
 

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  
p-ISSN: 2348-795X  
Volume 05 Issue 04 

February 2018 

 

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e  | 751 

Design and Implementation of a Hybrid Lut/Multiplexer 

Architectures for Fpga 

Kadiyam Sreelekha &  V.Prasanth 
1
PG Scholar, Email Id: sreelekha.kadiyam@gmail.com 

2
M.Tech,(Ph.D), Assoc Prof, Email Id: varasalaprasanth@gmail.com 

Pragati Engineering College, Surampalem, East Godavari, Andhra Pradesh. 

 

ABSTRACT: Hybrid configurable logic 

block architectures for field-programmable 

gate arrays that contain a mixture of lookup 

tables and hardened multiplexers are 

evaluated toward the goal 

of higher logic density and area reduction. 

Multiple hybrid configurable logic block 

architectures, both nonfracturable and 

fracturable with varying MUX:LUT logic 

element ratios are evaluated across two 

benchmark suites (VTR and CHStone) using 

a custom tool flow consisting of LegUp-

HLS, Odin-II front-end synthesis, ABC logic 

synthesis and technology mapping, and VPR 

for packing, placement, routing, and 

architecture exploration. Technology 

mapping optimizations that target the 

proposed architectures are also 

implemented within ABC. Experimentally, 

we show that for nonfracturable 

architectures, without any mapper 

optimizations, we naturally save up to ∼8% 

area postplace and route; both accounting 

for complex logic block and routing area 

while maintaining mapping depth. With 

architecture-aware technology mapper 

optimizations in ABC, additional area is 

saved, post-place-and-route. For fracturable 

architectures, experiments show that only 

marginal gains are seen after place-and-

route up to ∼2%. For both nonfracturable 

and fracturable architectures, we see 

minimal impact on timing performance for 

the architectures with best area-efficiency. 

 

 
I.INTRODUCTION 

Throughout the history of field-

programmable gate arrays (FPGAs), lookup 

tables (LUTs) have been the primary logic 

element (LE) used to realize combinational 

logic. A K-input LUT is generic and very 

flexible—able to implement any K -input 

Boolean function. The use of LUTs 

simplifies technology mapping as the 

problem is reduced to a graph covering 

problem. However, an exponential area 

price is paid as larger LUTs are considered. 

The value of K between 4 and 6 is typically 

seen in industry and academia, and this 

range has been demonstrated to offer a good 

area/performance compromise [4], [5]. 

Recently, a number of other works have 

explored alternative FPGA LE architectures 

for performance improvement [6]–[10] to 

close the large gap between FPGAs and 

application-specific integrated circuits 

(ASICs) [11]. In this paper, we propose 

incorporating (some) hardened multiplexers      

(MUXs) in the FPGA logic blocks as a 

means of increasing silicon area efficiency 

and logic density. The MUX-based logic 

blocks for the FPGAs have seen 

success in early commercial architectures, 

such as the Actel ACT-1/2/3 architectures, 

and efficient mapping to these structures has 

been studied [12] in the early 1990s.  

How ever, their use in commercial 

chips has waned, perhaps partly due to the 

ease with which logic functions can be 

mapped into LUTs, simplifying the entire 
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computer aided design (CAD) flow. 

Nevertheless, it is widely understood that 

the LUTs are inefficient at implementing 

MUXs, and that MUXs are frequently used 

in logic circuits. To underscore the 

inefficiency of LUTs implementing MUXs, 

consider that a six input LUT (6-LUT) is 

essentially a 64-to-1 MUX (to select 1 of 64 

truth-table rows) and 64-SRAM cells, yet it 

can only realize a 4-to-1 MUX (4 data + 2 

select = 6 inputs). 

In this paper, we present a six-input 

LE based on a 4-to-1 MUX, MUX4, that can 

realize a subset of six-input 

Boolean logic functions, and a new hybrid 

complex logic block (CLB) that contains a 

mixture of MUX4s and 6-LUTs. The 

proposed MUX4s are small compared with a 

6-LUT (15% of 6-LUT area), and can 

efficiently map all {2, 3}-input functions 

and some {4, 5, 6}-input functions. In 

addition, we explore fracturability of LEs—

the ability to split the LEs into multiple 

smaller elements—in both LUTs and 

MUX4s to increase logic density. The ratio 

of LEs that should be LUTs versus MUX4s 

is also explored toward optimizing logic 

density for both nonfracturable and 

fracturable FPGA architectures. 

To facilitate the architecture 

exploration, we developed a CAD flow for 

mapping into the proposed hybrid CLBs, 

created using ABC [13] and VPR [14], and 

describe technology mapping techniques 

that encourage the selection of logic 

functions that can be embedded into the 

MUX4 elements. The main contributions in 

this paper are as follows. 

1) Two hybrid CLB architectures 

(nonfracturable and fracturable) that contain 

a mixture of MUX4 LEs and the traditional 

LUTs yielding up to 8% area savings. 

2) Mapping techniques called NaturalMux 

and MuxMap targeted toward the hybrid 

CLB architecture that optimize for area, 

while preserving the original mapping depth. 

3) A full post-place-and-route architecture 

evaluation with VTR7 [1], and CHStone [2] 

benchmarks facilitated by LegUp-HLS [3], 

the Verilog-to-Routing project [1] showing 

impact on both area and delay. 

 Compared with the preliminary 

publication [15], we have performed 

transistor level modelling of the MUX4 LE, 

further studied the fracturable architectures, 

and unified the open source tool-flow from 

C through LegUp-HLS to the VTR flow. 

Sparse crossbars (versus full crossbars in the 

previous work) have also been included in 

our CLBs, increasing modelling accuracy. 

The new transistor-level modelling of the 

MUX4 also provides more accurate results 

as compared with the previous work. Results 

have also been expanded with the inclusion 

of timing results as well as larger 

architectural ratio sweeps. The remainder of 

this paper is organized as follows. Section II 

outlines related work. Section III discusses 

the proposed MUX4 LE, the variant used in 

the fracturable architecture and the design of 

the hybrid complex logic block. Section IV 

presents the technology mapping approaches 

to target the proposed hybrid architecture. 

Section V shows how we modeled the 

hybrid complex logic blocks for both the 

nonfracturable and fracturable architectures 

in VPR. Section VI discusses our evaluation 

methodology and provides the evaluation 

results. Finally, we conclude with final 

remarks in Section VII. 

Recent works have shown that the 

heterogeneous architectures and synthesis 

methods can have a significant impact on 

improving logic density and delay, 

narrowing the ASIC–FPGA gap. Works by 
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Anderson and Wang with ―gated‖ LUTs [7], 

then with asymmetric LUT LEs [8], show 

that the LUT elements present in 

commercial FPGAs provide unnecessary 

flexibility. Toward improved delay and area, 

the macrocell-based FPGA architectures 

have been proposed [9], [10]. These studies 

describe significant changes to the 

traditional FPGA architectures, whereas the 

changes proposed here build on 

architectures used in industry and academia 

[4]. Similarly, and-inverter cones have been 

proposed as replacements for the LUTs, 

inspired by and-inverter graphs (AIGs) [6]. 

Purnaprajna and Ienne [16] explored the 

possibility of repurposing the existing 

MUXs contained within the Xilinx Logic 

Slices [17]. Similar to this work, they use 

the ABC priority cut mapper as well as VPR 

for packing, place, and route. However, their 

work is primarily delay-based showing an 

average speedup of 16% using only ten of 

19 VTR7 benchmarks. 

II.RELATED WORK 

In this section, the circuit scheme of 

conventional RCA, CLA, ETAII in [4] and 

ACSA in [5] will be analyzed in detail. 

 

Fig1: Circuit Scheme of ETAII. 

As pointed out in [6], RCA is a 

common type of adder in digital circuit 

design, in which a series of one-bit full 

adders are connected in sequence and the 

higher output depends on lower carry 

signals. The delay of RCA is ￀(￀) and the 

critical path starts from the lowest bit to the 

last one. However, the probability to activate 

this critical path is very small [6], [7], which 

provides the foundation to design 

speculative-based adder in following 

researches. In order to obtain the carry 

signal in advance, for CLA, the real value of 

carry signals for higher computation block is 

calculated using signal generation method. 

The critical path can be reduced efficiently. 

However, the process of carry signal 

generation is complicated in CLA, which 

could produce large logic area and will 

result in a big power consumption. Based on 

the idea of CLA, ETAII in [4] makes a full 

use of paralleling calculation and introduced 

approximation to reduce the power overhead 

as shown in Fig.2. The adder is divided into 

several stages. Each of the stages has a carry 

generator and a sum generator. The output 

of one stage comes from its sum generator 

with the previous carry signal. Thus, the 

critical path is composed of one sum stage 

and carry signal generator. However, the 

carry signal generator involves only parts of 

the lower input data, which could cause 

large error when a wrong prediction happens 

in the upper stage of the adder. For 32-bits 

ETAII with 4 bits for each stage, the 

maximum error magnitude could be 228, 

which is too large that the adder have little 

practical value in real application. 

In [5], an approximate adder with 

carry skip technique (ACSA) is proposed 

based on ETAII, in which a multiplexor is 

used to choose the carry signal for the sum 

generator in each stage. Different from 

ETAII, this adder detects the property of 

carry propagation in previous stage. When 

all the bits in previous (￀ − 1)￀ℎ-stage is 
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in carry propagation mode, it will select the 

carry signal from (￀ − 2)￀ℎ-stage. In this 

way, the error rate of the adder will be 

decreased. Furthermore, a method for error 

compensation is also used. However, the 

error magnitude of this adder is still large. 

Take 32-bits adder with 4 bits for each 

stage, the maximum error magnitude could 

be 220. Meanwhile, the extra multiplexors 

could consume more area, energy and delay 

as well. 

III. PROJECT DESCRIPTION 

MUX4: 4-to-1 Multiplexer Logic Element 

The MUX4 LE shown in Fig. 1 consists of a 

4-to-1 MUX with optional inversion on its 

inputs that allow the realization of any {2, 

3}-input function, some {4, 5}-input 

functions, and one 6-input function—a 4-to-

1 MUX itself with optional inversion on the 

data inputs. A 4-to-1 MUX matches the 

input pin count of a 6-LUT, allowing for fair 

comparisons with respect to the connectivity 

and intra cluster routing. 

 

Fig 2: MUX4 LE depicting optional data 

input inversions 

Naturally, any two-input Boolean 

function can be easily implemented in the 

MUX4: the two function inputs can be tied 

to the select lines and the truth table values 

(logic-0 or logic-1) can be routed to the data 

inputs accordingly. Or alternately, a 

Shannon decomposition can be performed 

about one of the two variables—the variable 

can then feed a select input. The Shannon 

cofactors will contain at most one variable 

and can, therefore, be fed to the data inputs 

(the optional inversion may be needed). For 

three-input functions, consider that a 

Shannon decomposition about one variable 

produces cofactors with at most two 

variables. A second decomposition of the 

cofactors about one of their two remaining 

variables produces cofactors with at most 

one variable. Such single-variable cofactors 

can be fed to the data inputs (the optional 

inversion may be needed), with the 

decomposition variables feeding the select 

inputs. Likewise, functions of more than 

four inputs can be implemented in the 

MUX4 as long as Shannon decomposition 

with respect to any two inputs produce 

cofactors with at most one input. Observe 

that input inversion on each select input is 

omitted as this would only serve to permute 

the four MUX data inputs. While this could 

help routability within the CLB’s internal 

crossbar, additional inversions on the select 

inputs would not increase the number of 

Boolean functions that are able to map to the 

MUX4 LE. 

Logic Elements, Fracturability, and 

MUX4-Based Variants: 

Two families of architectures were 

created: 1) without fracturable LEs and 2) 

with fracturable LEs. In this paper, the 

fracturable LEs refer to an architectural 

element on which one or more logic 

functions can be optionally mapped. 

Nonfracturable LEs refer to an architectural 

element on which only one logic function is 

mapped. In the nonfracturable architectures, 

the MUX4 element shown in Fig. 1 is used 

together with nonfracturable 6-LUTs. This 

element shares the same number of inputs as 
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a 6-LUT lending for fair comparison with 

respect to the input connectivity. 

 

Fig 3: Fracturable 6-LUT that can be 

fractured into two 5-LUTs with two shared 

inputs 

For the fracturable architecture, we 

consider an eight-input LE, closely matched 

with the adaptive logic module in recent 

Altera Stratix FPGA families. A 6-LUT that 

can be fractured into two 5-LUTs using 

eight inputs is shown in Fig. 2. Two five-

input functions can be mapped into this LE 

if two inputs are shared between the two 

functions. If no inputs are shared, two four-

input functions can be mapped to each 5-

LUT. For the MUX4 variant, Dual MUX4, 

we use two MUX4s within a single eight-

input LE. In the configuration, shown in Fig. 

3, the two MUX4s are wired to have 

dedicated select inputs and shared data 

inputs. This configuration allows this 

structure to map two independent (no shared 

inputs) three-input functions, while larger 

functions may be mapped dependent on the 

shared inputs between both functions. 

An architecture in which a 4-to-1 

MUX (MUX4) is fractured into two smaller 

2-to-1 MUXs was first considered. 

However, since a 2-to-1 MUX’s mapping 

flexibility is quite limited (can only map 

two-input functions and the three-input 2-to-

1 MUX itself), little benefit was added 

compared with the overheads of making the 

MUX4 fracturable and poor area results 

were observed. 

 

Fig 4: Hybrid CLB with a 50% depopulated 

intra- CLB crossbar depicting BLE internals 

for a nonfracturable architecture 

IV. Hybrid Complex Logic Block 

A variety of different architectures 

were considered—the first being a 

nonfracturable architecture. In the 

nonfracturable architecture, the CLB has 40 

inputs and ten basic LEs (BLEs), with each 

BLE having six inputs and one output 

following empirical data in prior work [4]. 

Fig. 4 shows this nonfracturable CLB 

architecture with BLEs that contain an 

optional register. We vary the ratio of 

MUX4s to LUTs within the ten element 

CLB from 1:9 to 5:5 MUX4s:6-LUTs. The 

MUX4 element is proposed to work in 

conjunction with 6-LUTs, creating a hybrid 

CLB with a mixture of 6-LUTs and MUX4s 

(or MUX4 variants). Fig. 4 shows the 

organization of our CLB and internal BLEs. 
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Fig 5: Hybrid CLB with a 50% depopulated 

intra CLB crossbar depicting BLE internals 

for a fracturable architecture 

For fracturable architectures, the 

CLB has 80 inputs and ten BLEs, with each 

BLE having eight inputs and two outputs 

emulating an Altera Stratix Adaptive-LUT 

[18]. The same sweep of MUX4 to LUT 

ratios was also performed. Fig. 5 shows the 

fracturable architecture with eight inputs to 

each BLE that contains two optional 

registers. We evaluate fracturability of LEs 

versus nonfracturable LEs in the context of 

MUX4 elements since fracturable LUTs are 

common in commercial architectures. For 

example, Altera Adaptive 6-LUTs in Stratix 

IV and Xilinx Virtex 5 6-LUTs can be 

fractured into two smaller LUTs with some 

limitations on inputs. 

The crossbar for fracturable 

architectures are larger than the 

nonfracturable architectures for two reasons. 

Due to the virtual increase of LEs, a larger 

number of CLB inputs are required, 

which increases crossbar size. Since there 

are now twice as many outputs from the 

LEs, these additional outputs need to also be 

fed back into the crossbar, also increasing its 

size. Due to this disparity in crossbar size, 

fair comparisons cannot be made between 

fracturable and nonfracturable architectures. 

Therefore, in this paper, we compare 

nonfracturable hybrid CLB architectures to a 

baseline LUT only nonfracturable 

architecture and we compare fracturable 

hybrid CLB architectures to a baseline LUT-

only fracturable architecture. Sparse 

crossbars have been previously studied [19] 

and in this paper, we model a 50% 

depopulated crossbar within the CLB for 

intracluster routing for both nonfracturable 

and fracturable architectures as compared 

with the preliminary publication [15] that 

only modeled a full input crossbar 

V.SIMULATION RESULTS 

AREA REPORT:- 

 

RTL SCHEMATIC:- 

 

DELAY ANALYSIS:- 

Minimum period: No path found 

Minimum input arrival time before clock: 

7.560ns 

Maximum output required time after clock: 

6.631ns 

Maximum combinational path delay: 

13.418ns 

 

SIMULATION  RESULTS:- 
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VI.CONCLUSION 

We have proposed a new hybrid 

CLB architecture containing MUX4 hard 

MUX elements and shown techniques for 

efficiently mapping to these architectures. 

Weighting of MUX4-embeddable functions 

with our MuxMap technique combined with 

a select mapping strategy provided aid to 

circuits with low natural MUX4-embeddable 

ratios. We also provided analysis of the 

benchmark suites postmapping, discussing 

the distribution of functions within each 

benchmark suite.  
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