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Abstract: In this paper, we describe an optimization 

for binary radix-16 (modified) Booth recoded 

multipliers to reduce the maximum height of the partial 

product columns to [n/4] for n = 64-bit unsigned 

operands. This is in contrast to the conventional 

maximum height of [(n + 1)/4]. Therefore, a reduction 

of one unit in the maximum height is achieved. This 

reduction may add flexibility during the design of the 

pipelined multiplier to meet the design goals; it may 

allow further optimizations of the partial product array 

reduction stage in terms of area/delay/power and/or 

may allow additional addends to be included in the 

partial product array without increasing the delay. The 

method can be extended to Booth recoded radix-8 

multipliers, signed multipliers, combined signed 

/unsigned multipliers, and other values of n.  

Keywords: Binary multipliers, Modified Booth 

recoding, radix-16, carry save adders. 

I.INTRODUCTION 

Binary multipliers are a widely used building 

block element in the design of microprocessors and 

embedded systems, and therefore, they are an 

important target for implementation optimization [1]–

[6]. Current implementations of binary multiplication 

follow the steps of [7]: 1) recoding of the multiplier in 

digits in a certain number system; 2) digit 

multiplication of each digit by the multiplicand, 

resulting in a certain number of partial products; 3) 

reduction of the partial product array to two operands 

using multioperand addition techniques; and 4) carry-

propagate addition of the two operands to obtain the 

final result.  

The recoding type is a key issue, since it 

determines the number of partial products. The usual 

recoding process recodes a binary operand into a 

signed-digit operand with digits in a minimally 

redundant digit set [7], [8]. Specifically, for radix-r (r = 

2m), the binary operand is composed of nonredundant 

radix-r digits (by just making groups of m bits), and 

these are recoded from the set {0, 1, . . . , r − 1} to the 

set {−r/2, . . . , −1, 0, 1, . . . , r/2} to reduce the 

complexity of digit multiplications. For n-bit operands, 

a total of n/m partial products are generated for two’s 

complement representation, and [(n + 1)/m] for 

unsigned representation.  

Radix-4 modified Booth is a widely used 

recoding method that recodes a binary operand into 

radix-4 signed digits in the set {−2, −1, 0, 1, 2}. This is 

a popular recoding since the digit multiplication step to 

generate the partial products only requires simple shifts 

and complementation. The resulting number of partial 

products is about n/2.  

 

Higher radix signed recoding is less popular 

because the generation of the partial products requires 

odd multiples of the multiplicand which cannot be 

achieved by means of simple shifts, but require carry-

propagate additions.  

For instance, for radix-16 signed digit 

recoding [9] the digit set is {−8, −7, . . . , 0, . . . , 7, 8}, 

so that some odd multiples of the multiplicand have to 

be generated. Specifically, it is required to generate ×3, 

×5, and ×7 multiples (×6 is obtained by simple shift of 

×3). The generation of each of these odd multiplies 

requires a two term addition or subtraction, yielding a 

total of three carry-propagate additions. However, the 

advantage of the high radix is that the number of partial 

products is further reduced. For instance, for radix-16 
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and n-bit operands, about n/4 partial products are 

generated. Although less popular than radix-4, there 

exist industrial instances of radix-8 [10]–[16] and 

radix-16 multipliers [17] in microprocessors 

implementations.  

Moreover, although the radix-16 multiplier 

requires the generation of more odd multiples and has a 

more complex wiring for the generation of partial 

products [4], a recent microprocessor design [17] 

considered it to be the best choice for low power 

(under the specific constraints for this microprocessor). 

In [1] and [2], some optimizations for radix-4 two’s 

complement multipliers were introduced. Although for 

n-bit operands, a total of [n/2] partial products are 

generated, the resulting maximum height of the partial 

product array is [n/2] + 1 elements to be added (in just 

one of the columns). This extra height by a single-bit 

row is due to the +1 introduced in the bit array to make 

the two’s complement of the most significant partial 

product (when the recoded most significant digit of the 

multiplier is negative).  

The maximum column height may determine 

the delay and complexity of the reduction tree [7], [16]. 

In [1] and [2], authors showed that this extra column of 

one bit could be assimilated (with just a simplified 

three bit addition) with the most significant part of the 

first partial product without increasing the critical path 

of the recoding and partial product generation stage. 

The result is that the partial product array has a 

maximum height of [n/2]. This reduction of one bit in 

the maximum height might be of interest for high-

performance short-bit width two’s complement 

multipliers (small n) with tight cycle time constraints 

that are very common in SIMD digital signal 

processing applications. Moreover, if n is a power of 

two, the optimization allows to use only 4-2 carry-save 

adders for the reduction tree, potentially leading to 

regular layouts [16]. These kinds of optimizations can 

become particularly important as they may add 

flexibility to the “optimal” design of the pipelined 

multiplier.  

Optimal pipelining in fact, is a key issue in 

current and future multiplier (or multiplier-add) units: 

1) the latency of the pipelined unit is very important, 

even for throughput oriented applications, as it impacts 

the energy consumption of the whole core [19]; and 2) 

the placement of the pipelining flip-flops should at the 

same time minimize total power, due to the number of 

flip-flops required and the unbalanced signal 

propagation paths. The methods proposed in [1] and [2] 

were mostly focused on two’s complement radix-4 

Booth multipliers, thus leaving open the research and 

extension to higher radices and unsigned 

multiplications (for unsigned integer arithmetic or 

mantissa times mantissa in a floating-point unit).  

For a radix higher than 4, it is necessary to 

generate the odd multiples (usually with adders), 

resulting in the reduction of the time slacks necessary 

to “hide” the simplified three bit assimilation. 

Unsigned multiplication may produce a positive carry 

out during recoding (this depends of the value of n and 

the radix used for recoding), leading to one additional 

row, increasing the maximum height of the partial 

product array by one row, not just in one but in several 

columns. For all these reasons, we need to extend the 

techniques presented in [1] and [2].  

In this work, we present a technique that 

allows partial product arrays of maximum height of 

[n/m] (with the goal of not increasing the delay of the 

partial product generation stage), for r > 4 and 

unsigned multipliers. Since for the standard unsigned 

multiplier the maximum height is [(n + 1)/m], the 

proposed method allows a reduction of one row when n 

is a multiple of m. Our technique is general, but its 

impact (reduction of one row without increasing the 

critical path of the partial product generation stage) 

depends on the specific timing of the different 

components. Therefore, we cannot claim a successful 

result for all practical values of r and n and different 

implementation technologies. Thus, we concentrate on 

an specific instance: a 64-bit radix-16 Booth recoded 

unsigned multiplier implemented with a synthesis tool 

and a standard-cell library. We use radix-16 since it is 

the most complex case, among the practical values of 

the radix, for the design of our scheme. The unsigned 

multiplier is also more complex for the design of our 

scheme than the signed multiplier. We use 64 bits, 

since it is a representative large word length. The 

method proposed can be adapted easily to other 

instances (signed, combined unsigned/signed, radix-8 

recoding, different values of n). 
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II. BASIC RADIX-16 BOOTH MULTIPLIER  

In this section, we describe briefly the 

architecture of the basic radix-16 Booth multiplier (see 

[17] for instance). For sake of simplicity, but without 

loss of generality, we consider unsigned operands with 

n = 64. Let us denote with X the multiplicand operand 

with bit components xi (i = 0 to n − 1, with the least-

significant bit, LSB, at position 0) and with Y the 

multiplier operand and bit components yi. The first step 

is the recoding of the multiplier operand [8]: groups of 

four bits with relative values in the set {0, 1, . . . , 14, 

15} are recoded to digits in the set {−8, −7, . . ., 0, . . . , 

7, 8} (minimally redundant radix-16 digit set to reduce 

the number of multiples). This recoding is done with 

the help of a transfer digit ti and an interim digit wi [7]. 

The recoded digit zi is the sum of the interim and 

transfer digits  

 

When the value of the four bits, vi, is less than 

8, the transfer digit is zero and the interim digit wi = vi. 

For values of vi greater than or equal to 8, vi is 

transformed into vi = 16 − (16 − vi), so that a transfer 

digit is generated to the next radix-16 digit position 

(ti+1) and an interim digit of value wi = − (16 − v) is 

left. That is 

 

The transfer digit corresponds to the most-

significant bit (MSB) of the four-bit group, since this 

bit determines if the radix-16 digit is greater than or 

equal to 8. The final logical step is to add the interim 

digits and the transfer digits (0 or 1) from the radix-16 

digit position to the right. Since the transfer digit is 

either 1 or 0, the addition of the interim digit and the 

transfer digit results in a final digit in the set {−8, −7, . 

. ., 0, . . . , 7, 8}. Due to a possible transfer digit from 

the most significant radix-16 digit, the number of 

resultant radix-16 recoded digits is [(n + 1)/4]. 

Therefore, for n = 64 the number of recoded digits (and 

the number of partial products) is 17. Note that the 

most significant digit is 0 or 1 because it is in fact just a 

transfer digit. After recoding, the partial products are 

generated by digit multiplication of the recoded digits 

times the multiplicand X. 

For the set of digits {−8, −7, . . . , 0, . . . , 7, 

8}, the multiples 1X, 2X, 4X, and 8X are easy to 

compute, since they are obtained by simple logic shifts. 

The negative versions of these multiples are obtained 

by bit inversion and addition of a 1 in the 

corresponding position in the bit array of the partial 

products. The generations of 3X, 5X, and 7X (odd 

multiples) require carry-propagate adders (the negative 

versions of these multiples are obtained as before). 

Finally, 6X is obtained by a simple one bit left shift of 

3X. 

Fig. 1 illustrates a possible implementation of 

the partial product generation. Five bits of the 

multiplier Y are used to obtain the recoded digit (four 

bits of one digit and one bit of the previous digit to 

determine the transfer digit to be added). The resultant 

digit is obtained as a one-hot code to directly drive a 8 

to 1 multiplexer with an implicit zero output (output 

equal to zero when all the control signals of the 

multiplexer are zero). The recoding requires the 

implementation of simple logic equations that are not 

in the critical path due to the generation in parallel of 

the odd multiples (carry-propagate addition). The XOR 

at the output of the multiplexer is for bit 

complementation (part of the computation of the two’s 

complement when the multiplier digit is negative). 

 
Fig. 1: Partial product generation. 
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Fig. 2(a) illustrates part of the resultant bit 

array for n = 64 after the simplification of the sign 

extension [7]. In general, each partial product has n + 4 

bits including the sign in two’s complement 

representation. The extra four bits are required to host a 

digit multiplication by up to 8 and a sign bit due to the 

possible multiplication by negative multiplier digits. 

Since the partial products are left-shifted four bit 

positions with respect to each other, a costly sign 

extension would be necessary. However, the sign 

extension is simplified by concatenation of some bits to 

each partial product (S is the sign bit of the partial 

product and C is S complemented): CSSS for the first 

partial product and 111C for the rest of partial products 

(except the partial product at the bottom that is non 

negative since the corresponding multiplier digit is 0 or 

1). The bits denoted by b in Fig. 2 corresponds to the 

logic 1 that is added for the two’s complement for 

negative partial products. 

After the generation of the partial product bit 

array, the reduction (multioperand addition) from a 

maximum height of 17 (for n = 64) to 2 is performed. 

The methods for multioperand addition are well 

known, with a common solution consisting of using 3 

to 2 bit reduction with full adders (or 3:2 carry-save 

adders) or 4 to 2 bit reduction with 4:2 carry-save 

adders. The delay and design effort of this stage are 

highly dependent on the maximum height of the bit 

array. It is recognized that reduction arrays of 4:2 

carry-save adders may lead to more regular layouts 

[16]. For instance, with a maximum height of 16, a 

total of 3 levels of 4:2 carry-save adders would be 

necessary. A maximum height of 17 leads to different 

approaches that may increase the delay and/or require 

to use arrays of 3:2 carry-save adders interconnected to 

minimize delay [20]. After the reduction to two 

operands, a carry-propagate addition is performed. This 

addition may take advantage of the specific signal 

arrival times from the partial product reduction step. 
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Fig. 2: Radix-16 partial product reduction array. 

III. PROPOSED METHOD  

To reduce the most extreme tallness of the 

halfway item bit exhibit we play out a short convey 

proliferate expansion in parallel to the standard 

fractional item age. This short expansion lessens the 

most extreme tallness by one line and it is speedier 

than the standard fractional item age. Fig. 2(b) 

demonstrates the components of the bit cluster to be 

included by the short viper. Fig. 2(c) demonstrates the 

subsequent incomplete item bit cluster after the short 

expansion. Looking at the two figures, we watch that 

the greatest stature is diminished from 17 to 16 for n = 

64. 

Fig. 3 shows the specific elements of the bit 

array (boxes) to be added by the short carry-propagate 

addition. In this figure, pi,j corresponds to the bit j of 

partial product i, s0 is the sign bit of partial product 0, 

c0 = NOT(s0), bi is the bit for the two’s complement of 

partial product i, and zi is the ith bit of the result of the 

short addition. The selection of these specific bits to be 

added is justified by the fact that, in this way, the short 

addition delay is hidden from the critical path that 

corresponds to a regular partial product generation (this 

will be shown in Section IV). We perform the 

computation in two concurrent parts A and B as 

indicated in Fig. 3.  

 
Fig. 3: Detail of the elements to be added by the 

short addition 

The elements of the part A are generated 

faster than the elements of part B. Specifically the 

elements of part A are obtained from: 

 • The sign of the first partial product: this is 

directly obtained from bit y3 since there is no transfer 

digit from a previous radix-16 digit;  

• Bits 3 to 7 of partial product 16: the recoded 

digit for partial product 16 can only be 0 or 1, since it 

is just a transfer digit. Therefore the bits of this partial 

product are generated by a simple AND operations of 

the bits of the multiplicand X and bit y63 (that 

generates the transfer from the previous digit). 

 Therefore, we decided to implement part A as 

a speculative addition, by computing two results, a 

result with carry-in = 0 and a result with carry-in = 1. 

This can be computed efficiently with a compound 

adder [7]. Fig. 4 shows the implementation of part A. 

The compound adder determines speculatively the two 

possible results. Once the carry-in is obtained (from 

part B), the correct result is selected by a multiplexer. 

Note that the compound adder is of only five bits, since 

the propagation of the carry through the most 

significant three ones is straightforward. 

 
Fig. 4: Speculative addition of part A 

The calculation of part B is more convoluted. 

The primary issue is that we require the 7 slightest 

noteworthy bits of incomplete item 15. Obviously 

sitting tight for the age of incomplete item 15 isn't a 

choice since we need to shroud the short expansion 

delay out of the basic way. We chose to actualize a 

particular circuit to implant the calculation of the 

minimum huge bits of fractional item 15 in the 

calculation of part B (and furthermore the expansion of 

the bit b15). Note that for the strategy to be right the 
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calculation of the halfway item implanted to a limited 

extent B ought to be steady with the general calculation 

performed for the most noteworthy bits of incomplete 

item 15. 

Fig. 5 shows the computation of part B. We 

decided to compute part B as a three operand addition 

with a 3:2 carry save adder and a carry-propagate 

adder. Two of the operands correspond to the least-

significant bits of the partial product 15 and the other 

operand corresponds to the three least-significant bits 

of partial product 16 (that are easily obtained by an 

AND operation). We perform the computation of the 

bits of the radix-16 partial product 15 as the addition of 

two radix-4 partial products.  

 
Fig. 5: Computation of part B. 

Therefore, we perform two concurrent radix-4 

recodings and multiple selection. The multiples of the 

least significant radix-4 digit are {−2, −1, 0, 1, 2}, 

while the multiples for the most significant radix-4 

digit are {−8, −4, 0, 4, 8} (radix-4 digit set {−2, −1, 0, 

1, 2}, but with relative weight of 4 with respect to the 

least-significant recoding). These two radix-4 

recodings produce exactly the same digit as a direct 

radix-16 recoding for most of the bit combinations.  

However, among the 32 5-bit combinations 

for a full radix-16 digit recoding, there are six not 

consistent with the two concurrent radix-4 recodings. 

Specifically:  

• The bit strings 00100 and 11011 are recoded 

in radix-16 to 2 and −2 respectively. However, when 

performing two parallel radix-4 recodings the resulting 

digits are (4, −2) and (−4, 2) respectively. That is, the 

radix-4 recoding performs the computation of 2X (-2X) 

as 4X-2X (−4X + 2X). To have a consistent 

computation we modified the radix-4 recoders so that 

these strings produce radix-4 digits of the form (0, 2) 

and (0, −2).  

• The bit strings 00101 and 00110 are recoded 

in radix-16 to 3 in both cases. However, the resulting 

radix-4 digits are (4, −1). This means that the radix-4 

recoding performs the computation of 3X as 4X-X. To 

address this inconsistency problem, in this case, we 

decided to implement the radix-16 multiple 3X as 4X-

X. This avoids the combination of radix-4 digits (2, 1) 

and simplifies the multiplexers in Fig. 5.  

• The bit strings 11001 and 11010 are recoded 

in radix-16 to −3 in both cases. However, the resulting 

radix-4 digits are (−4, 1). Therefore, for consistency, 

we proceed as in the previous case by generating the 

radix-16 multiple −3X as −4X + X. To handle negative 

multiples, we select complemented inputs in the 

multiplexers and place 1 in a slot of the input of the 3:2 

carry-save adder with relative binary weight equal to 

the absolute value of the corresponding radix-4 digit. 

These hot ones for two’s complement are indicated in 

Fig. 5 as the string “abcd.” For instance, if the least-

significant radix-4 digit is −2 and the most significant 

radix-4 digit is −4, then c = 1 and b = 1. Therefore, 

“abcd” signals are obtained directly from the selection 

bits of the 4:1 multiplexers.  
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Fig. 6: High level view of the recoding and partial product generation stage including our proposed scheme. 

Fig. 6 demonstrates the recoding and 

fractional item age organize including the abnormal 

state perspective of the equipment plot proposed. The 

way we register part B may in any case prompt an 

irregularity with the calculation of the most noteworthy 

piece of incomplete item 15. In particular, when 

fractional item 15 is the consequence of an odd 

various, a conceivable convey from the 7 slightest 

critical bits is now joined in the most huge piece of the 

halfway item. Amid the calculation of part B we ought 

not deliver again this convey. This issue is understood 

as takes after. Give us a chance to consider first the 

instance of positive odd products. Fig. 5 shows that the 

computation of part B may generate two carry outs: the 

first from the 3:2 carry-save adder (Cout1), and the 

second from the carry-propagate adder (Cout2).  

To avoid inconsistencies, we detect the carry 

propagated to the most significant part of the partial 

product 15 (we call this CM ) and subtract it from the 

two carries generated in part B. Specifically, Table I 

shows the truth table to generate the carry out of part 

B. This truth table corresponds to the XOR of the three 

inputs. The CM carry is obtained from a multiplexer 

that selects among the carry to bit position 7 from the 

odd multiple generators (×3, ×5, and ×7), the carry to 

bit position 6 from the multiple generator ×3 (to get the 

carry to position 7 of multiple ×6), or carry zero for the 

other multiples. The resultant carry out is the selection 

signal used in the multiplexer of part A. 

TABLE I 

TRUTH TABLE FOR COMPUTING THE CARRY 

OUT (− STANDS FOR “DON’T CARE”) 

 

For negative odd multiples we use a similar 

scheme. In this case the output of adder is 

complemented, but the only information available 

about the carry to position 7 is obtained directly from 

the adders that generate the positive odd multiple. 

Next, we show how to obtain the carry to the most 

significant part of the resultant complemented odd 
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multiple from the carry to position 7 obtained from the 

adders. Let us call M the result of the positive odd 

multiple (output of the adder), and express M as 

 

with P being the seven least-significant bits of the 

result from the adder, and N the remaining most 

significant bits of the result of the adder. Let us express 

N in terms of C7 (carry to position 7) 

 

that is, Q are the remaining most significant bits of the 

positive odd multiple minus the carry to position 7. 

Assuming a m bit partial product, the complement of 

M is expressed as 

 

By adding and subtracting 27 and rearranging terms 

results in 

 

We identify the terms N = 2n − 27 − N and Q = 27 − 1 − 

Q. Taking into account these terms and adding and 

subtracting 27 and 2n−1 results in 

 

The term                                          is computed in part 

B of the proposed scheme (see Fig. 5), but 

 is also part of the most significant part 

of partial product 15. Therefore, for a negative partial 

product we need to subtract  In summary, we take 

CM as the carry to position 7 of the adder that generates 

the multiple when the partial product is positive, and 

complement this carry, when the partial product is 

negative. 

IV. EVALUATION 

A. Synthesis with CAD Tools  

We have performed a hardware synthesis 

using Synopsys Design Compiler [21]with the STM 

90nm CMOS standard cell library. For this library the 

delay of a FO4 is 45 ps (FO4 is the delay of an inverter 

of minimum size with a load of four inverters), and the 

area of a two-input NAND gate is 4.4 μm2. We 

synthesized the full partial product generation stage for 

the basic scheme allowing Synopsys’ DesignWare [21] 

to choose the adder, and the proposed scheme with 

hand coding of adders (we need the internal carry of 

the adders, so we were not able to use DesignWare in 

this case). We did not optimize the 3X adder as 

described for instance in [12], [22] and [23], since this 

optimization cannot be applied to the 5X and 7X 

adders, so that the critical path remains the same.  

 
Fig. 7: Latency-area space for the partial product 

generation stage: basic scheme vs proposed scheme. 

Fig. 7 shows the latency-area space for the 

two synthesized designs. For higher latency points, as 

expected, the proposed design has a slight increase in 

area. The fastest design point is roughly the same for 

the two designs, although the proposed design has a 

penalty of about 2 K additional NAND-2 gates with 

respect to the basic scheme. For the fastest design 

point, the cost of the additional hardware in the 

proposed scheme is about 500 NAND-2 gates (even 

less since 7 least-significant bits of one radix-16 

regular partial product are not required), less than 1.8% 

of the hardware complexity of the partial product 

generation stage.  

Therefore, the extra 1.5 K NAND-2 gates 

correspond to the penalty of not using DesignWare 
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adders in the proposed design. Our synthesis 

experiment shows that the proposed scheme does not 

introduce any significant variation in the latency-area 

space of the partial product generation stage, 

confirming our hypothesis that the introduced hardware 

has a minor cost and is hidden from the critical path. 

Therefore, we have the benefit of reducing the 

maximum height of the partial product array by one 

unit without introducing any significant penalties in the 

partial product generation stage. 

B. Impact on the Multiplier  

In the previous subsection, we provided the 

detail of the synthesis of the partial product generation 

with the proposed method. In this subsection, we 

evaluate the impact of our method on the whole 

multiplier. We implement a multiplier by the proposed 

method to reduce the partial products by one, and we 

compare its performance (maximum clock frequency, 

area and power dissipation) to a multiplier, referred as 

basic, with the standard partial product generation and 

an extra operand in the accumulation tree.  

A practical design of a 64 × 64 multiplier is 

normally pipelined to guarantee high-throughput. 

However, the placement of pipeline registers depends 

mostly on the specific technology and may vary from 

design to design. High radix multipliers are chosen 

because the shallower trees allow a significant power 

reduction, since the glitching power is limited to a few 

levels of gates in the tree.  

For this reason, it is realistic to place pipeline 

registers before the tree, i.e., store the partial products 

in the pipeline registers. Consequently, we evaluate 

two schemes:  

1) A 2-stage pipelined design [see Fig. 

8(a)]with pipeline register placed between the partial 

products generation (stage abbreviated as PPGEN in 

the figures and tables) and the tree (TREE);  

2) A 3-stage design [see Fig. 8(b)] with an 

additional pipeline register placed between the tree and 

the final carrypropagate adder (CPA).  

 
Fig. 8:Pipelined multiplier: (a) 2-stage; (b) 3-stage. 

Other pipeline placements are not convenient 

because they will result in placing flip-flops inside 

functional units, such as CPAs or adder trees. This may 

result in increased number of flip-flops (e.g., inside the 

tree) and it is also nonsuitable for reuse. Standard 

datapath blocks (e.g., CPAs) are normally taken from 

fully-tested hardware libraries and altering their 

behavior (placing pipeline registers inside) will prolong 

development times, revalidation and retesting.  

1) Design of 2-Stage Multiplier: For the 2-

stage multiplier the critical path lies in the second stage 

for both the basic and the proposed multipliers. The 

delay of the critical path is 23 FO4 for the basic and 

21.5 FO4 for the proposed multiplier. Clearly, the 

reduced number of partial products in the proposed unit 

at the tree input (16 versus 17 operands) makes the 

accumulation faster. The area of the 2-stage 

implementation it is slightly larger for the proposed 

multiplier, as shown in Fig. 9. As for the power 

dissipation, Table II reports the power breakdown for 

the main blocks of the pipelined multiplier. The 

proposed unit consumes about 2% less power than the 

basic unit. This is mostly due to the reduced switching 

activity (glitches) in the second stage (tree and CPA).  

2) Design of 3-Stage Multiplier: The 

maximum throughput for the multiplier can be obtained 

by breaking the critical part of the second stage in two 

stages. To minimize the number of flip-flops, or 

latches, this second register is placed between the tree 

and the CPA. With this pipelining, the critical path lies 

in the first stage of the multiplier for both the basic and 

the proposed multipliers.  
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Fig. 9: Area breakdown for 2-stage pipelined 

multipliers. 

As already shown in Section IV-A, the delay 

of the critical path is 18 FO4 for both implementations. 

In this case, the larger slack1 in stage 2, allows for a 

good reduction in area for the tree of the proposed 

multiplier, that partly compensate the larger area in the 

first stage (see Fig. 7). As a result, the area of the two 

units in the 3-stage implementation is almost the same, 

as reported in Fig. 10.  

 
Fig. 10: Area breakdown for 3-stage pipelined 

multipliers. 

Also in this case, the power dissipation is 

slightly (4%) lower in the proposed unit. The 

breakdown of the different parts is reported in Table II.  

C. High Level Evaluation  

In this subsection we use a high level rough 

model to evaluate the proposed method. We evaluate 

the critical path of the conventional partial product 

generation and the critical path of the hardware we 

added to reduce the maximum height of the partial 

product array. Although real implementations rely on 

optimizations of the critical path done by synthesis 

tools on a specific standard cell library technology, this 

high level analysis may give some insight about the 

relative contribution to the critical path of each 

component. We use a rough delay model based on 

logical effort [24]. This model is based on using cells 

with transistor sizing so that all the cells have the drive 

strength of the minimum size inverter. Buffering is 

introduced when necessary to optimize delays. We 

provide delays in FO4 units. Interconnections loads are 

not taken into account. Optimizations such as gate 

sizing, low/high Vth, etc. are not considered. Table III 

shows the delay equations, input capacitance and 

relative hardware cost of the basic hardware elements 

used. In the table, the parameter L indicates the actual 

load (capacitance) connected to the specific gate, and 

Lin indicates the input capacitance of the buffers.  

TABLE II  

POWER DISSIPATION IN THE PIPELINED 

MULTIPLIERS 

 

A key issue for the estimation of the critical 

path of the conventional partial product generation is 

the architecture of the adders for multiple generation. 

The worst case for our analysis corresponds to the 

fastest design point for partial product generation. 

Therefore we considered a fast Kogge-Stone adder 

topology [7]. Although this is not energy/power 

efficient in real implementations, at the logic level it is 

a good lower bound of delay for an adder. After the 

analysis of the conventional architecture, we estimated 

the impact of the additional hardware required for the 

proposed multiplier. For a quick reference, the timing 

paths of Figs. 4–6 are summarized in Fig. 11.  
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Fig. 11: Timing paths for the proposed partial 

products reduction. 

In the figure, the delay in the input registers 

(X and Y) and the delay of buffers are omitted for 

simplicity.  

The critical path of the conventional partial 

product generation is composed by the following items:  

• Input register X: 3.0 FO4;  

• Input buffering of multiplicand: 1.4 FO4;  

• Multiple generations (adder): 10.3 FO4;  

• Buffer between multiple generators and 8:1 

mux: 1.7 FO4;  

• 8:1 Mux and inversion (input from data): 4.9 

FO4.  

This corresponds to a total delay of 21.3 FO4 

in the critical path. The scheme we propose (Part A, 

Fig. 4, and Part B, Fig. 5, in Fig. 11) has the following 

components in the critical path: • input register Y: 3.0 

FO4;  

• Input buffering of multiplier bits: 0.5 FO4;  

• Radix-4 Booth recoding and selector with 

inversion (Part B): 5.0 FO4;  

• 3:2 carry-save adder (Part B): 3.5 FO4;  

• carry out of 7-bit carry-propagate adder (Part 

B): 4.4 FO4;  

• XOR to produce sel signal (Part B) and six-

bit 2:1 multiplexer (Part A): 4.2 FO4.  

Accordingly, the way delay is 20.6 FO4 and it 

isn't basic. Our examination demonstrates that the CM 

flag isn't in the basic way (the most pessimistic 

scenario delay for CM is 13.1 FO4, while the most 

pessimistic scenario delay for Cout2 is 16.4 FO4). 

These outcomes are cognizant with the speediest plan 

point in the inertness region diagram appeared in Fig. 

7. The lower bound in inertness is around 18.2 FO4. 

The union apparatus can do a type of door measuring 

(reliant on the accessible entryway sizes for each 

example entryway), so a speedier outcome than in our 

abnormal state examination ought normal. In this 

manner, our unpleasant investigation is in concurrence 

with the union outcomes, as the proposed plot isn't in 

the basic way for n = 64. 

TABLE III  

DELAY EQUATIONS, INPUT CAPACITANCE 

AND HARDWARE COST OF BASIC ELEMENTS 

 

We played out a comparative investigation for 

the basic way of the customary halfway item age for n 

= 32 (the case for n = 16 is less appealing for radix-16 

because of the modest number of incomplete items). 

For n = 32 we acquire a basic way of 19.7 FO4. As it 

can be found in Fig. 2, the plan we propose isn't 

delicate to the variety of n (the quantity of bits included 

Fig. 2(b) is free of the estimation of n), subsequently 

bringing about an indistinguishable basic way from 

previously (20.6 FO4). Consequently, for the speediest 

outline point, for n = 32, the proposed conspire is in the 

basic way, with a slack regarding the regular fractional 

item age of 0.9 FO4 for n = 32. This negative slack of 

our plan can be diminished with ordinary 

methodologies like low Vth doors and entryway 

estimating without huge increment in control, since the 

offer of our plan as for the aggregate equipment is 

little. We checked this announcement with the union 

device. A blend for n = 32 prompts a basic way of 16.5 

FO4 and this basic way compares to the calculation of 

a normal fractional item. 

V. RESULTS 

The composed Verilog HDL Modules have effectively 

recreated and confirmed utilizing Isim Simulator and 

orchestrated utilizing Xilinxise13.2. 

Simulation results: 
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RTL schematic: 

 

Technology Schematic: 

 

Design summary: 

 

Timing Report: 

 

VI. CONCLUSION 

Pipelined large word length digital multipliers 

are difficult to design under the constraints of core 

cycle time (for nominal voltage), pipeline depth, power 

and energy consumption and area. Low level 

optimizations might be required to meet these 

constraints. In this work, we have presented a method 

to reduce by one the maximum height of the partial 

product array for 64-bit radix-16 Booth recoded 

magnitude multipliers. This reduction may allow more 

flexibility in the design of the reduction tree of the 

pipelined multiplier. We have shown that this reduction 

is achieved with no extra delay for n ≥ 32 for a cell-

based design. The method can be extended to Booth 

recoded radix-8 multipliers, signed multipliers and 

combined signed/unsigned multipliers. Radix-8 and 

radix-16 Booth recoded multipliers are attractive for 

low power designs, mainly to the lower complexity and 

depth of the reduction tree, and therefore they might be 

very popular in this era of power-constrained designs 

with increasing overheads due to wiring. 
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