-to-1 MUX (to select 1 of 64

truth-table rows) and 64-SRAM cells, yet it

can only realize a 4-to-1 MUX (4 data + 2

select = 6 inputs).

In this paper, we present a six-input

LE based on a 4-to-1 MUX, MUX4, that can

realize a subset of six-input

Boolean logic functions, and a new hybrid

complex logic block (CLB) that contains a

mixture of MUX4s and 6-LUTs. The

proposed MUX4s are small compared with a

6-LUT (15% of 6-LUT area), and can

efficiently map all {2, 3}-input functions

and some {4, 5, 6}-input functions. In

addition, we explore fracturability of LEs—

the ability to split the LEs into multiple

smaller elements—in both LUTs and

MUX4s to increase logic density. The ratio

of LEs that should be LUTs versus MUX4s

is also explored toward optimizing logic

density for both nonfracturable and

fracturable FPGA architectures.

To facilitate the architecture

exploration, we developed a CAD flow for

mapping into the proposed hybrid CLBs,

created using ABC [13] and VPR [14], and

describe technology mapping techniques

that encourage the selection of logic

functions that can be embedded into the

MUX4 elements. The main contributions in

this paper are as follows.

1) Two hybrid CLB architectures

(nonfracturable and fracturable) that contain

a mixture of MUX4 LEs and the traditional

LUTs yielding up to 8% area savings.

2) Mapping techniques called NaturalMux

and MuxMap targeted toward the hybrid

CLB architecture that optimize for area,

while preserving the original mapping depth.

3) A full post-place-and-route architecture

evaluation with VTR7 [1], and CHStone [2]

benchmarks facilitated by LegUp-HLS [3],

the Verilog-to-Routing project [1] showing

impact on both area and delay.

 Compared with the preliminary

publication [15], we have performed

transistor level modelling of the MUX4 LE,

further studied the fracturable architectures,

and unified the open source tool-flow from

C through LegUp-HLS to the VTR flow.

Sparse crossbars (versus full crossbars in the

previous work) have also been included in

our CLBs, increasing modelling accuracy.

The new transistor-level modelling of the

MUX4 also provides more accurate results

as compared with the previous work. Results

have also been expanded with the inclusion

of timing results as well as larger

architectural ratio sweeps. The remainder of

this paper is organized as follows. Section II

outlines related work. Section III discusses

the proposed MUX4 LE, the variant used in

the fracturable architecture and the design of

the hybrid complex logic block. Section IV

presents the technology mapping approaches

to target the proposed hybrid architecture.

Section V shows how we modeled the

hybrid complex logic blocks for both the

nonfracturable and fracturable architectures

in VPR. Section VI discusses our evaluation

methodology and provides the evaluation

results. Finally, we conclude with final

remarks in Section VII.

Recent works have shown that the

heterogeneous architectures and synthesis

methods can have a significant impact on

improving logic density and delay,

narrowing the ASIC–FPGA gap. Works by

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 753

Anderson and Wang with ―gated‖ LUTs [7],

then with asymmetric LUT LEs [8], show

that the LUT elements present in

commercial FPGAs provide unnecessary

flexibility. Toward improved delay and area,

the macrocell-based FPGA architectures

have been proposed [9], [10]. These studies

describe significant changes to the

traditional FPGA architectures, whereas the

changes proposed here build on

architectures used in industry and academia

[4]. Similarly, and-inverter cones have been

proposed as replacements for the LUTs,

inspired by and-inverter graphs (AIGs) [6].

Purnaprajna and Ienne [16] explored the

possibility of repurposing the existing

MUXs contained within the Xilinx Logic

Slices [17]. Similar to this work, they use

the ABC priority cut mapper as well as VPR

for packing, place, and route. However, their

work is primarily delay-based showing an

average speedup of 16% using only ten of

19 VTR7 benchmarks.

II.RELATED WORK

In this section, the circuit scheme of

conventional RCA, CLA, ETAII in [4] and

ACSA in [5] will be analyzed in detail.

Fig1: Circuit Scheme of ETAII.

As pointed out in [6], RCA is a

common type of adder in digital circuit

design, in which a series of one-bit full

adders are connected in sequence and the

higher output depends on lower carry

signals. The delay of RCA is ￀(￀) and the

critical path starts from the lowest bit to the

last one. However, the probability to activate

this critical path is very small [6], [7], which

provides the foundation to design

speculative-based adder in following

researches. In order to obtain the carry

signal in advance, for CLA, the real value of

carry signals for higher computation block is

calculated using signal generation method.

The critical path can be reduced efficiently.

However, the process of carry signal

generation is complicated in CLA, which

could produce large logic area and will

result in a big power consumption. Based on

the idea of CLA, ETAII in [4] makes a full

use of paralleling calculation and introduced

approximation to reduce the power overhead

as shown in Fig.2. The adder is divided into

several stages. Each of the stages has a carry

generator and a sum generator. The output

of one stage comes from its sum generator

with the previous carry signal. Thus, the

critical path is composed of one sum stage

and carry signal generator. However, the

carry signal generator involves only parts of

the lower input data, which could cause

large error when a wrong prediction happens

in the upper stage of the adder. For 32-bits

ETAII with 4 bits for each stage, the

maximum error magnitude could be 228,

which is too large that the adder have little

practical value in real application.

In [5], an approximate adder with

carry skip technique (ACSA) is proposed

based on ETAII, in which a multiplexor is

used to choose the carry signal for the sum

generator in each stage. Different from

ETAII, this adder detects the property of

carry propagation in previous stage. When

all the bits in previous (￀ − 1)￀ℎ-stage is

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 754

in carry propagation mode, it will select the

carry signal from (￀ − 2)￀ℎ-stage. In this

way, the error rate of the adder will be

decreased. Furthermore, a method for error

compensation is also used. However, the

error magnitude of this adder is still large.

Take 32-bits adder with 4 bits for each

stage, the maximum error magnitude could

be 220. Meanwhile, the extra multiplexors

could consume more area, energy and delay

as well.

III. PROJECT DESCRIPTION

MUX4: 4-to-1 Multiplexer Logic Element

The MUX4 LE shown in Fig. 1 consists of a

4-to-1 MUX with optional inversion on its

inputs that allow the realization of any {2,

3}-input function, some {4, 5}-input

functions, and one 6-input function—a 4-to-

1 MUX itself with optional inversion on the

data inputs. A 4-to-1 MUX matches the

input pin count of a 6-LUT, allowing for fair

comparisons with respect to the connectivity

and intra cluster routing.

Fig 2: MUX4 LE depicting optional data

input inversions

Naturally, any two-input Boolean

function can be easily implemented in the

MUX4: the two function inputs can be tied

to the select lines and the truth table values

(logic-0 or logic-1) can be routed to the data

inputs accordingly. Or alternately, a

Shannon decomposition can be performed

about one of the two variables—the variable

can then feed a select input. The Shannon

cofactors will contain at most one variable

and can, therefore, be fed to the data inputs

(the optional inversion may be needed). For

three-input functions, consider that a

Shannon decomposition about one variable

produces cofactors with at most two

variables. A second decomposition of the

cofactors about one of their two remaining

variables produces cofactors with at most

one variable. Such single-variable cofactors

can be fed to the data inputs (the optional

inversion may be needed), with the

decomposition variables feeding the select

inputs. Likewise, functions of more than

four inputs can be implemented in the

MUX4 as long as Shannon decomposition

with respect to any two inputs produce

cofactors with at most one input. Observe

that input inversion on each select input is

omitted as this would only serve to permute

the four MUX data inputs. While this could

help routability within the CLB’s internal

crossbar, additional inversions on the select

inputs would not increase the number of

Boolean functions that are able to map to the

MUX4 LE.

Logic Elements, Fracturability, and

MUX4-Based Variants:

Two families of architectures were

created: 1) without fracturable LEs and 2)

with fracturable LEs. In this paper, the

fracturable LEs refer to an architectural

element on which one or more logic

functions can be optionally mapped.

Nonfracturable LEs refer to an architectural

element on which only one logic function is

mapped. In the nonfracturable architectures,

the MUX4 element shown in Fig. 1 is used

together with nonfracturable 6-LUTs. This

element shares the same number of inputs as

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 755

a 6-LUT lending for fair comparison with

respect to the input connectivity.

Fig 3: Fracturable 6-LUT that can be

fractured into two 5-LUTs with two shared

inputs

For the fracturable architecture, we

consider an eight-input LE, closely matched

with the adaptive logic module in recent

Altera Stratix FPGA families. A 6-LUT that

can be fractured into two 5-LUTs using

eight inputs is shown in Fig. 2. Two five-

input functions can be mapped into this LE

if two inputs are shared between the two

functions. If no inputs are shared, two four-

input functions can be mapped to each 5-

LUT. For the MUX4 variant, Dual MUX4,

we use two MUX4s within a single eight-

input LE. In the configuration, shown in Fig.

3, the two MUX4s are wired to have

dedicated select inputs and shared data

inputs. This configuration allows this

structure to map two independent (no shared

inputs) three-input functions, while larger

functions may be mapped dependent on the

shared inputs between both functions.

An architecture in which a 4-to-1

MUX (MUX4) is fractured into two smaller

2-to-1 MUXs was first considered.

However, since a 2-to-1 MUX’s mapping

flexibility is quite limited (can only map

two-input functions and the three-input 2-to-

1 MUX itself), little benefit was added

compared with the overheads of making the

MUX4 fracturable and poor area results

were observed.

Fig 4: Hybrid CLB with a 50% depopulated

intra- CLB crossbar depicting BLE internals

for a nonfracturable architecture

IV. Hybrid Complex Logic Block

A variety of different architectures

were considered—the first being a

nonfracturable architecture. In the

nonfracturable architecture, the CLB has 40

inputs and ten basic LEs (BLEs), with each

BLE having six inputs and one output

following empirical data in prior work [4].

Fig. 4 shows this nonfracturable CLB

architecture with BLEs that contain an

optional register. We vary the ratio of

MUX4s to LUTs within the ten element

CLB from 1:9 to 5:5 MUX4s:6-LUTs. The

MUX4 element is proposed to work in

conjunction with 6-LUTs, creating a hybrid

CLB with a mixture of 6-LUTs and MUX4s

(or MUX4 variants). Fig. 4 shows the

organization of our CLB and internal BLEs.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 756

Fig 5: Hybrid CLB with a 50% depopulated

intra CLB crossbar depicting BLE internals

for a fracturable architecture

For fracturable architectures, the

CLB has 80 inputs and ten BLEs, with each

BLE having eight inputs and two outputs

emulating an Altera Stratix Adaptive-LUT

[18]. The same sweep of MUX4 to LUT

ratios was also performed. Fig. 5 shows the

fracturable architecture with eight inputs to

each BLE that contains two optional

registers. We evaluate fracturability of LEs

versus nonfracturable LEs in the context of

MUX4 elements since fracturable LUTs are

common in commercial architectures. For

example, Altera Adaptive 6-LUTs in Stratix

IV and Xilinx Virtex 5 6-LUTs can be

fractured into two smaller LUTs with some

limitations on inputs.

The crossbar for fracturable

architectures are larger than the

nonfracturable architectures for two reasons.

Due to the virtual increase of LEs, a larger

number of CLB inputs are required,

which increases crossbar size. Since there

are now twice as many outputs from the

LEs, these additional outputs need to also be

fed back into the crossbar, also increasing its

size. Due to this disparity in crossbar size,

fair comparisons cannot be made between

fracturable and nonfracturable architectures.

Therefore, in this paper, we compare

nonfracturable hybrid CLB architectures to a

baseline LUT only nonfracturable

architecture and we compare fracturable

hybrid CLB architectures to a baseline LUT-

only fracturable architecture. Sparse

crossbars have been previously studied [19]

and in this paper, we model a 50%

depopulated crossbar within the CLB for

intracluster routing for both nonfracturable

and fracturable architectures as compared

with the preliminary publication [15] that

only modeled a full input crossbar

V.SIMULATION RESULTS

AREA REPORT:-

RTL SCHEMATIC:-

DELAY ANALYSIS:-

Minimum period: No path found

Minimum input arrival time before clock:

7.560ns

Maximum output required time after clock:

6.631ns

Maximum combinational path delay:

13.418ns

SIMULATION RESULTS:-

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 757

VI.CONCLUSION

We have proposed a new hybrid

CLB architecture containing MUX4 hard

MUX elements and shown techniques for

efficiently mapping to these architectures.

Weighting of MUX4-embeddable functions

with our MuxMap technique combined with

a select mapping strategy provided aid to

circuits with low natural MUX4-embeddable

ratios. We also provided analysis of the

benchmark suites postmapping, discussing

the distribution of functions within each

benchmark suite.

VII. REFERENCES

[1] J. Rose et al., ―The VTR project:

Architecture and CAD for FPGAs from

verilog to routing,‖ in Proc. ACM/SIGDA

FPGA, 2012, pp. 77–86.

[2] Y. Hara, H. Tomiyama, S. Honda, and

H. Takada, ―Proposal and quantitative

analysis of the CHStone benchmark

program suite for practical C-based high-

level synthesis,‖ J. Inf. Process., vol. 17, pp.

242–254, Oct. 2009.

[3] A. Canis et al., ―LegUp: High-level

synthesis for FPGA-based

processor/accelerator systems,‖ in Proc.

ACM/SIGDA FPGA, 2011, pp. 33–36.

[4] E. Ahmed and J. Rose, ―The effect of

LUT and cluster size on deepsubmicron

FPGA performance and density,‖ IEEE

Trans. Very Large Scale Integr. (VLSI), vol.

12, no. 3, pp. 288–298, Mar. 2004.

[5] J. Rose, R. Francis, D. Lewis, and P.

Chow, ―Architecture of fieldprogrammable

gate arrays: The effect of logic block

functionality on area efficiency,‖ IEEE J.

Solid-State Circuits, vol. 25, no. 5, pp.

1217–1225, Oct. 1990.

[6] H. Parandeh-Afshar, H. Benbihi, D.

Novo, and P. Ienne, ―Rethinking FPGAs:

Elude the flexibility excess of LUTs with

and-inverter cones,‖ in Proc. ACM/SIGDA

FPGA, 2012, pp. 119–128.

[7] J. Anderson and Q. Wang, ―Improving

logic density through synthesisinspired

architecture,‖ in Proc. IEEE FPL, Aug./Sep.

2009, pp. 105–111.

[8] J. Anderson and Q. Wang, ―Area-

efficient FPGA logic elements: Architecture

and synthesis,‖ in Proc. ASP DAC, 2011,

pp. 369–375.

