

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 908

Improved 64-bit Radix-16 Booth Multiplier Based on

Partial Product Array Height Reduction
B. Jhansi Reddy , R. Sindhu Reddy , B. Manasa Reddy

1 Assistant Professor, Dept of ECE, TKR College Of Engineering And Technology, Meerpet, Ranga Reddy,

Telangana, India

Abstract: In this paper, we describe an optimization

for binary radix-16 (modified) Booth recoded

multipliers to reduce the maximum height of the partial

product columns to [n/4] for n = 64-bit unsigned

operands. This is in contrast to the conventional

maximum height of [(n + 1)/4]. Therefore, a reduction

of one unit in the maximum height is achieved. This

reduction may add flexibility during the design of the

pipelined multiplier to meet the design goals; it may

allow further optimizations of the partial product array

reduction stage in terms of area/delay/power and/or

may allow additional addends to be included in the

partial product array without increasing the delay. The

method can be extended to Booth recoded radix-8

multipliers, signed multipliers, combined signed

/unsigned multipliers, and other values of n.

Keywords: Binary multipliers, Modified Booth

recoding, radix-16, carry save adders.

I.INTRODUCTION

Binary multipliers are a widely used building

block element in the design of microprocessors and

embedded systems, and therefore, they are an

important target for implementation optimization [1]–

[6]. Current implementations of binary multiplication

follow the steps of [7]: 1) recoding of the multiplier in

digits in a certain number system; 2) digit

multiplication of each digit by the multiplicand,

resulting in a certain number of partial products; 3)

reduction of the partial product array to two operands

using multioperand addition techniques; and 4) carry-

propagate addition of the two operands to obtain the

final result.

The recoding type is a key issue, since it

determines the number of partial products. The usual

recoding process recodes a binary operand into a

signed-digit operand with digits in a minimally

redundant digit set [7], [8]. Specifically, for radix-r (r =

2m), the binary operand is composed of nonredundant

radix-r digits (by just making groups of m bits), and

these are recoded from the set {0, 1, . . . , r − 1} to the

set {−r/2, . . . , −1, 0, 1, . . . , r/2} to reduce the

complexity of digit multiplications. For n-bit operands,

a total of n/m partial products are generated for two’s

complement representation, and [(n + 1)/m] for

unsigned representation.

Radix-4 modified Booth is a widely used

recoding method that recodes a binary operand into

radix-4 signed digits in the set {−2, −1, 0, 1, 2}. This is

a popular recoding since the digit multiplication step to

generate the partial products only requires simple shifts

and complementation. The resulting number of partial

products is about n/2.

Higher radix signed recoding is less popular

because the generation of the partial products requires

odd multiples of the multiplicand which cannot be

achieved by means of simple shifts, but require carry-

propagate additions.

For instance, for radix-16 signed digit

recoding [9] the digit set is {−8, −7, . . . , 0, . . . , 7, 8},

so that some odd multiples of the multiplicand have to

be generated. Specifically, it is required to generate ×3,

×5, and ×7 multiples (×6 is obtained by simple shift of

×3). The generation of each of these odd multiplies

requires a two term addition or subtraction, yielding a

total of three carry-propagate additions. However, the

advantage of the high radix is that the number of partial

products is further reduced. For instance, for radix-16

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 909

and n-bit operands, about n/4 partial products are

generated. Although less popular than radix-4, there

exist industrial instances of radix-8 [10]–[16] and

radix-16 multipliers [17] in microprocessors

implementations.

Moreover, although the radix-16 multiplier

requires the generation of more odd multiples and has a

more complex wiring for the generation of partial

products [4], a recent microprocessor design [17]

considered it to be the best choice for low power

(under the specific constraints for this microprocessor).

In [1] and [2], some optimizations for radix-4 two’s

complement multipliers were introduced. Although for

n-bit operands, a total of [n/2] partial products are

generated, the resulting maximum height of the partial

product array is [n/2] + 1 elements to be added (in just

one of the columns). This extra height by a single-bit

row is due to the +1 introduced in the bit array to make

the two’s complement of the most significant partial

product (when the recoded most significant digit of the

multiplier is negative).

The maximum column height may determine

the delay and complexity of the reduction tree [7], [16].

In [1] and [2], authors showed that this extra column of

one bit could be assimilated (with just a simplified

three bit addition) with the most significant part of the

first partial product without increasing the critical path

of the recoding and partial product generation stage.

The result is that the partial product array has a

maximum height of [n/2]. This reduction of one bit in

the maximum height might be of interest for high-

performance short-bit width two’s complement

multipliers (small n) with tight cycle time constraints

that are very common in SIMD digital signal

processing applications. Moreover, if n is a power of

two, the optimization allows to use only 4-2 carry-save

adders for the reduction tree, potentially leading to

regular layouts [16]. These kinds of optimizations can

become particularly important as they may add

flexibility to the “optimal” design of the pipelined

multiplier.

Optimal pipelining in fact, is a key issue in

current and future multiplier (or multiplier-add) units:

1) the latency of the pipelined unit is very important,

even for throughput oriented applications, as it impacts

the energy consumption of the whole core [19]; and 2)

the placement of the pipelining flip-flops should at the

same time minimize total power, due to the number of

flip-flops required and the unbalanced signal

propagation paths. The methods proposed in [1] and [2]

were mostly focused on two’s complement radix-4

Booth multipliers, thus leaving open the research and

extension to higher radices and unsigned

multiplications (for unsigned integer arithmetic or

mantissa times mantissa in a floating-point unit).

For a radix higher than 4, it is necessary to

generate the odd multiples (usually with adders),

resulting in the reduction of the time slacks necessary

to “hide” the simplified three bit assimilation.

Unsigned multiplication may produce a positive carry

out during recoding (this depends of the value of n and

the radix used for recoding), leading to one additional

row, increasing the maximum height of the partial

product array by one row, not just in one but in several

columns. For all these reasons, we need to extend the

techniques presented in [1] and [2].

In this work, we present a technique that

allows partial product arrays of maximum height of

[n/m] (with the goal of not increasing the delay of the

partial product generation stage), for r > 4 and

unsigned multipliers. Since for the standard unsigned

multiplier the maximum height is [(n + 1)/m], the

proposed method allows a reduction of one row when n

is a multiple of m. Our technique is general, but its

impact (reduction of one row without increasing the

critical path of the partial product generation stage)

depends on the specific timing of the different

components. Therefore, we cannot claim a successful

result for all practical values of r and n and different

implementation technologies. Thus, we concentrate on

an specific instance: a 64-bit radix-16 Booth recoded

unsigned multiplier implemented with a synthesis tool

and a standard-cell library. We use radix-16 since it is

the most complex case, among the practical values of

the radix, for the design of our scheme. The unsigned

multiplier is also more complex for the design of our

scheme than the signed multiplier. We use 64 bits,

since it is a representative large word length. The

method proposed can be adapted easily to other

instances (signed, combined unsigned/signed, radix-8

recoding, different values of n).

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 910

II. BASIC RADIX-16 BOOTH MULTIPLIER

In this section, we describe briefly the

architecture of the basic radix-16 Booth multiplier (see

[17] for instance). For sake of simplicity, but without

loss of generality, we consider unsigned operands with

n = 64. Let us denote with X the multiplicand operand

with bit components xi (i = 0 to n − 1, with the least-

significant bit, LSB, at position 0) and with Y the

multiplier operand and bit components yi. The first step

is the recoding of the multiplier operand [8]: groups of

four bits with relative values in the set {0, 1, . . . , 14,

15} are recoded to digits in the set {−8, −7, . . ., 0, . . . ,

7, 8} (minimally redundant radix-16 digit set to reduce

the number of multiples). This recoding is done with

the help of a transfer digit ti and an interim digit wi [7].

The recoded digit zi is the sum of the interim and

transfer digits

When the value of the four bits, vi, is less than

8, the transfer digit is zero and the interim digit wi = vi.

For values of vi greater than or equal to 8, vi is

transformed into vi = 16 − (16 − vi), so that a transfer

digit is generated to the next radix-16 digit position

(ti+1) and an interim digit of value wi = − (16 − v) is

left. That is

The transfer digit corresponds to the most-

significant bit (MSB) of the four-bit group, since this

bit determines if the radix-16 digit is greater than or

equal to 8. The final logical step is to add the interim

digits and the transfer digits (0 or 1) from the radix-16

digit position to the right. Since the transfer digit is

either 1 or 0, the addition of the interim digit and the

transfer digit results in a final digit in the set {−8, −7, .

. ., 0, . . . , 7, 8}. Due to a possible transfer digit from

the most significant radix-16 digit, the number of

resultant radix-16 recoded digits is [(n + 1)/4].

Therefore, for n = 64 the number of recoded digits (and

the number of partial products) is 17. Note that the

most significant digit is 0 or 1 because it is in fact just a

transfer digit. After recoding, the partial products are

generated by digit multiplication of the recoded digits

times the multiplicand X.

For the set of digits {−8, −7, . . . , 0, . . . , 7,

8}, the multiples 1X, 2X, 4X, and 8X are easy to

compute, since they are obtained by simple logic shifts.

The negative versions of these multiples are obtained

by bit inversion and addition of a 1 in the

corresponding position in the bit array of the partial

products. The generations of 3X, 5X, and 7X (odd

multiples) require carry-propagate adders (the negative

versions of these multiples are obtained as before).

Finally, 6X is obtained by a simple one bit left shift of

3X.

Fig. 1 illustrates a possible implementation of

the partial product generation. Five bits of the

multiplier Y are used to obtain the recoded digit (four

bits of one digit and one bit of the previous digit to

determine the transfer digit to be added). The resultant

digit is obtained as a one-hot code to directly drive a 8

to 1 multiplexer with an implicit zero output (output

equal to zero when all the control signals of the

multiplexer are zero). The recoding requires the

implementation of simple logic equations that are not

in the critical path due to the generation in parallel of

the odd multiples (carry-propagate addition). The XOR

at the output of the multiplexer is for bit

complementation (part of the computation of the two’s

complement when the multiplier digit is negative).

Fig. 1: Partial product generation.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 911

Fig. 2(a) illustrates part of the resultant bit

array for n = 64 after the simplification of the sign

extension [7]. In general, each partial product has n + 4

bits including the sign in two’s complement

representation. The extra four bits are required to host a

digit multiplication by up to 8 and a sign bit due to the

possible multiplication by negative multiplier digits.

Since the partial products are left-shifted four bit

positions with respect to each other, a costly sign

extension would be necessary. However, the sign

extension is simplified by concatenation of some bits to

each partial product (S is the sign bit of the partial

product and C is S complemented): CSSS for the first

partial product and 111C for the rest of partial products

(except the partial product at the bottom that is non

negative since the corresponding multiplier digit is 0 or

1). The bits denoted by b in Fig. 2 corresponds to the

logic 1 that is added for the two’s complement for

negative partial products.

After the generation of the partial product bit

array, the reduction (multioperand addition) from a

maximum height of 17 (for n = 64) to 2 is performed.

The methods for multioperand addition are well

known, with a common solution consisting of using 3

to 2 bit reduction with full adders (or 3:2 carry-save

adders) or 4 to 2 bit reduction with 4:2 carry-save

adders. The delay and design effort of this stage are

highly dependent on the maximum height of the bit

array. It is recognized that reduction arrays of 4:2

carry-save adders may lead to more regular layouts

[16]. For instance, with a maximum height of 16, a

total of 3 levels of 4:2 carry-save adders would be

necessary. A maximum height of 17 leads to different

approaches that may increase the delay and/or require

to use arrays of 3:2 carry-save adders interconnected to

minimize delay [20]. After the reduction to two

operands, a carry-propagate addition is performed. This

addition may take advantage of the specific signal

arrival times from the partial product reduction step.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 912

Fig. 2: Radix-16 partial product reduction array.

III. PROPOSED METHOD

To reduce the most extreme tallness of the

halfway item bit exhibit we play out a short convey

proliferate expansion in parallel to the standard

fractional item age. This short expansion lessens the

most extreme tallness by one line and it is speedier

than the standard fractional item age. Fig. 2(b)

demonstrates the components of the bit cluster to be

included by the short viper. Fig. 2(c) demonstrates the

subsequent incomplete item bit cluster after the short

expansion. Looking at the two figures, we watch that

the greatest stature is diminished from 17 to 16 for n =

64.

Fig. 3 shows the specific elements of the bit

array (boxes) to be added by the short carry-propagate

addition. In this figure, pi,j corresponds to the bit j of

partial product i, s0 is the sign bit of partial product 0,

c0 = NOT(s0), bi is the bit for the two’s complement of

partial product i, and zi is the ith bit of the result of the

short addition. The selection of these specific bits to be

added is justified by the fact that, in this way, the short

addition delay is hidden from the critical path that

corresponds to a regular partial product generation (this

will be shown in Section IV). We perform the

computation in two concurrent parts A and B as

indicated in Fig. 3.

Fig. 3: Detail of the elements to be added by the

short addition

The elements of the part A are generated

faster than the elements of part B. Specifically the

elements of part A are obtained from:

 • The sign of the first partial product: this is

directly obtained from bit y3 since there is no transfer

digit from a previous radix-16 digit;

• Bits 3 to 7 of partial product 16: the recoded

digit for partial product 16 can only be 0 or 1, since it

is just a transfer digit. Therefore the bits of this partial

product are generated by a simple AND operations of

the bits of the multiplicand X and bit y63 (that

generates the transfer from the previous digit).

 Therefore, we decided to implement part A as

a speculative addition, by computing two results, a

result with carry-in = 0 and a result with carry-in = 1.

This can be computed efficiently with a compound

adder [7]. Fig. 4 shows the implementation of part A.

The compound adder determines speculatively the two

possible results. Once the carry-in is obtained (from

part B), the correct result is selected by a multiplexer.

Note that the compound adder is of only five bits, since

the propagation of the carry through the most

significant three ones is straightforward.

Fig. 4: Speculative addition of part A

The calculation of part B is more convoluted.

The primary issue is that we require the 7 slightest

noteworthy bits of incomplete item 15. Obviously

sitting tight for the age of incomplete item 15 isn't a

choice since we need to shroud the short expansion

delay out of the basic way. We chose to actualize a

particular circuit to implant the calculation of the

minimum huge bits of fractional item 15 in the

calculation of part B (and furthermore the expansion of

the bit b15). Note that for the strategy to be right the

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 913

calculation of the halfway item implanted to a limited

extent B ought to be steady with the general calculation

performed for the most noteworthy bits of incomplete

item 15.

Fig. 5 shows the computation of part B. We

decided to compute part B as a three operand addition

with a 3:2 carry save adder and a carry-propagate

adder. Two of the operands correspond to the least-

significant bits of the partial product 15 and the other

operand corresponds to the three least-significant bits

of partial product 16 (that are easily obtained by an

AND operation). We perform the computation of the

bits of the radix-16 partial product 15 as the addition of

two radix-4 partial products.

Fig. 5: Computation of part B.

Therefore, we perform two concurrent radix-4

recodings and multiple selection. The multiples of the

least significant radix-4 digit are {−2, −1, 0, 1, 2},

while the multiples for the most significant radix-4

digit are {−8, −4, 0, 4, 8} (radix-4 digit set {−2, −1, 0,

1, 2}, but with relative weight of 4 with respect to the

least-significant recoding). These two radix-4

recodings produce exactly the same digit as a direct

radix-16 recoding for most of the bit combinations.

However, among the 32 5-bit combinations

for a full radix-16 digit recoding, there are six not

consistent with the two concurrent radix-4 recodings.

Specifically:

• The bit strings 00100 and 11011 are recoded

in radix-16 to 2 and −2 respectively. However, when

performing two parallel radix-4 recodings the resulting

digits are (4, −2) and (−4, 2) respectively. That is, the

radix-4 recoding performs the computation of 2X (-2X)

as 4X-2X (−4X + 2X). To have a consistent

computation we modified the radix-4 recoders so that

these strings produce radix-4 digits of the form (0, 2)

and (0, −2).

• The bit strings 00101 and 00110 are recoded

in radix-16 to 3 in both cases. However, the resulting

radix-4 digits are (4, −1). This means that the radix-4

recoding performs the computation of 3X as 4X-X. To

address this inconsistency problem, in this case, we

decided to implement the radix-16 multiple 3X as 4X-

X. This avoids the combination of radix-4 digits (2, 1)

and simplifies the multiplexers in Fig. 5.

• The bit strings 11001 and 11010 are recoded

in radix-16 to −3 in both cases. However, the resulting

radix-4 digits are (−4, 1). Therefore, for consistency,

we proceed as in the previous case by generating the

radix-16 multiple −3X as −4X + X. To handle negative

multiples, we select complemented inputs in the

multiplexers and place 1 in a slot of the input of the 3:2

carry-save adder with relative binary weight equal to

the absolute value of the corresponding radix-4 digit.

These hot ones for two’s complement are indicated in

Fig. 5 as the string “abcd.” For instance, if the least-

significant radix-4 digit is −2 and the most significant

radix-4 digit is −4, then c = 1 and b = 1. Therefore,

“abcd” signals are obtained directly from the selection

bits of the 4:1 multiplexers.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 914

Fig. 6: High level view of the recoding and partial product generation stage including our proposed scheme.

Fig. 6 demonstrates the recoding and

fractional item age organize including the abnormal

state perspective of the equipment plot proposed. The

way we register part B may in any case prompt an

irregularity with the calculation of the most noteworthy

piece of incomplete item 15. In particular, when

fractional item 15 is the consequence of an odd

various, a conceivable convey from the 7 slightest

critical bits is now joined in the most huge piece of the

halfway item. Amid the calculation of part B we ought

not deliver again this convey. This issue is understood

as takes after. Give us a chance to consider first the

instance of positive odd products. Fig. 5 shows that the

computation of part B may generate two carry outs: the

first from the 3:2 carry-save adder (Cout1), and the

second from the carry-propagate adder (Cout2).

To avoid inconsistencies, we detect the carry

propagated to the most significant part of the partial

product 15 (we call this CM) and subtract it from the

two carries generated in part B. Specifically, Table I

shows the truth table to generate the carry out of part

B. This truth table corresponds to the XOR of the three

inputs. The CM carry is obtained from a multiplexer

that selects among the carry to bit position 7 from the

odd multiple generators (×3, ×5, and ×7), the carry to

bit position 6 from the multiple generator ×3 (to get the

carry to position 7 of multiple ×6), or carry zero for the

other multiples. The resultant carry out is the selection

signal used in the multiplexer of part A.

TABLE I

TRUTH TABLE FOR COMPUTING THE CARRY

OUT (− STANDS FOR “DON’T CARE”)

For negative odd multiples we use a similar

scheme. In this case the output of adder is

complemented, but the only information available

about the carry to position 7 is obtained directly from

the adders that generate the positive odd multiple.

Next, we show how to obtain the carry to the most

significant part of the resultant complemented odd

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 915

multiple from the carry to position 7 obtained from the

adders. Let us call M the result of the positive odd

multiple (output of the adder), and express M as

with P being the seven least-significant bits of the

result from the adder, and N the remaining most

significant bits of the result of the adder. Let us express

N in terms of C7 (carry to position 7)

that is, Q are the remaining most significant bits of the

positive odd multiple minus the carry to position 7.

Assuming a m bit partial product, the complement of

M is expressed as

By adding and subtracting 27 and rearranging terms

results in

We identify the terms N = 2n − 27 − N and Q = 27 − 1 −

Q. Taking into account these terms and adding and

subtracting 27 and 2n−1 results in

The term is computed in part

B of the proposed scheme (see Fig. 5), but

 is also part of the most significant part

of partial product 15. Therefore, for a negative partial

product we need to subtract In summary, we take

CM as the carry to position 7 of the adder that generates

the multiple when the partial product is positive, and

complement this carry, when the partial product is

negative.

IV. EVALUATION

A. Synthesis with CAD Tools

We have performed a hardware synthesis

using Synopsys Design Compiler [21]with the STM

90nm CMOS standard cell library. For this library the

delay of a FO4 is 45 ps (FO4 is the delay of an inverter

of minimum size with a load of four inverters), and the

area of a two-input NAND gate is 4.4 μm2. We

synthesized the full partial product generation stage for

the basic scheme allowing Synopsys’ DesignWare [21]

to choose the adder, and the proposed scheme with

hand coding of adders (we need the internal carry of

the adders, so we were not able to use DesignWare in

this case). We did not optimize the 3X adder as

described for instance in [12], [22] and [23], since this

optimization cannot be applied to the 5X and 7X

adders, so that the critical path remains the same.

Fig. 7: Latency-area space for the partial product

generation stage: basic scheme vs proposed scheme.

Fig. 7 shows the latency-area space for the

two synthesized designs. For higher latency points, as

expected, the proposed design has a slight increase in

area. The fastest design point is roughly the same for

the two designs, although the proposed design has a

penalty of about 2 K additional NAND-2 gates with

respect to the basic scheme. For the fastest design

point, the cost of the additional hardware in the

proposed scheme is about 500 NAND-2 gates (even

less since 7 least-significant bits of one radix-16

regular partial product are not required), less than 1.8%

of the hardware complexity of the partial product

generation stage.

Therefore, the extra 1.5 K NAND-2 gates

correspond to the penalty of not using DesignWare

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 916

adders in the proposed design. Our synthesis

experiment shows that the proposed scheme does not

introduce any significant variation in the latency-area

space of the partial product generation stage,

confirming our hypothesis that the introduced hardware

has a minor cost and is hidden from the critical path.

Therefore, we have the benefit of reducing the

maximum height of the partial product array by one

unit without introducing any significant penalties in the

partial product generation stage.

B. Impact on the Multiplier

In the previous subsection, we provided the

detail of the synthesis of the partial product generation

with the proposed method. In this subsection, we

evaluate the impact of our method on the whole

multiplier. We implement a multiplier by the proposed

method to reduce the partial products by one, and we

compare its performance (maximum clock frequency,

area and power dissipation) to a multiplier, referred as

basic, with the standard partial product generation and

an extra operand in the accumulation tree.

A practical design of a 64 × 64 multiplier is

normally pipelined to guarantee high-throughput.

However, the placement of pipeline registers depends

mostly on the specific technology and may vary from

design to design. High radix multipliers are chosen

because the shallower trees allow a significant power

reduction, since the glitching power is limited to a few

levels of gates in the tree.

For this reason, it is realistic to place pipeline

registers before the tree, i.e., store the partial products

in the pipeline registers. Consequently, we evaluate

two schemes:

1) A 2-stage pipelined design [see Fig.

8(a)]with pipeline register placed between the partial

products generation (stage abbreviated as PPGEN in

the figures and tables) and the tree (TREE);

2) A 3-stage design [see Fig. 8(b)] with an

additional pipeline register placed between the tree and

the final carrypropagate adder (CPA).

Fig. 8:Pipelined multiplier: (a) 2-stage; (b) 3-stage.

Other pipeline placements are not convenient

because they will result in placing flip-flops inside

functional units, such as CPAs or adder trees. This may

result in increased number of flip-flops (e.g., inside the

tree) and it is also nonsuitable for reuse. Standard

datapath blocks (e.g., CPAs) are normally taken from

fully-tested hardware libraries and altering their

behavior (placing pipeline registers inside) will prolong

development times, revalidation and retesting.

1) Design of 2-Stage Multiplier: For the 2-

stage multiplier the critical path lies in the second stage

for both the basic and the proposed multipliers. The

delay of the critical path is 23 FO4 for the basic and

21.5 FO4 for the proposed multiplier. Clearly, the

reduced number of partial products in the proposed unit

at the tree input (16 versus 17 operands) makes the

accumulation faster. The area of the 2-stage

implementation it is slightly larger for the proposed

multiplier, as shown in Fig. 9. As for the power

dissipation, Table II reports the power breakdown for

the main blocks of the pipelined multiplier. The

proposed unit consumes about 2% less power than the

basic unit. This is mostly due to the reduced switching

activity (glitches) in the second stage (tree and CPA).

2) Design of 3-Stage Multiplier: The

maximum throughput for the multiplier can be obtained

by breaking the critical part of the second stage in two

stages. To minimize the number of flip-flops, or

latches, this second register is placed between the tree

and the CPA. With this pipelining, the critical path lies

in the first stage of the multiplier for both the basic and

the proposed multipliers.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 917

Fig. 9: Area breakdown for 2-stage pipelined

multipliers.

As already shown in Section IV-A, the delay

of the critical path is 18 FO4 for both implementations.

In this case, the larger slack1 in stage 2, allows for a

good reduction in area for the tree of the proposed

multiplier, that partly compensate the larger area in the

first stage (see Fig. 7). As a result, the area of the two

units in the 3-stage implementation is almost the same,

as reported in Fig. 10.

Fig. 10: Area breakdown for 3-stage pipelined

multipliers.

Also in this case, the power dissipation is

slightly (4%) lower in the proposed unit. The

breakdown of the different parts is reported in Table II.

C. High Level Evaluation

In this subsection we use a high level rough

model to evaluate the proposed method. We evaluate

the critical path of the conventional partial product

generation and the critical path of the hardware we

added to reduce the maximum height of the partial

product array. Although real implementations rely on

optimizations of the critical path done by synthesis

tools on a specific standard cell library technology, this

high level analysis may give some insight about the

relative contribution to the critical path of each

component. We use a rough delay model based on

logical effort [24]. This model is based on using cells

with transistor sizing so that all the cells have the drive

strength of the minimum size inverter. Buffering is

introduced when necessary to optimize delays. We

provide delays in FO4 units. Interconnections loads are

not taken into account. Optimizations such as gate

sizing, low/high Vth, etc. are not considered. Table III

shows the delay equations, input capacitance and

relative hardware cost of the basic hardware elements

used. In the table, the parameter L indicates the actual

load (capacitance) connected to the specific gate, and

Lin indicates the input capacitance of the buffers.

TABLE II

POWER DISSIPATION IN THE PIPELINED

MULTIPLIERS

A key issue for the estimation of the critical

path of the conventional partial product generation is

the architecture of the adders for multiple generation.

The worst case for our analysis corresponds to the

fastest design point for partial product generation.

Therefore we considered a fast Kogge-Stone adder

topology [7]. Although this is not energy/power

efficient in real implementations, at the logic level it is

a good lower bound of delay for an adder. After the

analysis of the conventional architecture, we estimated

the impact of the additional hardware required for the

proposed multiplier. For a quick reference, the timing

paths of Figs. 4–6 are summarized in Fig. 11.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 918

Fig. 11: Timing paths for the proposed partial

products reduction.

In the figure, the delay in the input registers

(X and Y) and the delay of buffers are omitted for

simplicity.

The critical path of the conventional partial

product generation is composed by the following items:

• Input register X: 3.0 FO4;

• Input buffering of multiplicand: 1.4 FO4;

• Multiple generations (adder): 10.3 FO4;

• Buffer between multiple generators and 8:1

mux: 1.7 FO4;

• 8:1 Mux and inversion (input from data): 4.9

FO4.

This corresponds to a total delay of 21.3 FO4

in the critical path. The scheme we propose (Part A,

Fig. 4, and Part B, Fig. 5, in Fig. 11) has the following

components in the critical path: • input register Y: 3.0

FO4;

• Input buffering of multiplier bits: 0.5 FO4;

• Radix-4 Booth recoding and selector with

inversion (Part B): 5.0 FO4;

• 3:2 carry-save adder (Part B): 3.5 FO4;

• carry out of 7-bit carry-propagate adder (Part

B): 4.4 FO4;

• XOR to produce sel signal (Part B) and six-

bit 2:1 multiplexer (Part A): 4.2 FO4.

Accordingly, the way delay is 20.6 FO4 and it

isn't basic. Our examination demonstrates that the CM

flag isn't in the basic way (the most pessimistic

scenario delay for CM is 13.1 FO4, while the most

pessimistic scenario delay for Cout2 is 16.4 FO4).

These outcomes are cognizant with the speediest plan

point in the inertness region diagram appeared in Fig.

7. The lower bound in inertness is around 18.2 FO4.

The union apparatus can do a type of door measuring

(reliant on the accessible entryway sizes for each

example entryway), so a speedier outcome than in our

abnormal state examination ought normal. In this

manner, our unpleasant investigation is in concurrence

with the union outcomes, as the proposed plot isn't in

the basic way for n = 64.

TABLE III

DELAY EQUATIONS, INPUT CAPACITANCE

AND HARDWARE COST OF BASIC ELEMENTS

We played out a comparative investigation for

the basic way of the customary halfway item age for n

= 32 (the case for n = 16 is less appealing for radix-16

because of the modest number of incomplete items).

For n = 32 we acquire a basic way of 19.7 FO4. As it

can be found in Fig. 2, the plan we propose isn't

delicate to the variety of n (the quantity of bits included

Fig. 2(b) is free of the estimation of n), subsequently

bringing about an indistinguishable basic way from

previously (20.6 FO4). Consequently, for the speediest

outline point, for n = 32, the proposed conspire is in the

basic way, with a slack regarding the regular fractional

item age of 0.9 FO4 for n = 32. This negative slack of

our plan can be diminished with ordinary

methodologies like low Vth doors and entryway

estimating without huge increment in control, since the

offer of our plan as for the aggregate equipment is

little. We checked this announcement with the union

device. A blend for n = 32 prompts a basic way of 16.5

FO4 and this basic way compares to the calculation of

a normal fractional item.

V. RESULTS

The composed Verilog HDL Modules have effectively

recreated and confirmed utilizing Isim Simulator and

orchestrated utilizing Xilinxise13.2.

Simulation results:

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 919

RTL schematic:

Technology Schematic:

Design summary:

Timing Report:

VI. CONCLUSION

Pipelined large word length digital multipliers

are difficult to design under the constraints of core

cycle time (for nominal voltage), pipeline depth, power

and energy consumption and area. Low level

optimizations might be required to meet these

constraints. In this work, we have presented a method

to reduce by one the maximum height of the partial

product array for 64-bit radix-16 Booth recoded

magnitude multipliers. This reduction may allow more

flexibility in the design of the reduction tree of the

pipelined multiplier. We have shown that this reduction

is achieved with no extra delay for n ≥ 32 for a cell-

based design. The method can be extended to Booth

recoded radix-8 multipliers, signed multipliers and

combined signed/unsigned multipliers. Radix-8 and

radix-16 Booth recoded multipliers are attractive for

low power designs, mainly to the lower complexity and

depth of the reduction tree, and therefore they might be

very popular in this era of power-constrained designs

with increasing overheads due to wiring.

REFERENCE

[1] S. Kuang, J. Wang, and C. Guo, “Modified booth

multipliers with a regular partial product array,” IEEE

Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 5, pp.

404–408, May 2009.

[2] F. Lamberti et al., “Reducing the computation time

in (short bit-width) twos complement multipliers,”

IEEE Trans. Comput., vol. 60, no. 2, pp. 148–156, Feb.

2011.

[3] N. Petra et al., “Design of fixed-width multipliers

with linear compensation function,” IEEE Trans.

Circuits Syst. I, Reg. Papers, vol. 58, no. 5, pp. 947–

960, May 2011.

International Journal of Research
Available at https://edupediapublications.org/journals

e-ISSN: 2348-6848
p-ISSN: 2348-795X
Volume 05 Issue 04

February 2018

Available online: https://edupediapublications.org/journals/index.php/IJR/ P a g e | 920

[4] S. Galal et al., “FPU generator for design space

exploration,” in Proc. 21st IEEE Symp. Comput.

Arithmetic (ARITH), Apr. 2013, pp. 25–34.

[5] K. Tsoumanis et al., “An optimized modified booth

recoder for efficient design of the add-multiply

operator,” IEEE Trans. Circuits Syst. I, Reg. Papers,

vol. 61, no. 4, pp. 1133–1143, Apr. 2014.

[6] A. Cilardo et al., “High speed speculative

multipliers based on speculative carry-save tree,” IEEE

Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 12, pp.

3426–3435, Dec. 2014.

[7] M. Ercegovac and T. Lang, Digital Arithmetic.

Burlington, MA, USA: Morgan Kaufmann, 2004.

[8] S. Vassiliadis, E. Schwarz, and D. Hanrahan, “A

general proof for overlapped multiple-bit scanning

multiplications,” IEEE Trans. Comput., vol. 38, no. 2,

pp. 172–183, Feb. 1989.

[9] “Binary Multibit Multiplier,” Patent 4 745 570 A,

1986.

[10] D. Dobberpuhl et al., “A 200-MHz 64-b dual-issue

CMOS microprocessor,” IEEE J. Solid-State Circuits,

vol. 27, no. 11, pp. 1555–1567, Nov. 1992.

[11] E. M. Schwarz, R. M. A. III, and L. J. Sigal, “A

radix-8 CMOS S/390 multiplier,” in Proc. 13th IEEE

Symp. Comput. Arithmetic (ARITH), Jul. 1997, pp. 2–

9.

[12] J. Clouser et al., “A 600-MHz superscalar

floating-point processor,” IEEE J. Solid-State Circuits,

vol. 34, no. 7, pp. 1026–1029, Jul. 1999.

[13] S. Oberman, “Floating point division and square

root algorithms and implementation in the AMD-K7

microprocessor,” in Proc. 14th IEEE Symp. Comput.

Arithmetic (ARITH), Apr. 1999, pp. 106–115.

[14] R. Senthinathan et al., “A 650-MHz, IA-32

microprocessor with enhanced data streaming for

graphics and video,” IEEE J. Solid-State Circuits, vol.

34, no. 11, pp. 1454–1465, Nov. 1999.

[15] K. Muhammad et al., “Speed, power, area, latency

tradeoffs in adaptive FIR filtering for PRML read

channels,” IEEE Trans. Very Large Scale Intgr. Syst.,

vol. 9, no. 1, pp. 42–51, Feb. 2001.

[16] G. Colon-Bonet and P. Winterrowd, “Multiplier

evolution: A family of multiplier VLSI

implementations,” Comput. J., vol. 51, no. 5, pp. 585–

594, 2008.

[17] R. Riedlinger et al., “A 32 nm, 3.1 billion

transistor, 12 wide issue itanium processor for mission-

critical servers,” IEEE J. Solid-State Circuits, vol. 47,

no. 1, pp. 177–193, Jan. 2012.

[18] B. Cherkauer and E. Friedman, “A hybrid radix-

4/radix-8 low power signed multiplier architecture,”

IEEE Trans. Circuits Syst. II, Analog Digit. Signal

Process., vol. 44, no. 8, pp. 656–659, Aug. 1997.

[19] D. Lutz, “ARM FPUs: Low latency is low

energy,” presented at the 22nd IEEE Symposium in

Computer Arithmetic, Jun. 2015, [last visited Jul. 1,

2016]. [Online]. Available:

http://arith22.gforge.inria.fr/slides/s1-lutz.pdf

[20] V. G. Oklobdzija, D. Villeger, and S. S. Liu, “A

method for speed optimized partial product reduction

and generation of fast parallel multipliers using an

algorithmic approach,” IEEE Trans. Comput., vol. 45,

no. 3, pp. 294–306, Mar. 1996.

[21] Synopsys Inc., “Design Compiler,” [Online].

Available: http://www. synopsys.com

[22] “A X + 2 X Adder With Multi-Bit

Generate/Propagate Circuit,” Patent 5 875 125, 1997.

[23] “3 × Adder,” Patent 6 269 386 B1, 1998.

[24] A. Vazquez and E. Antelo, “Area and Delay

Evaluation Model for CMOS Circuits,” Internal

Report, Univ. Santiago de Compostela, Jun. 2012.

[Online]. Available: http://www.ac.usc.es/node/1607.

http://arith22.gforge.inria.fr/slides/s1-lutz.pdf

