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Abstract: Tone mapping operators (TMOs) aim to 

compress high dynamic range (HDR) images to low 

dynamic range (LDR) ones so as to visualize HDR 

images on standard displays. Most existing TMOs were 

demonstrated on specific examples without being 

thoroughly evaluated using well-designed and subject 

validated image quality assessment models. A recently 

proposed tone mapped image quality index (TMQI) 

made one of the first attempts on objective quality 

assessment of tone mapped images. Here, we propose a 

substantially different approach to design TMO. 

Instead of using any predefined systematic 

computational structure for tone mapping (such as 

analytic image transformations and/or explicit 

contrast/edge enhancement), we directly navigate in 

the space of all images, searching for the image that 

optimizes an improved TMQI. In particular, we first 

improve the two building blocks in TMQI—structural 

fidelity and statistical naturalness components—

leading to a TMQI-II metric. We then propose an 

iterative algorithm that alternatively improves the 

structural fidelity and statistical naturalness of the 

resulting image. Numerical and subjective experiments 

demonstrate that the proposed algorithm consistently 

produces better quality tone mapped images even when 

the initial images of the iteration are created by the 

most competitive TMOs. Meanwhile, these results also 

validate the superiority of TMQI-II over TMQI1. 

Keywords: High dynamic range image, image quality 

assessment, tone mapping operator, perceptual image 

processing, structural similarity, statistical naturalness. 

I.INTRODUCTION 

T HERE is increasing interest in high dynamic range 

(HDR) images, HDR imaging systems, and HDR 

displays. The visual quality of high dynamic range 

images is vastly higher than that of conventional low-

dynamic-range (LDR) images, and the significance of 

the move from LDR to HDR has been compared to the 

momentous move from black and-white to color 

television [1]. In this transition period, and to guarantee 

compatibility in the future, there has been a need to 

develop methodologies to convert an HDR image into 

its „best‟ LDR equivalent. For this conversion, tone 

mapping operators (TMOs) have attracted considerable 

interest. Tone mapping operators have been used to 

convert HDR images into their LDR associated images 

for visibility purposes on non-HDR displays 

Tone mapping operators (TMOs) fill in the gap 

between HDR imaging and visualizing HDR images on 

standard displays by compressing the dynamic range of 

HDR images [2]. TMOs provide a useful surrogate for 

HDR display technology, which is currently still 

expensive. Regardless of how fast HDR display 

technology penetrates the market, there will be a strong 

need to prepare HDR imagery for display on LDR 

devices [2]. In addition, compressing the dynamic 

range of an HDR image while preserving its structural 

details and natural appearance is by itself is an 

interesting and challenging problem for human and 

computer vision study.  

In recent years, many TMOs have been 

proposed [3]–[9].Most of them were demonstrated on 

specific examples without being thoroughly evaluated 

using well-designed and subject-validated image 

quality assessment (IQA) models. With multiple TMOs 

at hand, a natural question is: which TMO produces the 

best quality tone mapped LDR image? This question 

could possibly be answered by subjective evaluation 

[10]–[13], which is expensive, time consuming, and 

perhaps most importantly, can hardly be used to guide 

automatic optimization   procedures. 

Digital image usually has distortions which 

are introduced during acquisition, processing, and 

transmission processes. Distortions may result in poor 



 

International Journal of Research 
Available at https://edupediapublications.org/journals 

e-ISSN: 2348-6848  
p-ISSN: 2348-795X  
Volume 05 Issue 04 

February 2018 

 

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e  | 836 

visual experience. IQA metrics enable high quality 

image selection and guarantees good visual experience. 

The most reliable and accurate IQA metric is the users‟ 

subjective assessment. However, the procedure of 

subjective assessment is highly complicated. Thus, this 

process cannot be used in real-time application. 

Therefore, numerous objective IQA metrics are 

proposed. The most important goal of an objective IQA 

metric is to achieve high consistency with the 

subjective assessment results. According to the 

availability of reference images, three types of 

objective IQA metrics are presented: full-reference 

[14]–[16], reduced-reference [17] – [19], and no-

reference [20]–[22] IQA metrics. In this paper, we 

mainly describe the FR-IQA metrics, which are most 

related to our paper. With respect to the FR-IQA 

problem, the reference image usually considered a 

distortion-free image and possessing perfect quality is 

available and used for comparison with the distorted 

target image to assess the quality of the target image. 

In this paper, we propose a novel TMO that 

utilizes an improved TMQI as the optimization goal. 

Specifically, we first develop an improved TMQI, 

namely TMQI-II, that overcomes the limitations 

underlying the structural fidelity and statistical 

naturalness components in TMQI. Experiments show 

that the improved structural fidelity and statistical 

naturalness terms better correlate with the subjective 

data. We then propose an iterative optimization 

algorithm for tone mapping. Substantially different 

from existing TMOs, we do not pre-define a 

computational structure that involves analytic image 

transformations and/or explicit gradient/edge 

estimation and enhancement operations. Instead, we 

directly operate in the space of all images. Starting 

from any given image as the initial point, we move it 

towards the direction that improves TMQI-II. In each 

iteration, we alternately improve the structural fidelity 

and statistical naturalness of the resulting image. 

Numerical and subjective experiments show that this 

iterative algorithm consistently produces better quality 

tone mapped images even when the initial images are 

created by the most competitive state-of-the-art TMOs. 

Meanwhile, the superiority of TMQI-II over TMQI is 

also verified through this process.  

II. DETAILED STUDY ABOUT TONE 

MAPPING: 

 Tone Mapping is a practice used in image 

processing and computer graphics to map one set of 

colors to another to approximate the appearance of 

high dynamic range images in a medium that has a 

more limited dynamic range .Tone mapping is done by 

an operator and they can be classified on the basis of 

their operation on the image. 

 GENERAL STEPS INVOLVED IN TONE 

MAPPING: 

The main objective of tone mapping is to 

replicate the given scene or an image close to the real 

world brightness matching the human view in the 

display devices. Appropriate metrics are chosen for 

various input images depending on the application. In 

tone mapping the contrast distortions are weighted 

according to the individual visibilities approximated by 

Human Visual Systems. An objective function based 

tone map is created. There are different filters like 

Bayer‟s filters and other filters are used for tone 

mapping. These filters can also be extended to videos. 

The purpose of using the tone mapping operator can be 

in a different way as in some cases the image has to be 

aesthetically pleasing and while other application they 

need to reproduce as many as details as in the medical 

images . The goal of creating the image vary from 

application to application depending upon the need .It 

is not only restricted to the application but also the 

display devices which is not able to reproduce the full 

range of luminance values. 

ITERATIVE TONE MAPPING BY OPTIMIZING 

TMQI-II: 

Let X and Y be the HDR image and the tone 

mapped LDR image, respectively. TMQI suggests that 

a high quality tone mapped image should achieve great 

structural fidelity with respect to the HDR image and 

high statistical naturalness simultaneously. The 

computation of TMQI is given by [19]. 
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Where S and N is denote the structural fidelity and 

statistical naturalness measures, respectively. The 

parameters α and β determine the sensitivities of the 

two terms, and 0≤a≤1 adjusts the relative importance 

between them. Both S and N are upper bounded by 1 

and thus TMQI is also upper  bounded by 1. 

 As one of the first attempts on quality 

evaluation of images across dynamic ranges, TMQI 

achieved remarkable success, but as will be shown 

later, it also has significant limitations. Here, we 

propose an improved TMQI, namely TMQI-II, that 

overcomes the limitations to better correlate with 

subjective evaluations. Details of TMQI-II will be 

elaborated later along with the discussions regarding 

the structural fidelity and statistical naturalness 

components.  

Assuming TMQI-II to be the quality criterion 

of tone mapped images, the problem of optimal tone 

mapping can be formulated as 

 

Where Y has a much lower dynamic range than X. 

Solving (2) for Y opt is a challenging problem due to 

the complexity of TMQI-II and the high dimensionality 

(the same as the number of pixels in the image). 

Therefore, we resort to numerical optimization and 

propose an iterative approach. Specifically, given any 

initial imageY0, we move it towards the direction in 

the space of images that improves TMQI-II. To 

accomplish that, we first improve the structural fidelity 

S using a gradient ascent method and then enhance the 

statistical naturalness N by solving a parameter 

optimization problem for a point wise intensity 

transformation. These two steps constitute one iteration 

and the iterations continue until convergence.  

A. Structural Fidelity Update 

The structural fidelity of TMQI is computed 

using a sliding window across the entire image, which 

results in a quality map that indicates local structural 

detail preservation. Let x and y be two image patches 

within the sliding window in the HDR and tone 

mapped images, respectively. The local structural 

fidelity measure is defined as  

 

where σx, σy and σxy denote the local standard 

deviations (std) and covariance between the two 

corresponding patches, respectively. C1 and C2 are two 

small positive constants to avoid instability. The first 

component is modified from the local contrast 

comparison term in SSIM [15]. It suggests that the 

HDR and tone mapped image patches should keep the 

same contrast visibility; otherwise, the contrast of the 

tone mapped image patch should be penalized, which 

corresponds to either artificially creating visible 

contrast or failing to preserve visible contrast. The 

second component is the same as the structure 

comparison term in SSIM [15]. The overall structural 

fidelity measure of the image is computed by averaging 

all local structural fidelity measures 

 

Where xi and yi are the i-th patches in X and Y, 

respectively, and Mis the total number of patches.  

In TMQI [19], to assess the visibility of local 

contrast, the local std σ undergoes a nonlinear function 

motivated by a contrast sensitivity model 

 

Where τσ is a threshold determined by the contrast 

sensitivity function [20] and θσ =τσ/3 [21].  

The above nonlinear function is limited in 

accurately assessing the contrast visibility of HDR 

image patches. First, even a small change in local patch 

of the HDR image (which may result from the HDR 

camera noise) may contribute to a significant σ value. 

When Eq. (5) effectively distinguishes the visible and 

invisible local contrast in the tone mapped image, it 

tends to label most patches, either visible or invisible in 

the HDR image, as contrast visible. Fig. 1 illustrates 

this phenomenon. The homogeneous areas such as the 

walls and the wood board in the lower middle part of 

the image are correctly predicted as contrast invisible 

in the tone mapped image but mistakenly marked as 
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contrast visible in the HDR image due to 

oversensitivity to noise. This explains the 

corresponding dark areas of the structural fidelity map 

in Fig. 1(b) (where brighter indicates higher structural 

fidelity). Second, different local patches in the HDR 

image may have substantially different dynamic 

ranges, which correspond to different thresholds τσ. In 

other words, a single τσ is insufficient to account for 

the local contrast visibility of the HDR image.  

High Dynamic range HDR images are 

achieved even in mobile phone, due to the recent 

advances in the field of HDR. Tone mapping operator 

converts the HDR image into LDR images which can 

be visualized clearly There are various operators 

available in the HDR tool box In. this paper we have 

demonstrated the all the tone mapping operators 

dividing them as local and global as given in the early 

literature studies. The various results of the operators 

are shown in the paper with the subjective analysis.  

The above analysis suggests that a contrast 

visibility model adapted to local luminance levels is 

desired for the HDR image. In particular, we follow 

[22] and choose σ/μ, namely the coefficient of 

variation, as an estimate of local contrast in the HDR 

image, where μ is the local mean. This estimate is 

adapted to local luminance levels, and thus is 

qualitatively consistent with Weber‟s law, which has 

been widely used to model luminance masking in the 

human visual system. An additional benefit of this 

estimate is that it is invariant to linear contrast stretch, 

which is a frequently used preprocessing step for HDR 

images. The reason follows directly from the local 

luminance adaptation that cancels out the scale factors 

in the numerator and the denominator. Fig. 1(c) shows 

an example of the structural fidelity map from the 

modified structural fidelity term, which captures the 

contrast visibility of the HDR and the tone mapped 

images more reasonably. Table I also demonstrates the 

superiority of the modified structural fidelity term on 

the subjective database [19] using Spearman‟s rank-

order correlation coefficient (SRCC) and Kendall‟s 

rank order correlation coefficient (KRCC) as the 

evaluation criteria. 

 Given the modified structural fidelity term, 

we adopt a gradient ascent algorithm similar to [23] 

and [24] to improve the structural fidelity of the 

resulting image Yk from the k-th iteration. To do that, 

we compute the gradient of S(X,Y) with respect to Y, 

denoted by ∇YS(X,Y) and update the image by 

 

Where λ is the step size To compute the gradient 

∇YS(X, Y), we start from the local structural fidelity 

and rewrite (3) as 

 

Where 

 

By treating both image patches as column vectors of 

length Nw, we have the sample statistics given by 
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Fig. 1. Tone mapped “Belgium house” image and its structural fidelity maps. (a) Initial image created by Reinhard‟s 

algorithm [3]. (b) and (c) Structural fidelity maps generated by TMQI and TMQI-II respectively, where brighter 

indicates higher structural fidelity. 

 

Where 1 is a Nw-vector with all entries equal to 1. The 

gradient of the local structural fidelity measure with 

respect to y can  then  be expressed as 

 

Where 

 

Noting that 

 

we have 

 

Plugging (8), (9), (10), (11), (19), (20), (21) and (22) 

into (15), we obtain the gradient of local structural 

fidelity. Finally, we compute the gradient of the overall 

structural fidelity measure with respect to the tone 

mapped image Y by summing over all the local 

gradients  

 

Where xi =Ri (X) and yi =Ri(Y) are the i-th image 

patches, Ri is the operator that takes the i-th local patch 

from the image, and RT
i places the patch back into the 

corresponding location in the image.  

B. Statistical Naturalness Update 

The statistical naturalness N in TMQI is 

constructed by modeling the histograms of μ and σ of 
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about 3000 natural images by a Gaussian density 

function Pm and a Beta density function Pd, 

respectively [19]. Based on the independence 

characteristic of image brightness and contrast [22], the 

two density functions are multiplied to obtain the 

overall statistical naturalness measure [19] 

 

Where K is the normalization factor.  

The above statistical naturalness model has 

two limitations. First, Pm and Pd are assumed to be 

completely independent of image content, which is an 

over simplification. The model suggests that to be 

highly statistically natural, the tone mapped image of 

dynamic range [0,255] should have μ around 116 and σ 

around 65 which correspond to the peaks in Pm and Pd, 

respectively [19]. However, each image may have a 

different μ and σ to look perfectly natural depending on 

its content. Second, the model is derived from high 

quality images, with no information about what an 

unnatural image may look like. 

The quality of HDR images is superior to the 

conventional images that we get through the normal 

cameras with low sensors. From direct sunlight to faint 

nebula the hdr images have best luminance value 

depending on the light source .It is a challenging task 

to produce the high dynamic range in the photography 

with and the images taken by lesser dynamic range 

devices. The change in the resolution that is from high 

dynamic to low dynamic can be obtained by generating 

a intermediate map known as the radiance map. The 

fidelity of the high dynamic range image will be much 

higher than the conventional images .Improvements in 

the technology helps us to improve the sensors used in 

the capturing devices which intern improves the range 

of the image but these devices are very expensive. 

Every customer cannot be expected to buy expensive 

devices. It is also difficult to make low budget devices 

due to the stiff competition. So it is very essential to 

derive a algorithm or an operator to convert this high 

dynamic range devices to low dynamic range images 

.The general procedure of doing this is by applying 

Tone Mapping Operators (TMOs). Technology on the 

subject of the tone mapping of standstill images has 

been meticulously explored. Solutions have been 

designed to overcome the flickering problem. These 

solutions use temporally close frames to smooth out 

abrupt changes of luminance. There are different tone 

mapping operators available. The strength and 

weakness of these operators can be evaluated only by a 

systematic assessment .there are extensive approaches 

available to evaluate the methods. The real world scene 

and the tone mapped image scene can be evaluated 

directly by psychophysical testing.  

 Here we propose an image dependent 

statistical naturalness model based on a subjective 

experiment to better quantify the unnaturalness of tone 

mapped images. First, we estimate the overall 

luminance and global contrast directly from the HDR 

image, denoted by μe and σe, respectively. To do that, 

we approximate the overall luminance level of the 

HDR image to its log-mean luminance, which has been 

successfully used in previous studies [3], [4], [25], 

[26]. The use of logarithmic function assumes that 

most structural detail in the HDR image live in a low 

dynamic range and thus it is reasonable to boost lower 

luminance levels while compress higher luminance 

levels. The quantity is computed by  

 

Where X(i, j)is the luminance of the HDR image at 

location (i, j), |X| is the cardinality and is a small 

positive constant to avoid instability. Next, the 

luminance is scaled by  

 

Where k is a luminance level related quantity typically 

set between 0.09 and 0.36 for an HDR image with 

normal luminance level [3]. μe and σe are then 

estimated by  
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Where L is the dynamic range of the tone mapped 

image. Here, the high luminance is further compressed 

by a factor of X s . This inevitably causes detail loss in 

high luminance areas. Nevertheless, our goal here is to 

roughly estimate μe and σe that are relevant to a natural 

appearance of the tone mapped image. As for the detail 

loss, it can typically be well captured by the structural 

fidelity term. This estimation of initial luminance level 

of the LDR image is closely related to previous works 

[3], [27], [28].  

μe and σe are only rough estimates of the 

desired μ and σ values. For each LDR image, there 

should be certain ranges of μ and σ values surrounding 

μe and σe, within which the naturalness of the image is 

not degraded. To verify this and to provide a 

quantitative model, we conducted a subjective 

experiment, in which observers were asked to 

gradually decrease and then increase μ of the test LDR 

images until they saw significant degradation in 

naturalness. A lower bound μl and a upper bound μr for 

each LDR image were thus recorded. The same 

procedure is used to obtain a lower std bound σl and a 

upper std bound σr for each LDR image. We selected 

60 natural LDR images from the LIVE database [29] 

with different μ and σ values that cover diverse natural 

contents. A total of 25 naive observers, including 15 

males and 10 females aged between 22 and 30, 

participated in the experiment. The four bounds for 

each LDR image are averaged over all 25 observers. 

Fig. 2 summarizes the experimental results, where we 

observe that the relationships between μ and the values 

of μl and μr are approximately linear. This motivates us 

to fit two linear models to predict μl and μr on the basis 

ofμ. The fitted models have slopes k1=0.60,k2=0.70 

and interceptsb1=−0.14,b2=83.61 for μl and μr, 

respectively. The R 2 statistics of the two linear models 

are 0.8008 and 0.8465 respectively, which indicate that 

the linear models explain most variances in the 

subjective data. Perhaps the most interesting finding in 

this experiment is when μof an image is relatively 

small, μr –μ is much large than μ−μl. By contrast, the 

situation is reversed when μ of an image is large. In 

words, the acceptable luminance changes without 

significantly tampering an image‟s visual naturalness  

 

Fig. 2. Subjective experiment results on the naturalness of mean and std values. The asterisks in (a) and (b) represent 

the upper bounds, given by the average subject, of the mean and std of test images, respectively. The corresponding 

dotted lines are lease square fitted lines. The circles in (a) and (b) represent the lower bounds, given by the average 

subject, of the mean and std of test images, respectively. The corresponding dashed lines are lease square fitted 

lines. The solid lines in two plots are reference lines that correspond to μe and σe, respectively. 
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saturate at both small and large luminance levels. 

Similarly, σl and σr of a test LDR image can also be 

fitted by two linear models using σ as the predictor. 

The fitted lines for σl and σr have 

slopesk3=0.65,k4=0.94 and interceptsb3=−0.08, 

b4=51.40, respectively. 

 Based on the method described above, given 

an HDR image, we first estimate μe and σe and then 

predict μl , μr, σl and σr of the tone mapped image. The 

μ and σ values of a natural looking tone mapped image 

should at least fall in [μl,μr]and [σl,σr], and if possible, 

close to μe and σe. We quantify the drop from μe and 

σe to their lower and upper bounds using Gaussian 

cumulative distribution functions (CDF). Specifically, 

the likelihood of a tone mapped image to be natural 

given its mean μ is computed by 

 

Where τ1 and θ1 are uniquely determined by two 

points (μl,0.01) and (μe,1) on the Gaussian CDF curve. 

Correspondingly,τ2 andθ2 are uniquely determined by 

two points (μr,0.01)and(μe,1)on the Gaussian CDF 

curve. Similarly, the likelihood of a tone mapped 

image to be natural given its std σ is computed by two 

points(μl,0.01) and (μe,1) on the Gaussian CDF curve. 

Correspondingly,τ2 andθ2 are uniquely determined by 

two points (μr,0.01)and(μe,1)on the Gaussian CDF 

curve. Similarly, the likelihood of a tone mapped 

image to be natural given its std σ is computed by 

 

Where τ3 and θ3 are uniquely determined by two 

points (σl,0.01) and (σe,1) on the Gaussian CDF curve, 

and τ4 and θ4 are uniquely determined by two points 

(σr,0.01) and (σe,1) on the Gaussian CDF curve. The 

surfaces of Pm and Pd are plotted in Fig. 3.  

It can be observed that μ and σ of the tone mapped 

image of high naturalness should be close to μe and σe, 

which correspond to the peaks along the diagonal lines.

 
Fig. 3. The surfaces of Pm and Pd in TMQI_II. (a) Pm(b) Pd. It suggests that the μ and σ of the natural looking tone 

mapped image should to close to μe and σe, which correspond to the peaks along the diagonal lines. The models 

give heavy penalty when |μ−μe| or |σ−σe| is large.

It can be observed that μ and σ of the tone mapped 

image of high naturalness should be close to μe and σe, 

which correspond to the peaks along the diagonal lines. 

The models give heavy penalty when |μ−μe| or |σ−σe| 

is large. 

 Similar to Eq. (24), assuming the 

independence of image luminance and contrast [22], 

we multiply these two quantities and obtain the overall 

statistical naturalness model 
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Since 0≤Pm, Pd ≤1,N also lies in[0,1]. The superiority 

of the modified statistical naturalness term over that in 

TMQI is verified by improved correlation with respect 

to subjective evaluations as shown in Table I.  

To continue with the iterative optimization 

procedure upon structural fidelity update, we start with 

the intermediate image ˆ Y k in Eq. (6) and improve the 

statistical naturalness to achieveYk+1through a three-

segment equipartition monotonic piecewise linear 

function 

 

This is essentially a point-wise intensity transformation 

with its parameters a and b(where 0 ≤a≤b≤L) chosen so 

that μ and σ ofYk+1 ={y i k+1 for all i} better 

approximate μe and σe of the desired tone mapped 

image. 

To solve f or a and b, we first estimate the 

mean and std values ofYk+1 by

 

whereˆ μk and ˆ σk are the mean and std of ˆ Yk, 

respectively. λm and λd are step sizes that control the 

updating speed. Finding the parameters a and b is then 

converted to solving the following constrained 

optimization problem 

 

Where η adjusts the weights between the mean and std 

terms. We adopt a standard gradient projection 

algorithm [30], [31] with a maximum of 30 iterations 

to solve this problem. Once the optimal values of a and 

b are obtained, they are plugged into (32) to create the 

resulting imageYk+1,which is subsequently fed into 

the (k+1)-th  iteration. 

The structural fidelity update and statistical 

naturalness update alternate until||Yk+1−Yk||2is 

smaller than a threshold. Technically, a similar iterative 

algorithm works as well if TMQI is chosen as the 

optimization metric.  
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TABLE I 

PERFORMANCE EVALUATION OF THE STRUCTURAL FIDELITY AND STATISTICAL NATURALNESS 

TERMS  IN TMQI AND TMQI-IION  THE DATABASE[19] 

The only difference lies in Eq. (33), where μe 

and σe are replaced with two constants corresponding 

to the peaks of fixed Pm and Pd models in TMQI.  

We have five free parameters in the proposed 

algorithm. For fair comparison between TMQI and 

TMQI-II, we use the same set of parameters in all 

experiments, which are =0.1,λ=0.3,λm=λd =0.03 and 

η=1, respectively. A by-product of the above derivation 

of the iterative TMO algorithm is a renewed index, 

TMQI-II, given by 

 

A by-product of the above derivation of the 

iterative TMO algorithm is a renewed index, TMQI-II, 

given by where both S and N measures have been 

improved upon those in TMQI. A number of 

parameters are inherited from TMQI. These includeC1 

=0.01,C2 =10 and the threshold of the contrast 

visibility for tone mapped images τσ =2.6303. 

Throughout our study, we set the threshold of contrast 

visibility for HDR images τσ =0.06 and k =0.12. As for 

the model parameters in TMQI-II, we set a =0.5,α=1 

and β=1, which emphasize the equal importance 

between structural fidelity and statistical naturalness 

terms.  

III. EXPERIMENTAL RESULTS 

To fully demonstrate the potentials of the 

proposed iterative algorithm, we select a wide range of 

HDR images, containing both indoor and outdoor 

scenes, human and static objects, as well as day and 

night views. The initial images for this algorithm are 

also generated by many different TMOs, ranging from 

simple ones such as Gamma mapping (γ =2.2) and log-

normal mapping to state-of-the-art ones such as 

Durand‟s method [32], Mantiuk‟s method [33], 

Drago‟s method [4] and Reinhard‟s method [3]. The 

last one is considered one of the best TMOs based on 

several independent subjective tests [12], [19].  

We first examine the roles of the structural fidelity and 

statistical naturalness components separately. In Fig. 4, 

we start with an initial “Desk” image created by 

Reinhard‟s TMO [3] and apply the proposed iterative 

algorithm but using structural fidelity updates only. It 

can be observed that the structural fidelity map is very 

effective at detecting the missing structures (e.g., text 

in the book region, and fine textures on the desk), and 

the proposed algorithm successfully recovers such 

details after a sufficient number of iterations. The 

improvement of structural detail is also well reflected 

by the structural fidelity map, which eventually evolves 

to a nearly uniform white image. 
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Fig. 4. Tone mapped “Desk” images and their structural fidelity maps. (a) Initial image created by Reinhard‟s 

algorithm [3]. (b)-(e) Images created using iterative structural fidelity update only. (f)-(j) Corresponding structural 

fidelity maps of (a)-(e), where brighter indicates higher structural fidelity. All images are cropped for better 

visualization. (a) initial image (b) after 10 iterations (c) after 50 iterations (d) after 100 iterations (e) after 200 

iterations (f) initial image, S =0.689 (g) 10 iterations, S=0.921 (h) 50 iterations, S=0.954 (i) 100 iterations, S=0.961 

(j)200iterations,S=0.966.

Fig. 5. Tone mapped “Cornell box” images. (a) Initial image created by Gamma mapping (γ =2.2). (b)-(d) Images 

created using iterative statistical naturalness update only. (a) Initial image, N =0.000. (b) 10 iterations, N =0.0001. 

(c) 30 iterations, N =0.0329. (d) 50 iterations, N =0.8355.(e) 100 iterations, N =0.9962. 

In Fig. 5, the initial “Cornell box” image is 

created by the Gamma mapping (γ=2.2), and we apply 

the proposed iterative algorithm but using statistical 

naturalness updates only. 

 With the iterations, the overall brightness and 

contrast of the image are significantly improved, 

leading to a more visually appealing and natural-

looking image. Table II lists the TMQI-II comparison 

between the initial images and the corresponding 

converged images after applying the full version of the 

proposed iterative optimization algorithm. It can be 

observed that the proposed algorithm consistently 

converges to images with both high structural fidelity 

and high statistical naturalness and thus produces 

higher TMQI-II values even when the initial images 

are created by the most competitive TMOs. To validate 

the superiority of TMQI-II over TMQI as the 

optimization goal in the proposed iterative algorithm, 

Fig. 6 shows the comparison of TMQI with TMQI-II 
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optimization results on the “Woman” image initialized 

by Gamma mapping, which creates dark background 

with missing structures. Both TMQI and TMQI-II 

optimized images recover the structures of the 

background such as the white door, the yellow board 

and the photo frame, and present a better overall 

brightness. However, the TMQI optimized image 

suffers from heavy noise in homogenous areas such as 

in the wall and on the floor. The boosted noise artifact 

are likely due to the structural fidelity term in TMQI, 

which treats all local areas in the HDR image as 

contrast visible. In comparison, the TMQI-II optimized 

image is much cleaner and sharper. Fig. 7 shows the 

comparison of TMQI and TMQI-II optimization results 

on the “Clock building” image. The initial image 

created by log-normal mapping preservers most 

structures but looks unrealistic due to its blanched 

appearance. This problem is largely alleviated in the 

TMQI-II optimized image, where the overall brightness 

and contrast of the image are significantly improved, 

leading to a more visually appealing and natural-

looking image. By contrast, the TMQI optimized image 

suffers from excessive contrast between the lights and 

the bricks on the wall. This problem is likely rooted in 

its statistical naturalness term, which drags μ and σ of 

all tone mapped images towards 116 and 65 regardless 

of their contents and luminance levels [19]. This is 

inappropriate for a night scene like “Clock building” 

which desires lower μe and σe (In TMQI-II, μe =101 

and σe =48). Moreover, annoying noise appears in the 

sky region of the TMQI optimized image.

 

TABLE II 

TMQI-IICOMPARISONBETWEENINITIAL ANDCONVERGEDIMAGES
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Fig. 6. Tone mapped “Woman” images. (a) Initial image created by Gamma mapping. (b) TMQI optimized image. 

(c) TMQI-II optimized image 

Fig. 6. Tone mapped “Woman” images. (a) 

Initial image created by Gamma mapping. (b) TMQI 

optimized image. (c) TMQI-II optimized image Fig. 8 

shows the comparison of TMQI and TMQI-II 

optimization results on the “Bristol bridge” image with 

initial image created by Reinhard‟s method [3]. 

Although the initial image of Fig. 8(a) has a seemingly 

reasonable visual appearance, the fine details of the 

woods and the brick textures of the tower are fuzzy or 

invisible.
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Fig. 7. Tone mapped “Clock building” images. (a) Initial image created by log-normal mapping. (b) TMQI 

optimized image. (c) TMQI-II optimized image. 

 

Fig. 8. Tone mapped “Bristol bridge” images. (a) Initial image created by Reinhard‟s method [3]. (b) TMQI 

optimized image. (c) TMQI-II optimized image. 

 

Fig. 9. Tone mapped “Grove” images. (a) Initial image created by Drago‟s method [4]. (b) TMQI optimized image. 

(c) TMQI-II optimized image. 

In Fig. 8(c), the proposed iterative algorithm using 

TMQI-II recovers these fine details and makes them 

much sharper. Moreover, the overall appearance is 

softer and thus more pleasant. In Fig. 8(b), we can see 

that the iterative algorithm using TMQI heavily boosts 

noise in the sky and cloud regions, which leads to 

quality degradation when compared with the initial 

image. This also reveals the problem of TMQI in 

quality assessment of tone mapped images. 

Fig. 9 shows the comparison of TMQI with TMQI-II 

on the “Grove” image with initial image created by 

Drago‟s method [4]. Again, in the TMQI-II optimized 

image of Fig. 9(c), fine details such as leafs between 

the two big trees and the tree barks are well recovered 
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and sharpened. The overall appearance is also more 

vivid. However, in Fig. 9(b), the iterative algorithm 

using TMQI over stretches the global contrast, which 

darkens the tree trunks and whitens the leafs and the 

sky. This affects the naturalness of the initial image 

and leads to quality degradation. 

 

TABLE III 

MEANOPINIONSCORES OFTONEMAPPEDIMAGES 

To further verify the effectiveness and 

consistency of the proposed algorithm, we conducted 

another subjective experiment. In particular, we select 

15 HDR images that contain various natural scenes 

shown in Fig. 10 and adopt Gamma mapping, log-

normal mapping and Reinhard‟s method [3] to tone-

map them to 15×3=45 LDR images. We then use them 

as initial images of the iterative algorithm and obtain 

45 TMQI optimized images and 45 TMQI-II optimized 

images, respectively. Eventually, we obtain 15 sets of 

tone mapped images, each of which contains 9 images. 

24 naive subjects (9 males and 15 females aged 

between 22 and 30) were asked to give an integer score 

between 0 and 10 for the perceptual quality of each 

tone mapped image, where 0 denotes the worst quality 

and 10 the best. The final quality score for each 

individual image is computed as the average of 

subjective scores, named mean opinion score (MOS), 

from all subjects. The results are listed in Table III, 

from which we have several interesting observations. 

First, using TMQI-II as the optimization goal, the 

proposed algorithm leads to consistently perceptual 

gain for all three different types of initial images. By 

contrast, the perceptual gain obtained by optimizing 

TMQI is much less, when initial images are created by 

Gamma and log-normal mapping. Indeed, the quality 

of TMQI optimized images decreases when the initial 

images are created by Reinhard‟s method [3]. Second, 

the best quality image on average is TMQI-II 

optimized with the initial image created by Reinhard‟s 

method [3]. Note that because the image space is 

extremely complicated and the proposed algorithm can 

only guarantee to find a local optimum; thus better 

initial images often lead to better local optima, which 

correspondingly have better perceptual quality. 

 We use a hypothesis testing approach (based 

on t-statistics [34]) to evaluate the statistical 

significance of the subjective experimental results. 
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Fig. 10. HDR test images used in the subjective 

experiment. The images shown here are TMQI-II 

optimized with initial images created by Reinhard‟s 

method [3] . 

TABLE IV 

STATISTICAL SIGNIFICANCE MATRIX BASED ON THE HYPOTHESIS TESTING.“1”MEANS THAT THE 

ROW CATEGORYIS STATISTICALLY BETTER THAN THE COLUMN CATEGORY.“0”MEANS THAT THE 

COLUMN CATEGORY IS STATISTICALLY BETTER THAN THEROW CATEGORY. “MEANS THAT THE 

ROW AND COLUMN CATEGORIES ARE STATISTICALLY INDISTINGUISHABLE. G:GAMMAMAPPING 

INITIALIZED;L:LOG NORMAL MAPPING INITIALIZED;R:REIN HARD‟SMETHOD[3] INITIALIZED; (I): 

TMQI OPTIMIZED AND(II): TMQI-II OPTIMIZED

Specifically, we treat the MOS values of each 

column in Table III as one category. The null 

hypothesis is that the MOS values in one category is 

statistically indistinguishable (with 95% confidence) 

from those in another category. The test is carried out 

for all possible combinations of pairs of categories, and 

the results are summarized in Table IV, from which we 

can see that TMQI-II optimized images have 

statistically significantly better MOS values in all 

cases. 

 In summary, we believe that the proposed 

iterative optimization procedure provides a strong test 

that not only verifies the superiority of TMQI-II over 

TMQI in predicting the perceptual quality of tone 

mapped images but also shows that the robustness and 

usefulness of TMQI-II to guide the optimization 

process with a variety of initial images. 

 Because of the complexity of the initial 

TMOs, TMQI-II, and the dimension of the search 

space, analytical convergence assessment of the 

proposed algorithm is difficult. Therefore, we observe 

the convergence performance empirically. Figs. 11 and 

12 show the structural fidelity and statistical 

naturalness measures as functions of iteration using 
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different initial images as the starting points. There are 

several useful observations. First, both measures 

increase monotonically with iterations. Second, the 

proposed algorithm converges in all cases regardless of 

using simple or sophisticated TMO results as initial 

images. Third, different initial images may result in 

different converged images. From these observations, 

we conclude that the proposed iterative algorithm is 

well behaved, but the high-dimensional search space is 

complex and contains many local optima, and the 

proposed algorithm may be trapped in one of them. 

The computation complexity of the proposed 

algorithm increases linearly with the number of pixels 

in the image. Our un optimized MATLAB 

implementation takes around 4 seconds per iteration for 

a 341×512 image on a computer with an Intel Quad-

Core 2.67 GHz processor. 

 
Fig. 11. Structural fidelity as a function of iteration 

with initial “woods” images created by different TMOs 

 

Fig. 12. Statistical naturalness as a function of iteration 

with initial “woods” images created by different TMOs 

IV. CONCLUSION AND  FUTURE WORKS 

We propose a novel approach to design TMOs 

by navigating in the space of images to find the optimal 

image in terms of an improved TMQI or TMQI-II. 

TMQI-II overcomes the limitations underlying the 

structural fidelity and statistical naturalness 

components in TMQI and thus has better correlation 

with subjective quality evaluation. Optimizing TMQI-

II is based on an iterative approach that alternates 

between improving the structural fidelity preservation 

and enhancing the statistical naturalness of the image. 

Numerical and subjective experimental results show 

that both steps contribute significantly to the 

improvement of the overall quality of the tone mapped 

image. The proposed algorithm further verifies the 

superiority of TMQI-II over TMQI. Finally, our 

experiments show that the proposed method is well 

behaved, and effectively enhances image quality from 

a wide variety of initial images, including those created 

from state-of-the-art TMOs. 

 The current work opens the door to a new 

class of tone mapping approaches. Many topics are 

worth further investigations. First, as is the case for any 

algorithm operating in complex high-dimensional 

spaces, the current approach only finds local optima. 

Deeper understanding of the search space is desirable 

to better solve the optimization problem. Second, the 

current implementation is computationally costly and 

requires a large number of iterations to converge. Fast 

search algorithms are necessary to accelerate the 

iterations. Third, objective quality assessment of tone 

mapped images still has much space to improve. In the 

future, better objective IQA models may be 

incorporated into the proposed framework to create 

better quality tone mapped images. 
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